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Abstract: Incorrectly diagnosing plant diseases can lead to various undesirable outcomes. This
includes the potential for the misuse of unsuitable herbicides, resulting in harm to both plants and
the environment. Examining plant diseases visually is a complex and challenging procedure that
demands considerable time and resources. Moreover, it necessitates keen observational skills from
agronomists and plant pathologists. Precise identification of plant diseases is crucial to enhance crop
yields, ultimately guaranteeing the quality and quantity of production. The latest progress in deep
learning (DL) models has demonstrated encouraging outcomes in the identification and classification
of plant diseases. In the context of this study, we introduce a novel hybrid deep learning architecture
named “CTPlantNet”. This architecture employs convolutional neural network (CNN) models and a
vision transformer model to efficiently classify plant foliar diseases, contributing to the advancement
of disease classification methods in the field of plant pathology research. This study utilizes two
open-access datasets. The first one is the Plant Pathology 2020-FGVC-7 dataset, comprising a total of
3526 images depicting apple leaves and divided into four distinct classes: healthy, scab, rust, and
multiple. The second dataset is Plant Pathology 2021-FGVC-8, containing 18,632 images classified
into six categories: healthy, scab, rust, powdery mildew, frog eye spot, and complex. The proposed
architecture demonstrated remarkable performance across both datasets, outperforming state-of-the-
art models with an accuracy (ACC) of 98.28% for Plant Pathology 2020-FGVC-7 and 95.96% for Plant
Pathology 2021-FGVC-8.

Keywords: apple foliar disease; convolutional neural networks; vision transformers; deep learning;
ensemble learning; computer-aided detection; multi-classification

1. Introduction

The apple is a largely produced fruit thanks to its exceptional flavor, texture, nutritional
benefits, and aesthetic appeal. Apple production is an important economic activity in many
countries of the world. As reported by the Food and Agriculture Organization (FAO)
of the United Nations, 2022 saw a global apple production exceeding 95.8 million tons.
Leading this production was China with 49.7% (47.5 million metric tons), followed by
Turkey at 5% (4.82 million tons) and the U.S. close behind at 4.6% (4.43 million tons) [1].
Apples hold significant value in the U.S. horticultural sector. Producing close to 2 billion
pounds annually, the apple sector notably contributes to the U.S. economy, generating up
to USD 15 billion each year [2,3]. However, apple diseases can significantly reduce yield
and fruit quality. Identifying apple diseases at an early stage is crucial for the proficient
management of apple orchards. Research indicates that Damage to crops caused by diseases
can account for up to 50% of the overall yield, particularly from parasitic and prevalent
plant ailments [4]. Scab stands out as a common fungal disease affecting apple trees. It
can cause up to a 50% yield loss if not treated promptly [5]. Another widespread fungal
ailment in apple trees is apple rust, which can lead to substantial yield reductions if not
identified and addressed in a timely manner. According to a study conducted by the
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Australian government, fungal diseases of apple leaves are the major health risk of fruit
trees in Australian apple-producing areas [6]. A good knowledge of the different diseases
that affect apple trees and the proper control methods is essential for agronomists to avoid
crop losses caused by these diseases.

Traditional optical methods such as multispectral, hyperspectral, and fluorescence
imaging provide valuable information on plant health [7]. However, they generally rely on
the analysis of grayscale images, which do not always capture the complex color variations
associated with disease symptoms [8]. By contrast, AI-based solutions excel at processing
colored images, exploiting the rich spectrum of hues and tones to detect subtle changes
indicative of disease [9]. By harnessing the power of deep learning algorithms, AI can
accurately identify patterns and anomalies in colored images, enabling a more accurate
and reliable diagnosis of disease compared to traditional methods. What is more, AI’s
ability to learn from large datasets enhances its adaptability to diverse environmental
conditions and disease states, further improving its effectiveness in early disease detection
and management.

Developing AI-based solutions for swift disease identification in apple leaves is crucial
to assist farmers and orchard managers in safeguarding their crops. Advances in DL
allowed the development of image-based techniques for the automated identification and
classification of various plant ailments. The technology has the potential to provide rapid
and accurate identification of plant diseases, which would facilitate farm management
decisions. In addition, the use of DL-powered systems for apple foliar disease detection
offers continuous crop monitoring, thus enabling early detection of diseases, preventing
their spread, and supporting targeted interventions. Ultimately, the implementation of
such automated diagnostic systems can significantly contribute to the production of healthy,
high-quality fruit.

