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Abstract: Mean-field games (MFGs) are developed to model the decision-making processes of a large
number of interacting agents in multi-agent systems. This paper studies mean-field games on graphs
(G-MFGs). The equilibria of G-MFGs, namely, mean-field equilibria (MFE), are challenging to solve
for their high-dimensional action space because each agent has to make decisions when they are at
junction nodes or on edges. Furthermore, when the initial population state varies on graphs, we
have to recompute MFE, which could be computationally challenging and memory-demanding. To
improve the scalability and avoid repeatedly solving G-MFGs every time their initial state changes,
this paper proposes physics-informed graph neural operators (PIGNO). The PIGNO utilizes a graph
neural operator to generate population dynamics, given initial population distributions. To better
train the neural operator, it leverages physics knowledge to propagate population state transitions on
graphs. A learning algorithm is developed, and its performance is evaluated on autonomous driving
games on road networks. Our results demonstrate that the PIGNO is scalable and generalizable when
tested under unseen initial conditions.

Keywords: mean-field game; scalable learning; physics-informed neural operator

1. Introduction

Multi-agent systems (MAS) are prevalent in engineering and robotics applications.
With a large number of interacting agents in the MAS, solving agents’ optimal control could
be computationally intractable and not scalable. To solve this challenge, MFGs are [1,2]
developed to model strategic interactions among many agents who make dynamically
optimal decisions, while a population distribution is propagated to represent the state of in-
teracting agents. Since its inception, MFGs have been widely applied to social networks [3],
swarm robotics [4] and intelligent transportation [5,6].

MFGs are micro-macro games that bridge agent dynamics and population behaviors
with two coupled processes: individuals’ dynamics solved by optimal control (i.e., agent
dynamic) and system evolution arising from individual choices (i.e., population behaviors).

In this work, we focus on a class of MFGs [7], namely, mean-field games on graphs
(G-MFG), where the state space of the agent population is a graph and agents select a
sequence of nodal and edge transitions with a minimum individual cost. Solving these
G-MFGs, however, poses the following challenges: (1) With a graph-based state space,
the action space expands significantly, encompassing both nodes and edges, resulting in a
high-dimensional search space. More specifically, the decision-making of a representative
agent in G-MFG consists of not only en-route choices at nodes but also continuous velocity
control on edges subject to congestion effects. (2) Existing work mainly assumes that the
initial population distribution is fixed. The change in initial population states leads to the
re-computation of mean-field equilibria (MFE), a task that requires computational and
memory resources and hinders the practicality of deploying MFG solutions.
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To address these challenges, this paper proposes a new learning tool for G-MFGs,
namely, a physics-informed graph neural operator (PIGNO). The key element is a graph
neural operator (GNO), which can generate population dynamics given the initial popula-
tion distribution. To enhance the training process, the GNO incorporates physics knowledge
regarding how agent and population dynamics propagate over the spatiotemporal domain.

Related Work

Researchers have explored various machine learning methods, such as reinforcement
learning (RL) [8–11], and physics-informed neural networks (PINN) [12–14]. However, it
can be time-consuming and memory-demanding for these learning tools to adapt to changes
in initial population density. Specifically, each unique initial condition may require the
assignment and retraining of a dedicated neural network to obtain the corresponding MFE.
To enhance the scalability of the learning framework for MFGs, Chen et al. [15] introduced
a physics-informed neural operator (PINO) framework. This framework utilizes a Fourier
neural operator (FNO) to establish a functional mapping between mean-field equilibrium
and boundary conditions. However, the FNO fails to solve G-MFGs because it cannot
directly project information over a graph into a high-dimensional space and generate
population dynamics in the graph state space. Therefore, in this paper, we propose a graph
neural operator (GNO) that learns mappings between graph-based function spaces to solve
G-MFGs. The GNO leverages message-passing neural networks (MPNNs) to handle state
space and propagate state information efficiently by aggregating the neighborhood messages.

Our contributions include: (1) We propose a scalable learning framework leveraging
PIGNO to solve G-MFGs with various initial population states; (2) We develop a learning
algorithm and apply it to autonomous driving games on road networks to evaluate the
algorithm performance.

