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Abstract: Advancements in genomic technologies have paved the way for significant breakthroughs
in cancer diagnostics, with DNA microarray technology standing at the forefront of identifying genetic
expressions associated with various cancer types. Despite its potential, the vast dimensionality of
microarray data presents a formidable challenge, necessitating efficient dimension reduction and
gene selection methods to accurately identify cancerous tumors. In response to this challenge, this
study introduces an innovative strategy for microarray data dimension reduction and crucial gene
set selection, aiming to enhance the accuracy of cancerous tumor identification. Leveraging DNA
microarray technology, our method focuses on pinpointing significant genes implicated in tumor
development, aiding the development of sophisticated computerized diagnostic tools. Our technique
synergizes gene selection with classifier training within a logistic regression framework, utilizing a
generalized Fused LASSO (GFLASSO-LR) regularizer. This regularization incorporates two penalties:
one for selecting pertinent genes and another for emphasizing adjacent genes of importance to
the target class, thus achieving an optimal trade-off between gene relevance and redundancy. The
optimization challenge posed by our approach is tackled using a sub-gradient algorithm, designed
to meet specific convergence prerequisites. We establish that our algorithm’s objective function is
convex, Lipschitz continuous, and possesses a global minimum, ensuring reliability in the gene
selection process. A numerical evaluation of the method’s parameters further substantiates its
effectiveness. Experimental outcomes affirm the GFLASSO-LR methodology’s high efficiency in
processing high-dimensional microarray data for cancer classification. It effectively identifies compact
gene subsets, significantly enhancing classification performance and demonstrating its potential as a
powerful tool in cancer research and diagnostics.

Keywords: gene selection; cancer classification; DNA microarray; penalized logistic regression;
Generalized Fused LASSO; sub-gradient method

1. Introduction

Currently, advancements in technology have made massive datasets, like DNA mi-
croarray data, fundamental to statistical analysis [1,2]. High-dimensional data pose chal-
lenges in classification tasks and gene subset identification [3]. DNA microarrays are
vital in medicine and biology for various research purposes, including gene co-regulation,
clinical diagnosis, and differential gene expression [4,5]. Microarray technology, crucial in
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cancer research, identifies genes critical to tumor growth and aids in developing diagnostic
systems [6]. However, microarray data analysis is complex due to computational and
biological challenges. The high cost of microarray experiments limits sample size, creating
datasets with many genes but few samples [7,8], leading to computational instability and
the curse of dimensionality [9,10]. Consequently, gene selection becomes a crucial yet
difficult task.

Scientists aim to identify markers for lab testing to create effective disease treat-
ments. Efficient gene selection improves understanding of gene–disease relationships and
classifier quality, addressing the curse of dimensionality [11–13]. Gene selection, a signifi-
cant challenge due to the gene-sample number disparity, requires advanced optimization
methods [14,15]. Despite numerous gene selection methods aiming to enhance classifica-
tion accuracy, further research is needed, particularly for diseases like cancer [16,17]. High
classification accuracy is essential for personalized medicine, enabling better physician
decision-making and potentially saving lives. Gene [18,19] selection algorithms include
filter, wrapper, and embedded methods [20].

Filter methods evaluate genes independently, assigning scores to select high-scoring
genes. Though easy to implement, they overlook gene interactions. Examples include the
Fischer score, t-test, signal-to-noise ratio, information gain, and ReliefF [21–25]. Wrapper
methods use classifiers to select gene subsets, testing candidate subsets for performance.
Despite achieving high performance, they are computationally intensive and risk over-
fitting [20]. Embedded methods integrate selection into the learning algorithm, offering
efficiency and performance without extensive classifier execution [26]. These methods con-
sider gene dependencies but are algorithm-specific and computationally complex [27–29].

Filter methods evaluate genes independently, assigning scores to select high-scoring
genes. Though easy to implement and computationally efficient, they have significant
limitations: primarily, they overlook gene interactions, which can lead to suboptimal
gene selection in complex biological processes where gene interactions play a crucial
role. Examples include the Fischer score, t-test, signal-to-noise ratio, information gain,
and ReliefF. Their simplicity and neglect of gene–gene interactions can lead to a lack of
robustness in capturing the multifaceted nature of genetic influences on diseases [21–25].
Wrapper methods, on the other hand, use classifiers to select gene subsets, evaluating the
performance of candidate subsets. While these methods can achieve high performance
by considering gene interactions and utilizing the predictive power of classifiers, they
come with their own set of limitations. They are computationally intensive, making them
impractical for very large datasets, and they carry a significant risk of overfitting, especially
when the number of genes vastly exceeds the number of samples. This can lead to models
that perform well on training data but poorly on unseen data [20]. Embedded methods offer
a middle ground by integrating gene selection directly into the learning algorithm, thus
offering efficiency and potentially high performance without necessitating the execution of
separate classifiers for feature selection. These methods can account for gene dependencies
through their integration with the learning model, offering a more nuanced approach
to gene selection. However, their algorithm-specific nature means that each method is
tailored to a particular model or set of assumptions about the data, which can limit their
applicability. Moreover, they can still be computationally complex, posing challenges for
their use in large-scale genomic studies [27–29]. These limitations highlight the ongoing
need for innovative solutions that balance accuracy, computational efficiency, and the
ability to handle high-dimensional genomic data.

Regularized methods, particularly penalized logistic regression (PLR) with LASSO,
are gaining traction for cancer classification [30–38]. While LASSO is effective for feature
selection and model simplification, it has limitations such as potential bias in coefficient
estimation, difficulty in handling highly correlated predictors, and a tendency to select
only one variable from a group of highly correlated variables. These limitations prompted
the development of the Elastic-Net (EN) penalty by Zou and Hastie [39], which combines
the L1 and L2 penalties to better handle correlated predictors, and the adaptive LASSO
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(ALASSO) by Zou et al. [40], which introduces weights for penalization within the L1 norm
to improve variable selection accuracy.

To overcome the deficiencies in achieving the oracle property, Zou introduced
ALASSO [40], which theoretically possesses the oracle property under certain conditions.
However, the performance of ALASSO can be sensitive to the choice of weights, which
may require additional tuning. Structured penalties, like Fused LASSO [41,42], further
enhance LASSO by considering gene relationships, aiding in feature reduction and mean-
ingful gene selection [43]. Despite its advantages, Fused LASSO can be computationally
intensive for large datasets and may not perform well if the true underlying model does
not adhere to its assumption of spatial or sequential coherence. The Fused LASSO and
its theoretical foundations [44,45] have led to the Generalized Fused LASSO (GFLASSO)
within linear regression [46,47], which penalizes coefficient differences based on a gene
graph to encourage sparse and connected solution vectors [47]. GFLASSO further extends
the applicability to more complex data structures but faces challenges in scalability and
the need for a well-defined gene graph, which may not always be available or accurately
represent biological relationships.

The L1 norm penalties’ absolute values complicate minimization due to non-
differentiability at zero, challenging analytical solution derivation. Initial solutions for
linear regression included FLSA [48] and other algorithms [49–51]. For logistic regression,
fewer algorithms exist, with Hofling et al. [46] applying quadratic approximation iteratively
to the log-likelihood function. Table 1 presents a comparison of Contributions in DNA
Microarray Data Analysis.