To address the challenges faced by specialized pathologists, we propose an innovative
DL solution to identify diseases in apple leaves. Our approach consists of using advanced
computer vision and DL techniques to design an advanced architecture, named “CTPlant-
Net”, for preprocessing and classifying images according to the observed symptoms on
apple leaves. More specifically, this paper provides significant contributions to the field by
adapting recent DL models (SEResNext, EfficientNet-V2S, and Swin-Large) and proposing a
novel hybrid DL architecture (CNN-transformer) for apple disease preprocessing, detection,
and classification using apple leaf images. The architecture of CTPlantNet comprises two
blocks of models. The initial block comprises two adapted convolutional neural network
(CNN) models: SEResNext-50 and EfficientNet-V2S. The subsequent block incorporates an
adapted Swin-Large transformer model. To classify multiple apple leaf diseases, the models
in CTPlantNet were trained and tested on two public datasets, specifically Plant Pathology
2020-FGVC-7 and Plant Pathology 2021-FGVC-8, using a five-fold cross-validation method.
Outputs from the two blocks are merged using an averaging method to derive the ultimate
prediction. Additionally, the study details data augmentation approaches utilized to over-
come the imbalance in the data. In conclusion, the efficacy of the introduced architecture
was assessed against other leading-edge models and recent scholarly contributions.

The main contributions of our paper are as follows:

• A novel DL architecture, called CTPlantNet, which integrates two CNNs as the first
block and one vision transformer as the second block, is proposed for the recognition of
plant diseases, thus enhancing the performance of deep learning-based plant-anomaly-
detection tasks.

• The recent deep CNNs (SEResNext and EfficientNet-V2S) and the Swin-Large vi-
sion transformer were adapted for classifying plant disease images, leveraging the
advantages of the transfer learning technique.

• The performances of the proposed models were assessed against each other and
compared with state-of-the-art models using two open-access plant pathology datasets
(Plant Pathology 2020-FGVC-7 and Plant Pathology 2021-FGVC-8), applying a cross-
validation strategy.
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• The testing results show that the proposed DL models, including the CNNs and the
vision transformer, performed better than the state-of-the-art (SOTA) works, where the
proposed CTPlantNet architecture slightly increases the performance of the three mod-
els (SEResNext, EfficientNet-V2S, and Swin-Large) when trained and tested separately.

• The introduced DL models demonstrate their ability to detect the related challenges
faced by the traditional optical inspection methods, such as the similarities between the
features of some diseases, thus resulting in an early and swift detection of the patholo-
gies in apple leaves and assisting farmers and orchard managers in safeguarding their
crops and producing healthy and high-quality fruits.

This paper is organized as follows: Section 2 provides a review of existing deep
learning (DL) models proposed for plant pathology identification. Section 3 describes the
materials and methods used, including the datasets utilized, the adapted DL models, the
experimental implementation details, and the evaluation metrics employed in this study.
Section 4 presents the obtained results. Section 5 interprets and analyzes these results,
highlighting the potential of the proposed architecture and suggesting future improvements.
Finally, Section 6 provides an overview and conclusion of this work.

2. Related Work

In recent years, DL methods have gained prominence, due to the availability of
datasets and the significant progress in the computing power and memory capacity of
Graphical Processing Units (GPUs). An automated plant-disease-detection system would
be a valuable decision support and assistance tool for agronomists, who tend to accomplish
this task through visual observation of infected plants. Consequently, many studies over
the past decade have focused on the detection of plant diseases using DL techniques.

Kirola et al. [10] carried out a study contrasting machine learning (ML) and DL meth-
ods in terms of performance. For ML, plant leaf image classification was performed using
five algorithms: Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic
Regression (LR), Random Forest (RF), and Naïve Bayes (NB). For deep learning, a custom
CNN model was employed in this experiment. An image dataset consisting of 53,200 sam-
ples distributed across three categories (bacterial, viral, and fungal) served as the basis to
train and test the models in this study. The proposed CNN model was the best performing
with an accuracy (ACC) of 98.43%, while RF emerged as the top machine learning classifier,
scoring an ACC of 97.12%. Ahmed et al. [11] used a DL model (AlexNet) to classify plant
leaf images into healthy or unhealthy. A large dataset of 87,000 images was used for this
experiment. The CNN model proposed in this study obtained an ACC of 96.50%. Kawasaki
et al. [12] introduced a CNN-based automated detection system to identify foliar diseases
in cucumbers, which achieved an impressive ACC score of 94.90%. Ma et al. [13] presented
a symptom-based method using a CNN model to identify four cucumber leaf diseases:
Anthracnose, downy mildew, leaf spots, and powdery mildew. To avoid overfitting, they
used data augmentation techniques on the set of cucumber data, which generated a total
of 14,208 symptom images. Among all the models tested, the AlexNet model with data
augmentation techniques performed the best with an ACC of 93.40%. Chen et al. [14]
proposed an AlexNet architecture to identify different diseases in tomato leaf images. The
model obtained a mean ACC of 98.00%.