The rest of this paper is organized as follows: Section 2 introduces preliminaries about
G-MFGs. Section 3 presents the details of our scalable learning framework for G-MFGs.
Section 4 presents the solution approach. Section 5 demonstrates numerical experiments.
Section 6 concludes.

2. Background
2.1. Mean-Field Games on Graphs (G-MFG)

Mean-field games on graphs (G-MFG) model population dynamics and a generic
agent’s optimal control on both nodes and edges. A G-MFG consists of a forward FPK and
multiple backward HJB equations, which are defined on a graph G = {N ,L} as follows:

Definition 1. A G-MFG with discrete time graph states [16] is:

[G-MFG] :

(𝐹𝑃𝐾) 𝝆𝜏+1 = [𝑃𝜏]𝑇 𝝆𝜏 , 𝝆0 ≡ �̃� (1a)

(𝐻𝐽𝐵) 𝑽𝜏 = min
𝒖,𝜷

𝑃𝜏𝑽𝜏+1 + 𝒓𝜏 , 𝑽𝑇 ≡ �̃� (1b)

𝝆𝜏 = [𝜌𝜏
𝑖 𝑗
]𝑇 is the population density on each edge (𝑖, 𝑗) ∈ L at time step 𝜏. �̃� denotes the

initial population density over the graph. The Fokker–Planck (FPK) equation captures
the evolution of the population state on the graph. The Hamilton–Jacobi–Bellman (HJB)
equation captures the optimal control of a generic agent, including the velocity control
on edges and route choice on nodes. 𝑽𝜏 = [𝑉 𝜏

𝑖 𝑗
]𝑇 is the value function at each edge. �̃�

denotes the terminal cost. 𝒖𝜏 = [𝑢𝜏
𝑖 𝑗
]𝑇 denotes the exit rate at each edge, which represents

the agent’s velocity control. 𝜷𝜏 = [𝛽𝜏
𝑖 𝑗
]𝑇 is the probability of choosing node 𝑗 as the next-

go-to node at node 𝑖, i.e., route choice. 𝒓𝜏 = [𝑟 𝜏
𝑖 𝑗
]𝑇 is the cost incurred by the agent at

time step 𝜏. The transition matrix 𝑃𝜏 is determined by 𝒖𝜏 and 𝜷𝜏 . The MFE is denoted
by 𝑆𝑂𝐿 ( [G-MFG]) = {𝝆∗,𝑽∗, 𝒖∗, 𝜷∗}, satisfying Equation (1). The mathematical details of



Games 2024, 15, 12 3 of 12

G-MFG can be found in Appendix A.1. We provide a toy example in Appendix A.2 to help
readers better understand it.

2.2. Graph Neural Operator (GNO)

Graph neural operators (GNOs) are generalized neural networks that can learn func-
tional mappings between high-dimensional spaces [17]. GNO utilizes an MPNN to update
space representation according to messages from the neighborhood. In this paper, we
adopt a GNO to establish mappings between initial population state 𝝆0 and population
𝝆∗ at MFE. We leverage the physics knowledge (i.e., FPK and HJB equations) to train the
GNO for solving MFE with various initial population densities, eliminating the need to
recompute MFE.

3. Scalable Learning Framework

In this section, we propose a physics-informed graph neural operator (PIGNO) to learn
G-MFGs. Figure 1 illustrates the workflow of two couple modules: FPK for population
behaviors and HJB for agent dynamics. The FPK and the HJB modules internally depend
on each other. In the FPK module, we estimate population density 𝝆0:𝑇 over the graph and
update the GNO using a residual defined by the physical rule that captures population
dynamics triggered by the transition matrix defined in the FPK equation. In the HJB module,
the transition matrix 𝑃0:𝑇 is obtained given the population density 𝝆0:𝑇 . We adopt another
GNO to solve the HJB equation since the dynamics of the agents and the cost functions are
known in the MFG system. We now delve into the details of the proposed PIGNO.

Figure 1. PIGNO for G-MFGs: We leverage graph neural networks to establish a functional mapping
between the initial population density along with terminal cost and mean field equilibrium over the
entire spatial temporal domain. The population density and terminal cost over the space domain
at each time step is denoted by color bars over the graph. The PIGNO allows us to obtain MFEs
corresponding to each initial population distribution and terminal cost without recomputing them.