In the wake of comprehensive literature analysis, it becomes evident that the frontier
of gene selection for cancer research is ripe for innovation. Current methodologies, while
robust, exhibit limitations in computational efficiency, model overfitting, and the nuanced
understanding of gene interdependencies. This literature underscores the essential balance
between gene selection’s computational demands and the need for precise, interpretable
models capable of navigating the vast, complex landscape of genomic data. Notably,
regularized regression methods like LASSO and its derivatives represent a significant
stride towards addressing these challenges. However, their effectiveness is contingent
upon the integration of gene relational structures and overcoming inherent mathematical
complexities.

This study introduces an innovative algorithm, termed GFLASSO, which leverages
sub-gradient methods and unfolds in two distinct phases: initially, a preprocessing step
where a preliminary subset of genes is selected via a univariate filter method that utilizes
Pearson’s correlation coefficient; followed by the application of an improved Generalized
Fused Lasso technique, which also employs Pearson’s correlation coefficient to assess inter-
gene relationships. The primary objective of this research is to showcase the effectiveness
of our gene selection methodology in enhancing the classification of high-dimensional data,
particularly within the context of cancer research. Overall, the main contributions of this
study are summarized as follows:

• Introduced an improved approach for dimension reduction and important gene selec-
tion in cancer research using DNA microarray technology.

• Integrated gene selection with classifier training into a single process, enhancing the
efficiency of identifying cancerous tumors.

• Formulated gene selection as a logistic regression problem with a generalized Fused
LASSO (GFLASSO) regularizer, incorporating dual penalties to balance gene relevance
and redundancy.

• Utilized a sub-gradient algorithm for optimization, demonstrating the algorithm’s
objective function is convex, Lipschitzian, and possesses a global minimum, meeting
necessary convergence conditions.

• Showed that the GFLASSO-LR method significantly improves cancer classification
from high-dimensional microarray data, yielding compact and highly performant
gene subsets.
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The remainder of this paper is structured as follows: Section 2 provides a detailed
presentation of the proposed method, beginning with preliminary concepts before delving
into the sub-gradient method and its application for estimating β̂GFLASSO. Subsequently,
Section 3 evaluates the performance of our proposed approach using four well-known
gene expression classification datasets, detailing both the parameter settings and the nu-
merical results obtained. Finally, Section 4 concludes the paper and outlines directions for
future work.

Table 1. Comparison of Contributions in DNA Microarray Data Analysis.

Reference Methodological
Approach Application Area Challenges Addressed Notable Contributions

Li et al. [1] High-dimensional data
analysis DNA microarray data

Statistical analysis
difficulty in
classification tasks

Developed approaches for
gene subset identification

Feng et al. [2] High-dimensional data
analysis DNA microarray data

High-dimensional data
challenges in gene
selection

Improved understanding of
gene–disease relationships

Mehrabi et al. [3] Efficient gene selection
methods DNA microarray data

Curse of dimensionality
in microarray data
analysis

Enhanced classification
accuracy for diseases like
cancer

Syu et al. [4] Microarray technology
analysis

Medicine and
Biology

Clinical diagnosis and
gene co-regulation

Identified critical genes for
tumor growth and diagnostic
systems development

Caraffi et al. [5] Microarray data analysis Cancer research Computational and
biological challenges

Developed diagnostic systems
to aid in cancer treatment

Ghavidel et al. [7] Machine learning
approaches

Microarray data
analysis

Computational
instability and sample
size limitation

Addressed the curse of
dimensionality with
computational methods

Birjmel et al. [12] Optimization methods
for gene selection DNA microarray data Gene-sample number

disparity

Advanced optimization
methods to improve classifier
quality

Yaqoob et al. [16] Gene selection for
personalized medicine Cancer research Need for high

classification accuracy

Optimized gene selection
methods for better physician
decision-making

Alharthi et al. [30] Regularized methods,
PLR with LASSO Cancer classification Limitations of LASSO

Introduced Elastic-Net (EN)
and adaptive LASSO
(ALASSO) for cancer
classification

Zou et al. [40] Adaptive LASSO Statistical analysis Oracle property
deficiencies in LASSO

Introduced weights for
penalization within the L1
norm

Hofling et al. [46] Generalized Fused
LASSO (GFLASSO) Linear regression Challenges in L1 norm

penalties minimization

Penalized coefficient
differences based on a gene
graph for sparse solutions

2. Methods
2.1. Preliminaries

In Microarray data, each value of xij is the measure of the expression level of the jth

gene in the ith sample, this array contains real values, and there are no missing values.
Where N is the number of genes and M is the number of samples.

DNA microarray analysis for cancer classification is formulated as a supervised clas-
sification problem. The limited number of samples that can be collected due to the high
cost of preparing DNA microarrays presents a challenge for statistical learning techniques.
Linear models, specifically logistic regression, are commonly used for discriminant analysis
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in supervised learning. In binary logistic regression, it is usual to consider the values of the
variable to be explained as belonging to the set {0, 1}; this is a binary classification.

Let Πi = P(yi = 1/xi = xi1, . . . , xiN) denote the probability that the class of xi is 1,
for any sample xi, i = 1, . . . , M, of the dataset matrix.

It can then be deduced that P(yi = 0/xi = xi1, . . . , xiN) = 1 − Πi. The logistic regres-
sion model is written [52] as follows:

Πi =
eβ0+∑N

j=1 β jxij

1 + eβ0+∑N
j=1 β jxij

where β = (β0, β1, . . . , βN)
T denotes the vector of regression coefficients including a

constant β0. This vector will be estimated from the training data. Without loss of generality,
it was assumed that the genes are centered:

∑M
i=1 xij = 0 and 1

M ∑M
i=1 x2

ij = 1, ∀j ∈ {1, 2, . . . , N}.
For clarity and simplicity, let us adopt the following notation. Let i = 1, 2, . . . , M

denote

• x′i = (1, xi) = (1, xi1, . . . , xiN), or simply for any vector x = (x1, . . . , xN) of RN , it was
noted that x′ = (1, x) = (1, x1, . . . , xN)

• x′i β = β0 + ∑N
j=1 β jxij is the usual scalar product.

Moving on, for i = 1, . . . , M,

Πi =
ex′i β

1 + ex′i β
et ln

(
Πi

1 − Πi

)
= x′i β

The probability of observing the response yi for a sample xi is written in a more com-
pact way:

P(yi/xi) = Πyi
i (1 − Πi)

1−yi

Let f be the “sigmoid” function used in the logistic regression defined by f (z) = 1
1+e−z for

any real z; the latter has a value in [0, 1]. It can be noticed then that Πi = f (x′i β).
The classification rule for a new example x via logistic regression is therefore defined by

Class(x) =

{
0 if f (x′β) < 0.5
1 if f (x′β) ⩾ 0.5

The methods for estimating the β coefficients include the statistical method called
“maximum likelihood estimation”, which allows us to determine the values of the β param-
eter of the model, which renders the following maximum value

L(β) =
M

∏
i=1

Πyi
i (1 − Πi)

1−yi

This is equivalent to finding β in RN+1, which maximizes the log-likelihood function.

ln(L(β)) =
M

∑
i=1

yi ln(Πi) + (1 − yi) ln(1 − Πi)

Maximizing ln(L(β)) is the same as minimizing − ln(L(β)). Let us then note g(β) =
− ln(L(β)) for all β of RN+1. After some elementary calculations, we arrive at

g(β) = −
M

∑
i=1

(
yix′i β − ln

(
1 + ex′i β

))
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In cancer classification, logistic regression is used to model the relationship between a
set of independent variables (genes) and a binary dependent variable (tumor or normal
class) by minimizing the function g(β) in Equation (1).