For apple diseases, Sulistyowati et al. [15] employed the VGG-16 model to automat-
ically categorize apple leaf images into four groups: healthy, apple scab, apple rust, and
multiple diseases. The model achieved the best performance when used with the Synthetic
Minority Over-Sampling (SMOTE) technique. The Plant Pathology 2020-FGVC-7 dataset
was used in this study, and the highest ACC obtained was 92.94%. Yadav et al. [16] devel-
oped a DL model called AFD-Net for the multi-classification of apple leaves. AFD-Net
comprises an ensemble learning architecture of two EfficientNet models (EfficientNet-B3
and EfficientNet-B4). Two Kaggle datasets were used in this study (Plant Pathology 2020-
FGVC-7 and Plant Pathology 2021-FGVC-8). The AFD-Net model surpassed several models,
including Inception, ResNet-50, ResNet-101, and VGG-16, achieving 98.7% and 92.6% in
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terms of the ACC consecutively for the Plant Pathology 2020-FGVC-7 and Plant Pathology
2021-FGVC-8 datasets. Alsayed et al. [17] Proposed a deep learning methodology for
identifying leaf diseases in apple trees. This approach employed CNN models, including
MobileNet-V2, Inception-V3, VGG-16, and ResNet-V2, on the Plant Pathology 2020-FGVC-7
dataset to categorize images into four categories: healthy, scab, rust, and multiple diseases.
When employed with the Adam optimizer, the ResNet-V2 model yielded the highest per-
formance, achieving an ACC of 94.00%. Bansal et al. [18] proposed an ensemble learning
architecture that incorporates three CNN models: DenseNet-121, EfficientNet-B7, and an
EfficientNet model pre-trained on the NoisyStudent dataset. Data augmentation methods
were implemented to expand the dataset (Plant Pathology 2020-FGVC-7) and to tackle the
challenge of imbalanced data. The proposed architecture achieved remarkable results with
an ACC of 96.25%. Subetha et al. [19] presented an automatic DL model for the classification
of apple leaf images. The Plant Pathology 2020-FGVC-7 dataset was used for training,
validating, and evaluating two CNN models: VGG-19 and ResNet-50. Among the two,
the ResNet-50 architecture demonstrated superior performance, outperforming VGG-19
with an average ACC of 87.70%. Kejriwal et al. [20] presented an ensemble learning-based
method consisting of three CNN models, namely InceptionResNetV2, ResNet101V2, and
Xception. The proposed method was trained and validated using the Plant Pathology
2021-FGVC8 dataset. The ensemble learning architecture achieved a precision of 97.43%.

3. Materials and Methods

In this section, we present the two publicly available datasets used in our experiment.
We introduce the proposed DL approach, which performs multi-classification of apple
leaf diseases based on symptoms identified using images. Additionally, we discuss the
DL models implemented in our architecture. Finally, we demonstrate how the proposed
approach was implemented, as well as the techniques used to increase its performance.

3.1. Datasets

In this study, we used two editions of the Plant Pathology dataset to train and evaluate
the potential of the introduced DL architecture in classifying various apple leaf diseases,
relying on the visual indications present in the images. The datasets used are described
as follows:

• Plant Pathology 2020-FGVC-7 [2,21] is a publicly available collection of apple leaf im-
ages with different angles, illumination, noise, and backgrounds captured and labeled
manually by specialists. The main objective of releasing this dataset was to provide a
resource for researchers and developers to create models for automatic image classifica-
tion in the field of apple leaf pathology. This dataset comprises 3651 apple leaf images
distributed across four categories: 865 healthy leaf images, 1200 with scab, 1399 with
rust, and 187 showcasing multiple diseases. While each image predominantly displays
a singular disease, the “multiple disease” category includes images where each leaf
bears more than one ailment. All images are rendered in high resolution and RGB
color mode.