3.1. PIGNO for Population Behaviors

The GNO-𝜌 maps the initial population distribution and the population distribution
from time 0 to 𝑇 . The input of GNO-𝜌 is the initial population density 𝝆0 along with the
transition information to propagate population dynamics. The output of GNO-𝜌 is the
population dynamics over the spatiotemporal domain, denoted by �̂� ≡ �̂�0:𝑇 . The PIGNO is
instantiated as the following MPNN: ∀(𝑖, 𝑗) ∈ L, 𝜏 = 0, 1, . . . ,𝑇

�̂�𝜏𝑖 𝑗 = 𝜌𝜃 (𝜌0
𝑖 𝑗 ,

∑︁
∀(𝑘,𝑙) ∈L𝜏

𝑖 𝑗

𝜅𝜙 (𝜌0
𝑖 𝑗 , 𝜌

0
𝑘𝑙 , 𝑒

𝜏
𝑖 𝑗,𝑘𝑙)) (2)
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where, �̂�𝜏
𝑖 𝑗

is the population density of edge (𝑖, 𝑗) at time 𝜏, L𝜏
𝑖 𝑗

is the set of neighborhood
edges of edge (𝑖, 𝑗) at time 𝜏, 𝜅𝜙 is the graph kernel function for 𝜌𝜃 , and 𝑒𝜏

𝑖 𝑗,𝑘𝑙 denotes the
cumulative message used to propagate population dynamics from time 0 to time 𝜏. 𝑒𝜏

𝑖 𝑗,𝑘𝑙
indicates the ratio of the population entering from edge (𝑘 , 𝑙) to edge (𝑖, 𝑗) till time 𝜏, which
is determined by the ratio of population exiting the edge (𝑘 , 𝑙) (i.e., the velocity control
𝑢) and the ratio of the population choosing the edge (𝑖, 𝑗) as the next-go-to edge (i.e., the
route choice 𝛽). The MPNN utilizes the initial population distribution and the message to
propagate the population dynamics in the G-MFG system. The neighborhood message is
transformed by a kernel function 𝜅𝜙 and aggregated as an additional feature to estimate
population density.

The GNO-𝜌 adopts a physics-informed training scheme, which combines both model-
driven and data-driven methods. The training of GNO-𝜌 is guided by the residual deter-
mined by physical rules of population dynamics. Mathematically, the residual 𝑟𝜃 is:

𝑟𝜃 =
1
|𝝆D |

∑︁
𝝆0∈𝝆D

𝐿𝝆0 , (3)

where, the set 𝝆D contains various initial densities over the graph. 𝐿𝝆0 is calculated as:

𝐿𝝆0 = 𝛼0 ·
1
𝑇

𝑇−1∑︁
𝜏=0

| | �̂�𝜏+1 − [𝑃𝜏]𝑇 �̂�𝜏 | | + 𝛼1 · | | �̂�0 − 𝝆0 | |2, (4)

where, the first term in 𝐿𝝆0 evaluates the physical discrepancy based on Equation (1a). It
integrates the residual of the FPK equation, ensuring that the model adheres to established
laws of motion. When predicted 𝝆 becomes closer to 𝝆∗ satisfying the FPK equation,
the residual gets closer to 0. The second term quantifies the discrepancy between the
estimations and the ground truth of the initial density. The observed data comes from the
initial distribution of population 𝝆0. The training of 𝜌𝜃 based on observed data follows the
traditional supervised learning scheme. 𝛼0 and 𝛼1 are the weight coefficients.

3.2. PIGNO for Optimal Control

Similar to GNO-𝜌, GNO-𝑉 learns a reverse mapping from the terminal costs to the
value functions over the graph from time 𝑇 to 0. The input of GNO-𝑉 is the terminal
costs 𝑽𝑇 and the transition information. The output of GNO-𝑉 is the value function over
the spatiotemporal domain, denoted by �̂� ≡ �̂�

0:𝑇 . The GNO-𝑉 also follows the MPNN
formulation: ∀(𝑖, 𝑗) ∈ L, 𝜏 = 0, 1, . . . ,𝑇