β̂LR = arg minβ∈RN+1 g(β) = arg minβ∈RN+1 −∑M
i=1(yix′i β

− ln
(

1 + ex′i β
)
)

(1)

However, logistic regression may be limited in classifying high-dimensional data as
the minimization problem may not have a unique solution, as shown by Albert et al. [53].
They found that when the dataset is completely or nearly completely separated, the esti-
mators of (1) become infinite and non-unique, while in the presence of overlap in the data,
the minimum of (1) exists and is finite.

In microarray data, the high number of genes can lead to overfitting and multicollinear-
ity in the estimators (β) since only a few genes are actually associated with the response
variable. To enhance classification accuracy, it is important to develop gene selection meth-
ods that eliminate irrelevant genes. One such method is penalized logistic regression (PLR),
which adds a positive penalty to the likelihood function g, causing some coefficients to
approach zero, a technique known as regularization. The penalized log-likelihood can be
expressed as shown in Equation (2):

PLR = g(β) + λP(β) (2)

where P(β) represents the penalty term and λ is the regularization parameter that deter-
mines the extent of the penalty. For λ = 0, this can lead to the solution of (1) if it exists.
On the other hand, for high values of λ, the regularization term has a greater impact on the
coefficient estimates. The selection of the tuning parameter is critical in fitting the model,
and if it is chosen via cross-validation, the classifier can achieve satisfactory classification
accuracy. These penalized methods are commonly used in gene selection and classification
of high-dimensional data, as reported in [54].

In the following, we denote β̂λ as the vector of size N + 1 that represents a solution to
the minimization problem (2), i.e.,

β̂λ = arg min
β∈RN+1

(g(β) + λP(β)) (3)

Several penalty terms have been explained and applied in the literature, namely,
Ridge (L2) [55], LASSO (L1) [56], Elastic net [39], Adaptive LASSO [40], Fused LASSO
and Generalized Fused LASSO [47], Relaxed LASSO [57], Group LASSO [58], Random
LASSO [59], and many others. These penalties, along with logistic regression, can be
used successfully to obtain high classification rates. We are specifically interested in the
Generalized Fused LASSO penalty. This focus sets the stage for introducing the sub-
gradient method.

2.2. Sub-Gradient Method

The sub-gradient method is a technique for minimizing non-differentiable convex
functions, similar to the ordinary gradient method for differentiable functions. However, it
has some key differences, such as its ability to handle non-differentiable functions directly
and the lack of guarantee for decreasing the function value.

These methods were introduced in the 1960s by N.Z. Shor [60] for the unconstrained
minimization of convex functions in the field of network transport. The first convergence
results are attributed to Polyak [61] and Nemirovski [62], and they have been further
developed by various researchers since then.
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Consider a function f : Ω → R, where Ω ⊂ Rn is a convex set, and x̄ ∈ Ω. We define
a subgradient of f at x̄ as an element v ∈ Rn satisfying the following inequality:

⟨v, x − x̄⟩ ≤ f (x)− f (x̄) for all x ∈ Ω

The set of all subgradients is termed the subdifferential of f at x̄, denoted ∂ f (x̄).
For a convex function f : Ω → R defined on a convex set Ω ⊂ Rn, several properties

of its subdifferential have been well-established [63]:

1. Let x̄ ∈ int(Ω), then ∂ f (x̄) is a non-empty, convex, bounded set.
2. Assuming differentiability of f at x̄ ∈ int(Ω), we have ∂ f (x̄) = ∇ f (x̄) and

⟨∇ f (x̄), x − x̄⟩ ≤ f (x)− f (x̄) for all x ∈ Ω

3. Suppose Ω is a convex set in Rn, and let fi : Ω → R be convex functions with λi > 0
for i = 1, . . . , m. If x̄ ∈ Ω, then the subdifferential sum rule is expressed as follows:

∂

(
m

∑
i=1

λi fi

)
(x̄) =

m

∑
i=1

λi∂ fi(x̄)

Let us now present some important examples of sub-differential calculation:

Example 1. The norm function (L1):
Let f : x ∈ Rn 7→ ∥x∥1 = |x1|+ . . . + |xn|.
The sub-differential of f is the Cartesian product of the following intervals:

∂ f (x) = I1 × · · · × In, Ik =


[−1, 1] xk = 0
{1} xk > 0
{−1} xk < 0

Example 2. Let n be an integer greater than or equal to 2, and (k, l) ∈ 1, n2 with k < l.
Let fk,l be the function defined on Rn by fk,l : x ∈ Rn 7→ |xk − xl |
The subdifferential of fk,l is the Cartesian product of the following intervals:

∂ fk,l(x) = I1 × · · · × In.

With:

Ii = {0} for all i ∈ 1, n \ {k, l} , Ik =


[−1, 1] xk − xl = 0
{1} xk − xl > 0
{−1} xk − xl < 0

, Il =


[−1, 1] xk − xl = 0
{1} xk − xl < 0
{−1} xk − xl > 0

2.2.1. Subgradient Algorithm

The classical subgradient method is designed to solve convex optimization problems
without type constraints:

minimize f (x) subject to x ∈ Rn (4)

where f : Rn → R represents a convex function. Let {αk}, where k ∈ N, be a sequence
of positive numbers. The subgradient algorithm generated by {αk} is defined as follows:
given an initial point x1 ∈ Rn, the iterative procedure is as follows:

xk+1 := xk − αkvk with vk ∈ ∂ f (xk), k ∈ N (5)

We presuppose that problem (4) possesses an optimal solution and that f is convex and
Lipschitz on Rn.
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Several methodologies have been proposed in the literature, as documented
in [61,63–67], for selecting the sequence of steps αk to ensure convergence of the subgradient
method. Note that

V̄ := min{ f (x) | x ∈ Rn} and Vk := min{ f (x1), . . . , f (xk)}

There are three main results that have been found:

1. Suppose αk = ϵ for all k ∈ N. Then there exists a positive constant C such that

0 ≤ Vk − V̄ < ℓ2ϵ when k >
C
ϵ2

2. Suppose that
∞

∑
k=1

αk = ∞ and lim
k→∞

αk = 0 (6)

Then, we have convergence Vk → V̄ as k → ∞, and

lim inf
k→∞

f (xk) = V̄

3. Suppose the generated sequence {αk} in (5) satisfies

∞

∑
k=1

αk = ∞ and
∞

∑
k=1

α2
k < ∞ (7)

Consequently, the sequence {Vk} converges to the optimal value V̄, and the iterative
sequence {xk} generated by (5) converges to an optimal solution x̄ of (4).