• Plant Pathology 2021-FGVC-8 [22] is a large publicly available collection of images
of plant leaves, which are labeled with different disease categories. The dataset was
provided in the 2021 Fine-Grained Visual Categorization (FGVC) challenge, specifi-
cally for plant pathology detection. This is an extended version of Plant Pathology
2020-FGVC-7 with more images and more diseases. This dataset contains a total of
18,632 images classified into six different classes (6225 healthy images, 4826 images
with scab, 3434 images with rust, 3181 images with powdery mildew, 2010 images
with frog eye spot, and 956 images with multiple diseases).

The collection of the two datasets was sponsored by the Cornell Initiative for Digital
Agriculture (CIDA) and released as a Kaggle competition. Plant pathology datasets provide
a rich source of data for the development and testing of automated algorithms for plant
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abnormalities’ recognition and classification. Samples of plant foliar images from the Plant
Pathology 2020-FGVC-7 and Plant Pathology 2021-FGVC-8 datasets are shown in Figure 1.

(a) (b) (c) (d)

Figure 1. Sample images of apple leaves from Plant Pathology 2020-FGVC-7 and 2021-FGVC-8
Datasets [23]: (a) healthy, (b) scab, (c) rust, and (d) multiple diseases.

3.2. Proposed Approach

To accurately classify apple leaf diseases, we introduce a hybrid DL architecture
known as “CTPlantNet”. It uses pre-processing and data augmentation techniques to
achieve the highest performance of the models used in this architecture. Three models are
implemented in CTPlantNet as model blocks. The first block incorporates two modified
convolution-based models (SEResNext-50 and EfficientNet-V2S). The second block consists
of a modified Swin-Large transformer model. These two blocks were used as CNN-
transformer backbones to extract the features of apple foliar diseases. After training
the models separately, an averaging technique was used to combine their predictions.
Additionally, training and validating the performance of these models involved a 5-fold
cross-validation strategy coupled with a bagging technique. As a result, a diverse range of
models, each trained on different sub-datasets, was generated (five SEResNext-50 models,
five EfficientNet-V2S models, and five Swin-Large models). The proposed architecture,
named CTPlantNet, is illustrated in Figure 2.

Our research involved the training and evaluation of three distinct models across two
blocks, specifically a CNN block and a transformer block. Employing various DL models
as backbones, combined with a 5-fold cross-validation method, enables the extraction of
diverse features. Moreover, leveraging the error-correction mechanism between models
ultimately allows the optimization of our hybrid architecture, thus enhancing its overall
performance. To determine the best models for our architecture, we conducted several
experiments, evaluating their performance on similar classification tasks. After a thorough
analysis of the results, we selected the best performing models, namely SEResNext-50,
EfficientNet-V2S, and Swin-Large. Following this, the models were effectively incorporated
into the CTPlantNet architecture, leading to enhanced accuracy.
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Figure 2. Architecture of CTPlantNet for classifying apple foliar diseases, adapted from [23].

3.2.1. Convolutional Neural Network Models

A CNN is a type of DL model widely used for image segmentation [24], image
classification [25,26], and object detection [27], where the connection between neurons is
inspired by the visual cortex of animals [28]. In a CNN’s architecture, multiple layers are
present, encompassing convolutional, pooling, and fully connected layers. Convolutional
layers perform convolution, a mathematical operation, to extract features from the input
image. Pooling layers are used in CNNs to decrease the spatial dimension of the feature
maps, which reduces the computational complexity of the network. Finally, fully connected
layers, by connecting all neurons in one layer to all neurons in the subsequent layer,
enable the generation of predictions. CNNs use the backpropagation technique to train
the network, where neuron weights are updated based on the error between the predicted
and the actual values. Figure 3 depicts an example of a standard architecture for a CNN.
The CNN block within CTPlantNet’s architecture is composed of two distinct models:
SEResNext-50 and EfficientNet-V2S. The details of these models are provided below:

• SEResNeXt-50 is a CNN model that incorporates a Squeeze-and-Excitation (SE) block
with the ResNeXt architecture. The SE block in the SEResNeXt model employs a
channelwise mechanism to capture channel dependencies, allowing for the adaptive
recalibration of feature maps. This mechanism utilizes global average pooling to
extract spatial information from the feature maps, followed by the application of a
fully connected layer to recalibrate the feature maps based on the learned importance
of each channel. SEResNext-50 effectively enhances the feature representation by lever-
aging the SE block. In addition to the SE block, SEResNext-50 takes advantage of the
ResNeXt architecture [29], which is an extension of the widely used ResNet architec-
ture. ResNeXt introduces the concept of “cardinality” as a new dimension with depth
and width, allowing the network to better exploit the potential of parallel paths. Com-
bining SE blocks with the ResNeXt architecture systematically enhances performance
over different depths at an extremely minimal rise in computing complexity [30]. The
SEResNeXt-50 model is capable of providing highly accurate predictions in a wide
range of classification tasks, including image recognition and object detection.