�̂� 𝜏
𝑖 𝑗 = 𝑉𝜂 (𝑉𝑇

𝑖 𝑗 ,
∑︁

∀(𝑘,𝑙) ∈L𝜏
𝑖 𝑗

𝜅𝜓 (𝑉𝑇
𝑖 𝑗 ,𝑉

𝑇
𝑘𝑙 , 𝑒

𝜏
𝑖 𝑗,𝑘𝑙)) (5)

where �̂� 𝜏
𝑖 𝑗

is the value function of edge (𝑖, 𝑗) at time 𝜏, L𝜏
𝑖 𝑗

is the set of neighborhood edges of
edge (𝑖, 𝑗) at time 𝜏, 𝜅𝜓 is the graph kernel function for𝑉𝜂 , and 𝑒𝜏

𝑖 𝑗,𝑘𝑙 denotes the cumulative
message used to propagate population dynamics from time 0 to time 𝜏, which comes
from the transpose of the cumulative transition matrix in GNO-𝜌. The MPNN utilizes the
terminal costs and the message to propagate system value functions. The neighborhood
message is transformed by a kernel function 𝜅𝜓 and aggregated as an additional feature to
estimate value functions.

The training of GNO-𝑉 takes the HJB residual 𝑟𝜂 into consideration, which is

𝑟𝜂 =
1
|𝑽D |

∑︁
𝑽𝑇 ∈𝑽D

𝐿𝑽𝑇 , (6)
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where, the set 𝑽D contains various terminal costs over the graph. 𝐿𝑽𝑇 is calculated as:

𝐿𝑽𝑇 = 𝛼0 ·
1
𝑇

𝑇−1∑︁
𝜏=0

| |�̂�𝜏+1 − 𝑃𝜏�̂�
𝜏 | | + 𝛼1 · | |�̂�

𝑇 −𝑽𝑇 | |2, (7)

where, the first term in 𝐿𝑽𝑇 evaluates the physical discrepancy based on Equation (1b).
When predicted 𝑽 becomes closer to the optimal 𝑽∗, the residual gets closer to 0. The second
term calibrates the predictions to the ground truth of the terminal costs 𝑽𝑇 by supervised
learning. Similarly, 𝛼0 and 𝛼1 are the weight coefficients.

Note that a meta assumption of this model is discrete time. There are significant
limitations of adopting a continuous-time model: (1) A continuum formulation of forward
process over a graph space cannot be easily captured by several coupled partial differential
equation systems. One way is to simplify the decision making over the graph as discretized
route choice at each node, rendering the game as a continuous time markov decision
process, which fails to capture the real-time velocity control on each edge. The other way is
to formulate the dynamic process as a graph ODE, which requires further investigation on
scalability. (2) A continuum formulation of backward process can be solved by continuous-
time reinforcement learning. We leave the scalability of this continuous time reinforcement
learning scheme to future work.

4. Solution Approach

In this section, we present our learning algorithm (Algorithm 1). We first initialize
the GNO-𝜌 𝜌𝜃 parameterized by 𝜃 and GNO-𝑉 𝑉𝜂 parameterized by 𝜂. During the 𝑖th
iteration of the training process, we first sample a batch of initial population densities 𝝆0

and terminal costs 𝑽𝑇 . The terminal cost 𝑽𝑇 denotes the delay for agents who haven’t
arrived at their destinations at the terminal time step. In this work, we assume the time
delay at the terminal step is proportional to the travel distance between the agent’s location
and her destination. 𝝆D represents the set of initial population density. In this work,
we interpret initial population density as the travel demands (i.e., the number of agents
entering a graph at time 0). Agents can enter the graph from each node. We assume at time
0, the number of agents at each node (i.e., travel demand) follow a uniform distribution.
We use each pair of 𝝆0 and 𝑽𝑇 to generate the population density �̂�0:𝑇 and �̂�

0:𝑇 over the
entire domain. Given �̂�0:𝑇 and �̂�

0:𝑇 , we obtain the spatiotemporal transition 𝑃 for all nodes.
We then update the parameter 𝜃 of the neural operator according to the residual. At the
end of each iteration, we check the convergence according to:

Algorithm 1 PIGNO-MFG

1: Initialize: GNO-𝜌 𝜌𝜃 parameterized by 𝜃, GNO-𝑉 𝑉𝜂 parameterized by 𝜂;
2: for 𝑖 ← 0 to 𝐼 do
3: Sample a batch of initial population densities 𝝆0 from the set 𝝆D and terminal costs