2.2.2. Generalized Fused LASSO

Proposed by Tibshirani and Al [42], the Fused LASSO is an extension of LASSO
aiming to improve its properties when the features are ordered. It adds another penalty
to L1 to encourage zero differences between successive coefficients. The idea of the Fused
LASSO has been generalized in the context of linear regression models (and generalized
linear models) [46,47]. This is accomplished by constructing a graph G = (V, E) with
V = {1, . . . , N} vertices (representing genes in DNA microarray data), each corresponding
to a coefficient, and a set of edges E. In the generalized Fused LASSO, differences |βk − βl |
for (k, l) ∈ E are penalized, with associated weights representing the degree of association
between genes. The objective function is

β̂GFLASSO,λ1,λ2 = arg min
β∈RN+1

g(β) + λ1

N

∑
k=0

|βk|

+ λ2 ∑
(k,l)∈E,k<l

wk,l |βk − βl |
(8)

The penalties wk,l in the Fused LASSO regularizer (8) are typically determined from the
initial data. Here, λk,l = λ2 × wk,l represents the penalty applied to the difference between
genes gk and gl . As wk,l increases, the penalty on |βk − βl | also increases, making βk and
βl more likely to be equal. The first penalty ensures many β j are zero, promoting sparsity.
Therefore, β̂GFLASSO,λ1,λ2 tends to have sparse and equal coefficients for connected genes
in the graph. The choice of λ1 and λ2 is determined using appropriate cross-validation
methods [68].

Due to the penalty (8), some coefficients of β̂GFLASSO,λ1,λ2 are reduced to zero, indicat-
ing unused genes in the model. The parameters λ1 and λ1 control the degree of penalization,
affecting the number of non-zero estimated coefficients. As λ1 increases, the number of
null components in β̂GFLASSO,λ1,λ2 increases. The set of selected genes is defined as
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S(λ1, λ2) =
{

gj : β̂GFLASSO,λ1,λ2,j ̸= 0; j = 1, . . . , N
}

where β̂GFLASSO,λ1,λ2,j is the penalized logistic regression coefficient (8) associated with the
gj gene for the penalty parameters λ1 and λ2.

We formulate the problem of gene selection as a logistic regression problem (maximum
log-likelihood) with a generalized Fused LASSO regularizer, a penalty that is rarely used in
this type of problem. The selection is performed by minimizing (8).

To construct the graph G = (V, E) and assign weights wk,l to each edge (k, l), we
consider V = {1, . . . , N} as the set of vertices (genes) associated with our DNA microarray
data. The interaction between genes is measured using the Pearson correlation coefficient.
An edge is formed between vertices k and l if and only if the absolute correlation between
genes gk and gl is greater than or equal to a threshold r0. The weight of edge (k, l) is
defined as the absolute value of the correlation between gk and gl : wk,l = |ρgk ,gl |. This
way, the graph G = (V, E) and the weights wk,l are established. The correlation coefficient
between gk and gl is defined as

ρgk ,gl =
cov(gk, gl)

σgk σgl

(9)

where cov(gk, gl) is the covariance between gk and gl , σgk is the standard deviation of gk,
and σgl is the standard deviation of gl .

The use of Fused LASSO is motivated by several factors [69]. One of the main advan-
tages is its ability to handle high-dimensional data where the number of genes exceeds
the number of samples. Traditional LASSO may struggle in such cases, while Elastic Net,
though potentially outperforming LASSO, is relatively less efficient than Fused LASSO,
especially when there are relationships among genes. Additionally, Fused LASSO explicitly
regularizes the differences between neighboring coefficients using an L1 norm regularizer,
exploiting relationships between genes. This results in sparse coefficients, with non-zero
components equal for some connected genes in the graph, balancing individual gene
relevance and redundancy.

2.2.3. Structure of the Proposed Approach

The proposed approach consists of a two-step sequential process (as depicted in
Figure 1). Firstly, a preprocessing phase eliminates irrelevant genes, selecting the top
genes ranked by relevance determined by their correlation with the target class. Then,
an embedded method is applied to the selected genes, involving the construction of a
logistic regression classifier. The model is trained to find β̂GFLASSO,λ1,λ2 by solving the
minimization problem outlined in Equation (8) using the subgradient algorithm.

With respect to the estimation of β̂GFLASSO,λ1,λ2 in (8), since the function in question
is not differentiable due to the presence of the absolute value, we use the subgradient
algorithm to solve the minimization problem (8). This algorithm has not been previously
used to solve the logistic regression problem with the Generalized Fused LASSO penalty.
In the following, we demonstrate the convergence of this algorithm for (8).

2.3. Sub-Gradient for Estimating β̂GFLASSO,λ1,λ2

It is known that the sub-gradient algorithm can converge to the optimal solution of a
convex minimization problem when an appropriate step sequence (αk) is chosen, as long
as the function in question meets the following conditions:

• It is convex.
• It admits a global minimum.
• It is Lipschitz.

To apply this algorithm to our problem (8), we must first ensure that the function
meets these three conditions.
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Validation  of  results  on  
the  test  set

          
 

Step 2

GFLASSO-LR

Divide the new data set into a training set and a 
test set.

Step  1

Pearson filter

  Absolute correlation 
between genes and 

the target class

Dataset

 
  

       
     
        
        

Choose the
200 best genes

Build the graph G=(V,E) and calculate the weights.
Build the objective function (GFLASSO-LR)based 
on the learning data and the 200 genes.
Apply the subgradient algorithm to find the best 
solution.

Selected  genes

Figure 1. Flowchart of the proposed approach (GFLASSO− LR) for gene selection in microarray data.

2.3.1. Characteristics and Convexity Analysis of the GFLASSO Penalty Function

It is important to note that

hλ1,λ2(β) = g(β) + λ1 ∑N
j=0
∣∣β j
∣∣+ λ2 ∑(k,l)∈E,k<l wk,l |βk − βl |

∀β ∈ RN+1 (10)

1. The convexity of hλ1,λ2 :

First, there is

g(β) = −∑M
i=1

(
yix′i β − ln

(
1 + ex′i β

))
= −∑M

i=1 yix′i β + ∑M
i=1 ln

(
1 + ex′i β

)
, ∀β ∈ RN+1

Let us show that g is convex on RN+1:

• The function β 7→ −∑M
i=1 yix′i β is convex; it is a linear function on RN+1.

• The function β 7→ x′i β is convex for all i in {1, . . . , M}, so β 7→ ln
(

1 + ex′i β
)

is
convex for all i in {1, . . . , M}. (It is the composition of an increasing function
convex on R and a convex function on RN+1).

The function g is therefore convex on RN+1, being the sum of M + 1 convex functions.
On the other hand, the function β 7→ λ1 ∑N

j=0
∣∣β j
∣∣ is convex as the sum of N + 1

convex functions.
Next, we show that the function β 7→ λ2 ∑(k,l)∈E,k<l wk,l |βk − βl | is convex.
Indeed, let (k, l) ∈ {1, . . . , N}2 with k < l. The function β 7→ λ2wk,l |βk − βl | =
fk,l(β) is convex. This is because fk,l , defined in Example (2), is composed of an
affine function and another convex one, with λ2wk,l ≥ 0. Then the function β 7→
λ2 ∑(k,l)∈E,k<l wk,l |βk − βl | is convex as it is a sum of convex functions.
Finally, we can deduce that the function hλ1,λ2 is convex as it is a sum of convex functions.