• EfficientNet-V2S is a cutting-edge CNN model developed by Google [31]. This model
is a member of the EfficientNet family, which is widely known for its superior efficiency
and performance. The EfficientNet-V2S model is particularly noteworthy for its ability
to achieve high accuracy with relatively few parameters. This is achieved through the
use of novel techniques, such as compound scaling, which optimizes the architecture
and scalability coefficients of the network, in addition to the Fused-MBConv blocks,
which combine and employ two types of convolutions (pointwise and depthwise)
into a single layer, resulting in lower computational complexity and speeding up the
training of the EfficientNet-V2S model. As a result of the incorporated techniques
in EfficientNet-V2S, the model shows strong potential in image classification tasks,
achieving high performance while maintaining a relatively reduced size [31].
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Figure 3. Example of a standard architecture of a convolutional neural network.

3.2.2. Vision Transformer Model

Vision transformers are a recently proposed type of DL model applied to computer
vision tasks. These models employ the transformer architecture, which was originally
developed for tasks in natural language processing [32]. Unlike traditional convolutional
neural networks, vision transformers process visual information in parallel, without re-
quiring convolutional operations. This allows the transformer model to process the entire
image at once, capturing both local and global information from the image. In addition,
vision transformers have a large number of parameters, which makes them well suited for
large-scale image classification tasks. Vision transformer models adopt the self-attention
mechanism, which allows for evaluating the importance of each part of the image and
making more informed decisions on which features to extract and use for the classification
task. Figure 4 presents an illustration of a typical vision transformer model architecture. In
this work, we used the Swin-Large transformer described in the following:

• Swin-Large is a transformer-based DL model consisting of 197 million trainable pa-
rameters trained on the ImageNet22k dataset for image classification tasks. Its name
refers to the “shifted window” method employed to calculate the hierarchical repre-
sentation of the model. This method enhances the model’s efficiency by restricting
the computation of self-attention to non-overlapping local windows, simultaneously
permitting connections across these windows. This approach enables the Swin-Large
model to capture both local and global contextual information in images while keeping
computational complexity manageable. In addition, the Swin transformer architecture
incorporates a learnable relative position bias to account for the spatial relation-
ships between image patches, further improving its performance in computer vision
tasks [33].
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Figure 4. Example of a standard architecture of a vision transformer model.

3.3. Implementation

The implementation of the proposed approach includes incorporating three separate
pre-trained models, where two, specifically SEResNext-50 and EfficientNet-V2S, are CNN-
based and were pre-trained using the ImageNet dataset [34]. The third model (Swin-Large)
was pre-trained on ImageNet22k [33]. To enhance the performance of both CNN models,
we added a set of layers, starting with a global average pooling (GAP) layer. The layer
computes the average of patch values in each feature map, producing a vector that was then
fed into two fully connected layers (FCLs) with dimensions of 512 and 256. A 30% Dropout
(DP) layer was incorporated following the first FCL to mitigate the risk of overfitting.
Additionally, to address the ReLU dying problem [35], we employed a LeakyReLU (LRU)
activation function after the second FCL. To improve the accuracy and performance of
our models while reducing the training time, we integrated Gaussian Dropout (GD) at a
rate of 40% [36]. More details about the added layers are depicted in Figure 5. The Swin-
Large model in our architecture was fine-tuned by incorporating an FCL and a softmax
activation function.