𝑽𝑇 from the set 𝑽D ;
4: Predict �̂�0:𝑇 (𝑖) and �̂�

0:𝑇 (𝑖) by 𝜌𝜃 and 𝑉𝜂 corresponding to each pair of 𝝆0 and 𝑽𝑇 in
the batch;

5: for each �̂�0:𝑇 (𝑖) and �̂�
0:𝑇 (𝑖) do

6: Obtain 𝑃0:𝑇−1(𝑖) by solving the HJB.
7: end for
8: Obtain residual 𝑟𝜃 (𝑖) and 𝑟𝜂 (𝑖) according to Equations (3) and (6);
9: Update 𝜌𝜃 and 𝑉𝜂 ;

10: Check convergence (Equation (8)).
11: end for
12: Output MFE
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∑
𝝆0∈𝝆𝐷 | �̂�0:𝑇 (𝑖) − �̂�0:𝑇 (𝑖−1) |

|𝝆𝐷 | +
∑

𝑽 0∈𝑽𝐷 |�̂�0:𝑇 (𝑖) − �̂�0:𝑇 (𝑖−1) |
|𝑽𝐷 |

< 𝜖 (8)

5. Numerical Experiments

In this section, we employ our algorithm to facilitate autonomous driving navigation
in traffic networks. As illustrated in Figure 2, a substantial number of autonomous vehicles
(AVs) move to destination node 4, with the objective of minimizing total costs subject to
the congestion effect. We use a representative agent as an example to elaborate on the
speed control and density dynamics of the population in this scenario. At node 1, the
representative agent first selects edge 𝑙12. The agent then drives along edge 𝑙12 and selects
continuous-time-space driving velocities on the edge. The agent selects her next-to-go edge
at node 2, following this pattern until she reaches her destination at node 4. These choices
regarding her route and speed will actively influence the evolution of population density
across the network. The mathematical formulation of this autonomous driving game can
be found in [16].

Figure 2. Autonomous driving game on the road network.

We construct the initial population state over the network as follows: We assume
that at time 0, the traffic network is empty. Vehicles enter the road network at origin
nodes 1, 2, 3 and move toward the destination 4. Travel demands at each origin satisfy
𝑑𝑖 ∼ Uniform[0, 1], 𝑖 = 1, 2, 3. Therefore, each initial population distribution over the
network consists of travel demands at origins (i.e., [𝑑1, 𝑑2, 𝑑3]), which are sampled from
three independent uniform distributions.

Figure 3 demonstrates the convergence performance of the algorithm in solving G-
MFG. The x-axis represents the iteration index during training, the y-axis displays the
convergence gap, and the 1-Wasserstein distance measures the closeness between our
results and the MFE obtained by numerical methods [16]. The results demonstrate that our
algorithm can converge stably after 50 iterations.

(a) (b)

Figure 3. Algorithm performance (a) Convergence gap (b) W1-distance.

Figure 4 demonstrates the population density solved by our proposed method along
three paths on the road network, i.e., (1 → 2 → 3 → 4), (1 → 2 → 4), and (1 → 3 → 4).
The x-axis is the spatial position on the path, and the y-axis represents the time. The z-axis
represents the population density 𝝆. The running cost functional form follows a non-
separable cost structure with a crossing term of the agent action and the population density.
We visualize the population density in G-MFG with three initial population states, which
are constructed by travel demands [𝑑1, 𝑑2, 𝑑3]: [0.6, 0.4, 0.2] (See Figure 4a–c), [0.4, 0.4, 0.4]
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(See Figure 4d–f) and [0.2, 0.4, 0.6] (See Figure 4g–i). The plots show the population density
evolution along each path on the graph. At the node, the density flow can be split when
making route choice. For example, at node 2, vehicles can choose node 3 or 4 as their next
node. It means the vehicle flow on the edge (1,2) is split into flows on edges (2,3) and (2,4).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Population density 𝝆 along each path on the road network with various travel demands
[𝑑1, 𝑑2, 𝑑3]. (a) 1→ 2→ 3→ 4 (b) 1→ 2→ 4, demand: 0.6, 0.4, 0.2 (c) 1→ 3→ 4 (d) 1→ 2→ 3→ 4
(e) 1→ 2→ 4, demand: 0.4, 0.4, 0.4 (f) 1 → 3 → 4 (g) 1 → 2 → 3 → 4 (h) 1 → 2 → 4, demand:
0.2, 0.4, 0.6 (i) 1→ 3→ 4.