2. The existence of a global minimum of hλ1,λ2 :
We recall that a real-valued function f : Rn → R is coercive if lim|x|→∞ f (x) = ∞.
We have

∀β ∈ RN+1, L(β) =
M

∏
i=1

Πyi
i (1 − Πi)

1−yi

and
g(β) = − ln(L(β))

with Πi =
ex′i β

1+ex′i β
for all i in {1, . . . , M}.
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Additionally, we have
∀i ∈ [|1, M|], 0 < Πi < 1 and yi ∈ {0, 1}. So 0 < L(β) < 1 ∀β ∈ RN+1

Hence, g(β) ∈ R+∗ ∀β ∈ RN+1

Let us examine the expression for hλ1,λ2 . Given that the function g is positive on RN+1

and λ1 in (10) is strictly positive, it follows that

hλ1,λ2(β) ⩾ λ1∥β∥1 ∀β ∈ RN+1

Based on the latest inequality, we can deduce that hλ1,λ2 is a coercive function. Ad-
ditionally, hλ1,λ2 is continuous, so it attains a a global minimum at least once (see
appendix in reference [70]).

3. The function hλ1,λ2 is ℓ-Lipschitz on RN+1:
We only have one condition left to establish to show that the sub-gradient algorithm
converges to a global minimum of hλ1,λ2 ; it is to prove that hλ1,λ2 is ℓ-Lipschitzian on
RN+1, i.e., find a positive ℓ such that

∀β, γ ∈ RN+1,
∣∣hλ1,λ2(β)− hλ1,λ2(γ)

∣∣ ⩽ ℓ∥β − γ∥

Note in passing that the Lipschitz constant ℓ depends on the choice of the norm on
RN+1. Since all norms are equivalent on RN+1, whether a function is Lipschitz or not
does not depend on the chosen norm.
Let us start by showing that the function g is Lipschitz. We first have

g(β) = −
M

∑
i=1

(
yix′i β − ln

(
1 + ex′i β

))
∀β ∈ RN+1

The function g is of class C1 on RN+1. Find the partial derivatives of g:
Let β ∈ RN+1. We have

∀j ∈ [|0, N|], ∂g(β)

∂β j
= −

M

∑
i=1

(
yix′ij − Πix′ij

)
Therefore,
∥∇g(β)∥1 ≤ ∑N

j=0

(
∑M

i=1

(∣∣∣yix′ij
∣∣∣+ ∣∣∣x′ij∣∣∣))

Let M1 = ∑N
j=0

(
∑M

i=1

(∣∣∣yix′ij
∣∣∣+ ∣∣∣x′ij∣∣∣)). Then we have ∥∇g(β)∥1 ≤ M1

As we are working on the finite dimensional normed vector space RN+1, there then
exists some positive M2 such that ∥∇g(β)∥ ≤ M2
We can notice that the real M2 does not depend on β; more precisely it only depends
on the training set. So we get

∀β ∈ RN+1, ∥∇g(β)∥ ≤ M2 (11)

So g is a M2-Lipschitz function on RN+1 by the mean value inequality.
In the following, we will prove that the function hλ1,λ2 is Lipschitz.
Let β, γ ∈ RN+1. We have

|λ1 ∑N
j=0
∣∣β j
∣∣− λ1 ∑N

j=1
∣∣γj
∣∣| = λ1|∑N

j=0(
∣∣β j
∣∣

−
∣∣γj
∣∣)| ≤ λ1 ∑N

j=0
∣∣∣∣β j

∣∣− ∣∣γj
∣∣∣∣ ≤ λ1∥β − γ∥1

Similarly, since the weights wk,l ∈ [0, 1],
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∣∣∣∣∣∣λ2 ∑
(k,l)∈E,k<l

wk,l |βk − βl | − λ2 ∑
(k,l)∈E,k<l

wk,l |γk − γl |

∣∣∣∣∣∣
= λ2

∣∣∣∣∣∣ ∑
(k,l)∈E,k<l

wk,l(|βk − βl | − |γk − γl |)

∣∣∣∣∣∣
≤ λ2 ∑

(k,l)∈E,k<l
|(βk − βl)− (γk − γl)|

≤ λ2
N(N − 1)

2
∥β − γ∥1

Thereby, ∀β, γ ∈ RN+1, |λ1 ∑N
j=0
∣∣β j
∣∣− λ1 ∑N

j=0
∣∣γj
∣∣| ≤ λ1∥β − γ∥1

and
∀β, γ ∈ RN+1,

|λ2 ∑(k,l)∈E,k<l wk,l |βk − βl |
−λ2 ∑(k,l)∈E,k<l wk,l |γk − γl || ≤ λ2

N(N−1)
2 ∥β − γ∥1

By norm equivalence, we can deduce that there are some positive M3 and M4 such that

∀β, γ ∈ RN+1, |λ1

N

∑
j=0

∣∣β j
∣∣− λ1

N

∑
j=0

∣∣γj
∣∣| ≤ M3∥β − γ∥ (12)

∀β, γ ∈ RN+1, |λ2 ∑(k,l)∈E,k<l wk,l |βk − βl |
−λ2 ∑(k,l)∈E,k<l wk,l |γk − γl || ≤ M4 |β − γ∥ (13)

It follows from (11), (12) and (13) that

∀β, γ ∈ RN+1, |hλ1,λ2(β)
−hλ1,λ2(γ)| ⩽ (M2 + M3 + M4)∥β − γ∥

Finally, it suffices to take ℓ := M2 + M3 + M4 to deduce that hλ1,λ2 is ℓ-lipschitzian
on RN+1.

2.3.2. Sub-Gradient Algorithm

After confirming the convergence of our sub-gradient algorithm for estimating β, let
us now detail the method for the objective function hλ1,λ2 . The sub-differential sum rule
states that ∂hλ1,λ2(β) = ∂g(β) + λ1∂||β|1|+ λ2 ∑(k,l)∈E,k<l wk,l∂ fk,l(β). In this equation, fk,l

is a function defined in the Example (2), and g is differentiable on RN+1; so ∂g(β) = ∇g(β).
The subdifferentials of the norm L1, and fk,l are provided in the Examples 1 and 2, respec-
tively, which leads to the final expression

∀β ∈ RN+1, ∂hλ1,λ2(β) = ∇g(β) + λ1∂|∥β∥1|
+λ2 ∑(k,l)∈E,k<l wk,l∂ fk,l(β)

Thus, for a well-chosen sequence (αk), the search algorithm for β̂GFLASSO,λ1,λ2 for
problem (8) is as follows:

The use of the generalized Fused LASSO penalty in our classification model enables
an embedded gene selection process. Genes associated with null coefficients in β∗ have no
impact on the classification of new examples, as the classification rule in logistic regression
is determined by the value of 1

1+e−x′β∗ . If this value is less than 0.5, the example is classified
as 0; otherwise, it is classified as 1. This approach fosters a more efficient and effective
classification model by eliminating irrelevant genes.
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3. Experiments and Results

This section presents the performance of our proposed approach on four well-known
gene expression classification datasets (see Table 2). The parameter settings and numerical
results will be described in the following subsections. The implementation of our proposed
approach was conducted using MATLAB R2018a, and the datasets were divided into
training and test sets to assess the performance of gene subset selection.

Table 2. Description of datasets (DNA microarray) used in GFLASSO-LR.