Figure 5. Overview of the integrated layers in the CNN models, adapted from [23].
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Our models were trained using two public datasets, Plant Pathology 2020 FGVC-7
and Plant Pathology 2021 FGVC-8, resizing the images to 384 × 384 pixels. We used
TensorFlow version 2.14.0 [37] as a framework and ran our algorithms on a machine
equipped with a Tesla P100 GPU and 16 GB of memory. To increase the number of samples
and address the problem of imbalanced data, we applied data augmentation techniques,
including image rotation within a range of −20 to 20 degrees, random cropping, vertical
flipping, horizontal flipping, and random shear. Additionally, we employed enhancement
techniques to highlight disease features in the images by adjusting the brightness and
contrast. This resulted in a total of 25,557 images for FGVC-7 and 130,424 images for
FGVC-8. We selected RectifiedAdam as the optimizer and used a batch size of 64 to train
our models. We opted for Stochastic Gradient Descent (SGDR) with warm-up restarts,
rather than traditional learning rate (LR) annealing. With each restart, the LR was decreased
in accordance with the cosine function [38]. The SGDR formula is presented as follows:

ηt = ηi
min +

1
2
(ηi

max − ηi
min)(1 + cos(

Tcur

Ti
π)) (1)

The LR was determined using the SGDR formula, which incorporates the LR ranges
ηi

min and ηi
max, along with the number of epochs since the last restart (Tcur) and the epoch

for the upcoming restart (Ti). In this experiment, we employed an ηi
max of 0.0007, an ηi

min of
0, and a Ti set to 10, triggering a new warm restart at every 10-epoch interval.

3.4. Evaluation Metrics

To assess the performance of the introduced architecture (CTPlantNet), we employed
three different metrics commonly used in classification problems. The metrics are detailed
as follows:

• Accuracy (ACC): describes the number of correct predictions over all predictions
considering the true/false negative/positive predictions (TP, TN, FP, FN).

ACC =
TruePositive + TrueNegative

TruePositive + FalseNegative + TrueNegative + FalsePositive
(2)

• Precision (PRE): quantifies the ratio of accurately classified positive instances among
all instances classified as positive.

PRE =
TruePositive

TruePositive + FalsePositive
(3)

• F1-score (F1): quantifies the harmonic mean of precision and recall, providing a
balance between the two metrics.

F1 = 2 × Precision × Recall
Precision + Recall

(4)

• Area the under curve (AUC): widely used in classification problems. This metric
measures the performance of the proposed pipeline by highlighting the difference
between its good and bad predictions. It is computed by measuring the area under
the Receiver Operating Characteristic (ROC) curve [39].

4. Experimental Results

After pre-processing the images from the Plant Pathology 2020-FGVC-7 dataset and
applying the data augmentation techniques, different DL models were trained and tested
using a cross-validation method. The most promising models were then implemented in
our architecture to perform an accurate classification of apple foliar diseases. The perfor-
mance of the introduced architecture (CTPlantNet) was compared against that of every
single model within the architecture, trained and tested separately. The obtained results
were also compared against those obtained by Sultistowati et al. [15], Bansal et al. [18],
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Alsayed et al. [17], Yadav et al. [16], and Subetha et al. [19]. The analysis of the results
presented in Table 1 indicates that our architecture demonstrated high performance, achiev-
ing an average AUC of 99.82% and an average ACC of 98.20%, outperforming previous
state-of-the-art models.

Table 1. Comparative overview of CTPlantNet’s results against separate models and state-of-the-art
approaches using the Plant Pathology 2020-FGVC-7 dataset.

Models ACC (%) AUC (%) PRE (%)

SEResNeXt50 97.68 99.89 98.12
EfficientNetV2-S 97.88 99.94 98.40
Swin-Large 98.70 99.58 99.04
Alsayed et al. [17] 94.70 - -
Sulistyowati et al. [15] 92.94 - -
Yadav et al. [16] 98.70 - -
Bansal et al. [18] 96.25 - -
Subetha et al. [19] 87.70 - -
CTPlantNet 98.28 99.82 98.67

To further evaluate the potential of CTPlantNet, we tested it on a larger and newer
dataset, Plant Pathology 2021-FGVC-8. After training the model on this dataset, we
achieved impressive results that outperformed Yadav et al. [16], who also examined the
potential of their proposed model (AFD-Net) on the same dataset. Moreover, our architec-
ture also outperformed an ensemble learning pipeline proposed by Kejriwal et al. [20] to
classify apple foliar disease images from Plant Pathology 2021-FGVC-8. Table 2 provides
an overview of the results obtained by CTPlantNet, along with the results obtained by
state-of-the-art works. The comparison indicates that our architecture achieved significantly
better results than existing models, further highlighting the effectiveness of our approach
in detecting apple foliar diseases.