Dataset # Genes # Samples # Classes Source

Colon 2000 62 2 [71]
DLBCL 5469 77 2 [72]
Prostate_Tumor 10,509 102 2 [72]
Prostate 12,600 102 2 [73]

3.1. Datasets

To evaluate our approach, we selected DNA microarray datasets related to cancer
recognition, which are publicly available. These datasets have been utilized in multiple
supervised classification studies (as shown in Table 2). They exhibit a variety of characteris-
tics: some have a low number of samples, while others have a higher number. Additionally,
all datasets have binary classes. Since our proposed method is designed for large-scale
microarrays, all datasets consist of a high number of genes, ranging from 2000 to 12,600.

3.2. Settings

In our approach, we begin with a pre-processing step, which involves selecting the
top 200 highest-ranked genes using the absolute correlation coefficient. Subsequently, we
randomly split our dataset into a training set and a test set. Using the training set, we then
construct our objective function (8). To minimize this function, we employ the sub-gradient
algorithm (Algorithm 1). It is important to note that the performance of this algorithm
is highly dependent on the choice of step size (αk). A well-chosen (αk) can significantly
impact both the convergence rate and the quality of the estimate obtained.

Algorithm 1: Subgradient algorithm to minimize hλ1,λ2 .

Function: GFLASSO − LR(X, itmax, λ1, λ2, r0, (αk)) Inputs: X: Training set, itmax:
the maximum number of iterations, λ1 and λ2: the coefficients that control the
penalties, r0: the threshold for building an edge in the graph G = (V, E), (αk): the
sequence that controls the steps in the subgradient algorithm.
Output: β∗: an approximate value of β̂GFLASSO,λ1,λ2 .

Construct the graph G = (V, E) and calculate the weights wk,l
k = 1;
Choose β1 randomly from RN+1

β∗ = β1, h∗λ1,λ2
= hλ1,λ2(β1)

k = 2 while k < itmax do
βk = βk−1 − αk ∗ vk−1 with vk−1 a randomly chosen vector of ∂hλ1,λ2(βk−1) if

hλ1,λ2(βk) ≤ h∗λ1,λ2
then

β∗ = βk, h∗λ1,λ2
= hλ1,λ2(βk).

k = k + 1.
Return β∗.
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3.2.1. Choice of (αk)

The choice of an appropriate (αk) step for the sub-gradient algorithm is an essential step in
our study. To begin, we set λ1 = 1, λ2 = 0.2, and r0 = 0.7. Then, the “Prostate_Tumor” dataset
is utilized to conduct a parametric study.

We start by selecting the 200 best-ranked genes and split the resulting dataset into
two disjoint sets: 80% for training and 20% for testing. Our objective function is constructed
based on the training set. The goal of this subsection is to choose a step size (αk) that
accelerates the convergence of our algorithm to the global minimum. At this stage, we are
not concerned with classifier testing, as our focus is solely on observing the behavior of the
sub-gradient algorithm in finding the minimum of hλ1,λ2 .

We initially compared the classic step αk = 1
k to the step proposed by Alber et al.

in [74], α′k =
1
k ∗

1
max(1,|vk−1|)

, where vk−1 is a randomly chosen vector of ∂hλ1,λ2

(
βk−1

)
(as

outlined in Algorithm 1). We set a maximum number of iterations at 10,000. It is evident
that these steps ensure the convergence of our algorithm from the sub-gradient to the
global minimum.

From the results depicted in Figure 2, it is evident that using α′k accelerates the conver-
gence of the sub-gradient algorithm. This acceleration is attributed to the inclusion of the
term vk−1 in α′k.
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Figure 2. Comparison between the steps αk and α′k to minimize the function hλ1,λ2 .

To determine the optimal step size, we drew inspiration from the work of Alber et al.
in [74] and utilized steps of the form α′k = αk ∗ 1

max(1, |vk−1|)
, where vk−1 represents a ran-

domly chosen vector of ∂hλ1,λ2

(
βk−1

)
and (αk) denotes a sequence of positive terms satisfying

∞

∑
k=1

αk = ∞ and lim
k→∞

αk = 0

The final steps ensure the convergence of the subgradient algorithm. In the follow-
ing, we compare different forms of the step (αk), specifically those of the form 1

kγ with
γ ∈ [0.05, 1]. Figure 3 illustrates how the objective function changes with the number of
iterations for different values of γ. To enhance the interpretability of the data, we have
plotted it on a logarithmic scale. Additionally, Table 3 presents the optimal values of the
objective function hλ1,λ2 obtained using the subgradient algorithm with different steps α′k
for various values of γ.
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Figure 3. Comparison between α′k steps with different γ for the minimization of hλ1,λ2 .
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Table 3. Comparison between α′k steps with different γ for the minimization of hλ1,λ2 .

γ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1

The optimal value h∗λ1,λ2
12.49 8.61 7.38 7.13 7.04 7.01 7.01 7.15 8.02 15.42 19.72

In this regard, Figure 3 and Table 3 demonstrate that the step size α′k = 1
k0.65 ×

1
max(1,∥vk−1∥)

leads to faster convergence compared to other step sizes, yielding superior results.

3.2.2. Choice of λ1 and λ2

After determining the optimal step size (α′k), we proceed to select the best values
for the parameters λ1 and λ2. We compare different combinations of these parameters by
analyzing the gene set selected by minimizing hλ1,λ2 , aiming to find values of λ1 and λ2
that achieve the highest classification rate on the test set while minimizing the number of
genes used in the classification.

The experiments were conducted using the “Prostate_tumor” dataset, and the accuracy
rates were determined using a 5-fold cross-validation method. Initially setting λ2 = 0.2,
and by varying λ1, the results are shown in Table 4 for different values of λ1 (with λ2 = 0.2).

Table 4. Comparison between the λ1 for the “Prostate_Tumor” dataset (aggregated values across the
5-fold Cross-validation with λ2 = 0.2).

λ1 Accuracy (Test) Number of Genes
0.2 96.14 55.6
0.4 96.1 36.8
0.6 96.14 32.6
0.8 96.14 29
1 96.14 24
1.2 97.1 28
1.4 96.14 26.2
1.6 97.1 25.4
1.8 96.14 25.6
2 96.14 22.6
2.2 96.14 24.6
2.4 96.14 23.8
2.6 95.14 22.2
2.8 96.14 20.4
3 95.14 20.8
3.2 94.19 20.4
3.4 94.19 20.4
3.6 94.19 20.4
3.8 95.14 19.6
4 94.19 19.2

Typically, we can observe that when λ1 = 1.6, the results are better. Specifically, this
value of λ1 results in high accuracy on test data (97.1%), while only utilizing 25 genes.
However, as we increase λ1, the number of selected genes decreases, which is a result of the
L1 penalty. After determining that λ1 = 1.6 is optimal, we proceed to determine the best
value for λ2. Table 5 shows the results obtained for different values of λ2, with λ1 fixed at 1.6.
Specifically, it is evident that when λ2 = 0, the method employed corresponds to the classic
LASSO approach. However, setting λ2 = 0.1 yields improved performance, achieving
a high accuracy of 97.1% on the test data while utilizing only 22 genes. Consequently,
based on these findings, the optimal values of λ1 = 1.6 and λ2 = 0.1 were selected for the
final model.
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Table 5. Comparison between the λ2 for the “Prostate_Tumor” dataset (5 fold Cross-validation with
λ1 = 1.6).