Table 2. Comparative overview of the results achieved by our proposed approach versus state-of-the-
art methods using the Plant Pathology 2021-FGVC-8 dataset.

Models ACC (%) AUC (%) PRE (%) F1 (%)

Kejriwal et al. [20] - - 97.43 96.25
Yadav et al. [16] 92.60 - - -
Proposed (CTPlantNet) 95.96 99.82 97.55 97.57

CTPlantNet achieved a higher accuracy (ACC) of 95.60%, surpassing the model pro-
posed by Yadav et al. [16] by 3.36%, and showed a slight improvement of 0.12% in terms of
precision and a notable improvement of 1.32% in terms of the F1-score compared to the
model proposed by Kejriwal et al. [20].

5. Discussion

Our architecture, CTPlantNet, has demonstrated high potential in extracting a wide
variety of features, which is crucial for discerning subtle distinctions between various
diseases. This is particularly significant, as traditional visual inspections often struggle
to accurately identify diseases, especially in cases where symptoms are similar or co-
occurring. Moreover, the application of data augmentation techniques proved highly
effective in addressing the issue of imbalanced data, a common challenge in plant disease
datasets, which improved the overall performance of the proposed architecture. Combining
and averaging the predictions of the models in our architecture resulted in a further boost
in performance across all classes in the dataset, showcasing the robustness and reliability
of our approach. Notably, our architecture offers a solution to the limitations of traditional
visual inspections, which can be time consuming, labor intensive, and prone to human error.
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By leveraging deep learning, we can provide farmers with a more accurate, efficient, and
scalable tool for disease diagnosis, enabling them to take prompt action and reduce crop
losses. This is especially important for small-scale farmers, who often lack the resources and
expertise to implement complex disease management strategies. Our architecture can help
bridge this gap, providing an accessible and user-friendly tool for disease diagnosis and
management. However, the prediction accuracy for the “multiple disease” class was less
reliable, potentially attributed to the limited number of samples available in this category,
highlighting the need for further data collection and research in this area.

In future studies, we will aim to evaluate the feasibility and effectiveness of our
architecture in analyzing apple canopy images, which will enable us to assess its potential
for real-world applications. We also will aim to enhance the precision of CTPlantNet
and evaluate its performance on diverse datasets encompassing various plant species.
Additionally, we will explore methods to enhance its interpretability, as it is crucial to
understand the features and characteristics of the data that the models incorporated in
CTPlantNet are particularly good at extracting. This will involve implementing techniques
such as feature importance analysis, saliency mapping, and visualizations to provide
insights into the decision-making process of our models. By highlighting the strengths
and weaknesses of our architecture, we can further refine and improve its performance,
ultimately leading to more accurate and reliable disease diagnosis and management tools
for farmers and agricultural practitioners.

6. Conclusions

Timely and accurate diagnosis of plant diseases can help farmers make informed
decisions about crop management, such as choosing the right fungicides or pesticides,
selecting resistant cultivars, and adjusting irrigation and fertilization schedules. In this
work, we introduced a hybrid deep learning (DL) architecture consisting of two blocks: a
convolutional neural network (CNN) block composed of two CNN models (SEResNext-50
and EfficientNet-V2S) and a vision transformer block based on the Swin-Large model.
The models were trained separately on the Plant Pathology 2020-FGVC-7 dataset, which
comprises 3651 images classified into four classes (healthy, scab, rust, and multiple diseases).
A 5-fold cross-validation strategy was employed for the training, which helped the models
learn a wide range of patterns from the images. The predictions of the three models were
combined using an averaging technique to provide the final output. Data augmentation
and preprocessing techniques were utilized to increase the size of the dataset, overcome
the imbalanced data issue, and enhance the performance of the models. CTPlantNet,
our proposed architecture, outperformed state-of-the-art models and recently published
works on the same dataset, achieving a remarkable accuracy (ACC) of 98.28% and an area
under the curve (AUC) of 99.82%. To examine the potential of CTPlantNet, we further
trained and validated the models on a newer version of the dataset named Plant Pathology
2021-FGVC-8, which includes 18,632 images divided into six classes (healthy, scab, rust,
powdery mildew, frog eye spot, and multiple diseases). Our architecture demonstrated
impressive performance, surpassing the state-of-the-art works and exhibiting excellent
generalization capacity on a larger dataset with a greater variety of diseases. CTPlantNet
achieved an average ACC of 95.96% and an average AUC of 99.17%, outperforming state-
of-the-art works.
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