λ2 Accuracy (Test) Number of Genes
0 94.19 21.6
0.025 96.14 20
0.05 96.14 21.2
0.075 96.14 22.4
0.1 97.1 22
0.125 97.1 23.8
0.15 97.1 24
0.175 96.14 25
0.2 97.1 25.4
0.225 95.14 25.6
0.25 97.1 26.6
0.275 95.14 28.2
0.3 95.19 27.4
0.325 95.14 28.4
0.35 95.14 28.6
0.375 95.19 27.2
0.4 96.14 27.2
0.425 96.14 28.4
0.45 96.14 25.8
0.475 96.14 28.6
0.5 95.19 28.2
0.525 95.1 29.6
0.55 97.1 27
0.575 95.14 30.8
0.6 96.19 29.6
0.625 95.19 28.2
0.65 95.19 32.2
0.675 96.1 31.2
0.7 94.14 26.8
0.725 96.14 29.8
0.75 95.19 29.2

3.3. Results and Comparisons

Firstly, to limit the search space and accelerate the convergence speed of our proposed
approach, we selected the initial subset of genes based on the Pearson correlation filter.
Subsequently, the GFLASSO-LR algorithm was applied to determine the optimal gene
subset. The quality of this subset was assessed based on the accuracy of the test set and the
number of genes selected. Due to the non-deterministic nature of our proposed method,
each dataset was randomly divided into a training set comprising 70% of the original
dataset and a test set comprising 30%. This process was repeated in 50 independent runs
for each dataset to ensure reliable results.

Table 6 summarizes the outcomes of our study across four microarray datasets: Colon,
DLBCL, Prostate_Tumor, and Prostate. These results stem from experiments employ-
ing a range of gene selection techniques to assess their impact on classification accuracy,
thereby validating and demonstrating the effectiveness of our proposed method. Specif-
ically, the table compares performance metrics for two classifiers, KNN and SVM, both
without selection and with the application of the Pearson filter. Additionally, it includes
outcomes using logistic regression enhanced by LASSO and GFLASSO penalties, offering a
comprehensive view of the method’s efficacy in gene selection for cancer classification.

Our embedded methods (LASSO-LR and GFLASSO-LR) were implemented based on
the following parameters:

• λ1 = 1.6, λ2 = 0, which corresponds to a LASSO-LR type penalty.
• λ1 = 1.6, λ2 = 0.1, which corresponds to a generalized Fused LASSO (GFLASSO-LR)

type penalty.
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Table 6. The results obtained over 50 executions, without and with selection via the LASSO and
GFLASSO penalties.

Dataset Performance
Without Selection Pearson Filter

LASSO-LR GFLASSO-LR
1NN SVM 1NN SVM

Colon
Accuracy (%) 72.33 80.56 80.66 82.55 83.56 83.67

Number of genes 2000 200 15.4 19.9

DLBCL
Accuracy (%) 81.04 95.65 95.47 97.91 90.78 90.87

Number of genes 5469 200 21.24 20.4

Prostate_Tumor
Accuracy (%) 80 91.27 90.86 94.6 93.73 94.6

Number of genes 10,509 200 20.66 21.34

Prostate
Accuracy (%) 80 91.27 91.73 94.26 93.8 95.27

Number of genes 12,600 200 20.64 20.94

Accuracy: The average classification accuracy (70% training and 30% testing). Genes: The number of genes used
in the classification. SVM: The support vector machine classifier using a linear kernel. LR: The logistic regression
classifier with LASSO and GFLASSO regularization, respectively. 1NN: the 1 − nearest neighbor classifier.

The first column of the table displays the datasets used. The second column shows
the performance measures, including accuracy (in percent) and the number of selected
genes. The third and fourth columns show the results obtained using the 1NN and SVM
classifiers, respectively, without gene selection. The fifth and sixth columns present the
results obtained using the SVM and 1NN classifiers after having selected 200 genes via
the Pearson correlation filter. The seventh and eighth columns present the results of
experiments using our LASSO-LR and GFLASSO-LR approaches, respectively.

Figures 4–6 show the average classification accuracy obtained from 50 experiments
for different methods. According to these figures, the GFLASSO-LR approach shows good
performance on the majority of datasets. More precisely, the highest average accuracy rates
are obtained for the Colon, Prostate Tumor, and Prostate datasets.

From Table 6 and Figure 4, it is noteworthy that the GFLASSO-LR method outperforms
the traditional LASSO-LR method in terms of accuracy for all datasets. This improvement
is particularly significant for the datasets Prostate_Tumor and Prostate, which consist of
a small number of genes ranging from 19 to 21. Additionally, both GFLASSO-LR and
LASSO-LR methods achieve high classification accuracy (greater than or equal to 83.57%)
using a small number of genes compared to the original number.

The effectiveness of our selection methods was compared to classifiers (1NN and
SVM) both with and without selection, employing the Pearson filter. Figure 5 and Table 6
demonstrate that our GFLASSO-LR and LASSO-LR approaches outperform the 1NN
classifier in both scenarios. Specifically, our methods succeed in enhancing accuracy for the
majority of datasets. For instance, in the Colon dataset, an accuracy greater than or equal
to 83.56% was achieved using less than 20 genes, indicating a significant improvement
in classification accuracy (ranging from 3 to 11% difference) with fewer genes. The most
notable improvement was observed for the Prostate dataset, where an accuracy of 94.6%
was attained (with a 4–14% difference) using less than 21 genes.

Similarly, Figure 6 and Table 6 demonstrate the effectiveness of our gene selection
approaches against the SVM classifier. Indeed, our methods show significant improvements
in accuracy for the colon and prostate datasets, while using just fewer than 22 genes.

Afterward, we conducted a Kruskal–Wallis test to analyze the significance of the
differences in accuracy obtained by our proposed GFLASSO-LR classifier compared to
SVM and 1NN classifiers (without selection). The test revealed a statistically significant
difference in performance among the classifiers (H-statistic = 6.55, p-value = 0.038),
emphasizing the impact of classifier choice on classification accuracy.
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Figure 4. Comparison of classification accuracy (LASSO-LR and GFLASSO-LR).
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Figure 5. Comparison of classification accuracy between 1NN, LASSO-LR and GFLASSO-LR.

The boxplot (Figure 7) illustrates the performance distribution of GFLASSO-LR com-
pared to the other classifiers across various datasets. GFLASSO-LR consistently achieves
higher classification accuracies, particularly noticeable in the Colon and Prostate_Tumor
datasets. This highlights the effectiveness of incorporating GFLASSO regularization tech-
niques in logistic regression, enhancing classification performance in specific contexts.
These findings emphasize the importance of selecting the appropriate classifier to achieve
optimal classification outcomes for individual datasets.

Overall, the results presented in the table show that the GFLASSO-LR algorithm
can improve classification accuracy and decrease the number of selected genes. The pro-
posed methods have important applications in the field of genomics and can advance
the understanding of gene function and disease diagnosis. Based on the experiments we
conducted, we can conclude that our gene selection approaches are well founded. Our
methods achieved high classification accuracy in the datasets used in the study.
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Figure 6. Comparison of classification accuracy between SVM, LASSO-LR, and GFLASSO-LR.

Figure 7. Results of the Kruskal–Wallis Test: GFLASSO-LR vs. SVM and 1NN (Without Selection).

Comparison with Other Approaches

In this subsection, we compare our GFLASSO-LR method with algorithms referenced
in the literature: [31,32,40,56,75,76]. All of these papers propose integrated methods based
on different types of penalties and apply them to the gene selection problem. To make
the comparison meaningful, experiments are performed under the same conditions for
each algorithm. Our approach is run 50 times on each dataset, with the dataset randomly
divided into two parts (70% for training and 30% for testing) in each run. The average
accuracy on the test set and the average number of genes used in classification are chosen.
It is noted that the authors of [31] performed 100 runs.

Table 7 summarizes the classification accuracy and the number of selected genes (from
the original papers) for each approach. A dash (-) indicates that the result is not reported
in the corresponding work. The results obtained by our approach are competitive with
previous works.
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Table 7. Comparison between our method (GFLASSO-LR) and state-of-the-art methods.

GFLASSO-LR BLASSO LASSO SCAD ALASSO Nouvel ALASSO CBPLRDataset Performences (Our Method) [75] [56] [76] [40] [31] [32]

Acccuracy (%) 83.67 < 2 > 93 79.53 79.51 78.4 82.91 89.5Colon Number of genes 19.9 11 14 14 14 12 10

Acccuracy (%) 90.87 < 3 > 84 88.33 74.02 84.41 91.32 91.7DLBCL Number of genes 20.4 17 24 24 24 22 17

Acccuracy (%) 95.27 < 1 > - 91.14 60.13 82.11 93.53 93.6Prostate Number of genes 20.94 - 29 28 28 24 16

< · >: Indicates the rank of our method among other algorithms in terms of average accuracy for each dataset.
BLASSO = Bayesian Lasso quantile regression. LASSO = The classic LASSO method. SCAD = smoothly clipped
absolute deviation. ALASSO = The classical Adaptive LASSO method. New ALASSO = A new Adaptive LASSO
method based on the weighted Mahalanobis distance. CBPLR = A new method of Adaptive LASSO based on the
correlation between genes.

For the Colon dataset, we achieve an accuracy rate of 83.67% using only 19 genes. Our
method ranks second, outperforming the other five approaches, with the best performance
achieved by the BLASSO approach (93%). For the DLBLC dataset, we obtain the third-best
performance (90.87%) after the “New ALASSO” and “CBPLR” approaches, with a difference
of less than 1%. For the “Prostate” dataset, we achieved the best performance (accuracy
of 95.27%) followed by the “CBPLR” method with an accuracy of 93.6%. The number of
genes selected by GFLASSO-LR is relatively similar to that of other methods, except for the
Prostate dataset, which uses slightly more genes.

The results of this comparative analysis with previous embedded gene selection
methods in cancer classification indicate that our improved generalized fused LASSO
penalization approach is effective in the gene selection problem.

3.4. Time and Memory Complexity
3.4.1. Pre-Processing Step (Selecting the Top 200 Highest-Ranked Genes)

• Time Complexity: Computing correlation coefficients for each gene across all samples
and selecting the top 200 genes: O(N × M) (as provided in the information).

• Memory Complexity: Storing microarray data and correlation coefficients: O(N × M).

3.4.2. Splitting-GFLASSO-LR Algorithm

• Time Complexity: O(M) for randomly splitting the dataset into training and test sets.
• Memory Complexity: O(M) for storing the training and test sets.

3.4.3. Building the Objective Function Based on the Training Data and the 200 Genes

Regarding the time complexity, in the worst case, where each gene is correlated with
every other gene, the number of edges in the graph would be 200×(200−1)

2 . Additionally,
computing the absolute correlation values between each pair of genes is estimated using
O
(

200×(200−1)
2 × M

)
.

3.4.4. Sub-Gradient Algorithm

Time Complexity: The dominant term in the time complexity is represented as follows.

O
(

200 × (200 − 1)
2

× M + itmax ×
2003

2

)
(14)

Typically, the components and computational complexity of an optimization process
can be summarized as follows:
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• Constructing the graph and calculating weights: negligible compared to the overall
complexity.

• Combining the subdifferentials: Once the subdifferentials of each component function
are computed, they are combined according to the given expression. This involves a
combination of nearly 2002

2 subdifferentials, resulting in a time complexity of O( 2003

2 ).
• Iterating over the sub-gradient algorithm: O(itmax) iterations.

• Each iteration involves updating the coefficients using a sub-gradient: O( 2003

2 )
operations.

Memory Complexity: Storing the graph structure and weights: O( 200×(200−1)
2 ) in the

worst case. Storing intermediate results and coefficients: O(200) (since only one set of
coefficients needs to be stored).

Overall, the analysis outlines a computationally intensive process with significant
emphasis on handling gene interaction data efficiently. While time complexity primarily
concerns the combinatorial interactions among genes and the iterative optimization process,
memory complexity focuses on efficiently storing gene data, correlations, and algorithmic
intermediates. The optimization aims to identify a subset of genes critical for further
analysis, with considerations for computational and storage efficiencies.

3.5. Discussion

The discussion on the performance of the GFLASSO-LR approach compared to tradi-
tional and recent methods in gene selection for cancer classification underscores its practical
utility and effectiveness. Our method’s superior or competitive performance across differ-
ent datasets, particularly in achieving high classification accuracy with a relatively small
number of genes, highlights its potential for advancing personalized medicine and genomic
research. The ability to identify the most relevant genes from massive datasets with preci-
sion is crucial for understanding complex diseases like cancer. Our GFLASSO-LR approach
not only simplifies the gene selection process but also ensures that the selected genes are
highly indicative of the condition being studied, thus facilitating more accurate diagnoses
and the development of targeted therapies.

Moreover, the consistency of our method’s performance across various datasets demon-
strates its robustness and adaptability to different types of cancer, which is a significant
advantage in the rapidly evolving field of genomics. The use of logistic regression with the
GFLASSO penalty enhances the model’s ability to deal with the high dimensionality and
multicollinearity inherent in microarray data, thereby overcoming some of the common
challenges faced in genomic data analysis. However, it is worth noting that while our
approach shows promise, further research is necessary to explore its full potential and
limitations. Future studies could focus on refining the algorithm to improve efficiency and
accuracy, as well as testing it on a wider range of datasets. Additionally, integrating our
method with other data types, such as clinical and phenotypic information, could provide a
more comprehensive understanding of the gene–disease relationships and further enhance
its application in personalized medicine.

4. Conclusions

High-dimensional classification problems in microarray dataset analysis are a crucial
area of research in cancer classification. In this paper, we propose and apply an improved
method, GFLASSO-LR, for simultaneous gene coefficient estimation and selection to im-
prove classification performance. We also demonstrate the convergence of the sub-gradient
algorithm to solve the associated non-differential convex optimization problem.

The proposed method was evaluated based on the number of selected genes and
classification accuracy on four sets of high-dimensional cancer classification data. The re-
sults consistently showed that GFLASSO-LR can significantly reduce the number of rele-
vant genes and has superior accuracy compared to the classical LASSO method. Overall,
the results demonstrate that GFLASSO is a promising method for accurately analyzing
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high-dimensional microarray data in cancer classification. The method can be applied to
other types of high-dimensional classification data related to the medical domain. Future
research could extend the present work to cover high-dimensional multiclass cancer data
and focus on very high-dimensional microarray data for cancer classification.
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