6. Conclusions

In this paper, we propose a scalable learning framework, G-MFGs. Existing numerical
methods have to recompute MFE when the initial population density changes. To avoid
recomputing MFE inefficiently, this work proposes a learning method, which utilizes graph
neural networks to establish a functional mapping between the initial population density
and MFE over the entire spatial temporal domain. This learning framework allows us to
obtain MFEs corresponding to each initial population distribution without recomputing
them. We demonstrate the efficiency of this method in autonomous driving games. Our
contribution lies in the scalability of PIGNO to handle various initial population densities
without recomputing MFEs. Our framework offers a memory- and data-efficient approach
for solving G-MFGs.
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Appendix A

Appendix A.1. Mean Field Games on Graph

Optimal control of a representative agent: On a graph G, a generic agent moves from
her initial position to a destination, aiming to solve optimal control to minimize its cost
connecting its origin to the destination. Assume there is a single destination 𝑠 ∈ N for all
the agents. One with multiple destinations forms a multi-population MFG and will be left
for future research. The agent’s state at time 𝑡 can be specified by two scenarios, either in
the interior of an edge or at a node. In the interior of edge 𝑙 ∈ L: (𝑥, 𝑡) is the agent’s position
on edge 𝑙 at time 𝑡 where 𝑥 ∈ [0, len(𝑙)] and len(𝑙) is the length of edge 𝑙. 𝑢𝑙 (𝑥, 𝑡) is the
velocity of the agent at position 𝑥 at time 𝑡 when navigating edge 𝑙. Note that G-MFG is non-
stationary, thus, the optimal velocity evolves as time progresses. 𝑟𝑙 (𝑢, 𝜌) is the congestion
cost arising from the agent population on edge 𝑙, which is increasingly monotone in 𝜌

indicating the congestion effect. 𝑉𝑙 (𝑥, 𝑡) is the minimum cost of the representative agent
starting from position 𝑥 at time 𝑡. 𝑉𝑙 (𝑥, 𝑡) is modeled by a HJB equation: ∀𝑙 ∈ L,

𝜕𝑡𝑉𝑙 (𝑥, 𝑡) +min
𝑢
{𝑟𝑙 (𝑢, 𝜌) + 𝑢𝜕𝑥𝑉𝑙 (𝑥, 𝑡)} = 0, (A1)

𝑉𝑙 (len(l), 𝑡) = 𝜋𝑖 (𝑡), 𝑙 ∈ 𝐼𝑁 (𝑖),

where, 𝜕𝑡𝑉𝑙 (𝑥, 𝑡), 𝜕𝑥𝑉𝑙 (𝑥, 𝑡) are partial derivatives of 𝑉𝑙 (𝑥, 𝑡) with respect to 𝑡, 𝑥, respectively.
𝐼𝑁 (𝑖) represent the edges going into node 𝑖. 𝜋𝑖 is the minimum travel cost of agents staring
from node 𝑖 (i.e., the end of edge 𝑙) at time 𝑡, which is also the boundary condition of
Equation (A1). At node 𝑖 ∈ N : 𝛽(𝑖, 𝑙, 𝑡) represents the probability of choosing the next-
go-to edge 𝑙 ∈ 𝑂𝑈𝑇 (𝑖) where 𝑂𝑈𝑇 (𝑖) represent the edges coming out of node 𝑖. We have∑

𝑙∈L𝑂 (𝑖) 𝛽(𝑖, 𝑙, 𝑡) = 1. 𝛽(𝑖, 𝑙, 𝑡) can be interpreted as the proportion of agents selecting edge 𝑙
(or turning ratio) at node 𝑖 at time 𝑡. 𝛽 determines the boundary condition of population
evolution on edges, which will be defined in Equation (A7). 𝜋𝑖 (𝑡) is the minimum traverse
cost starting from node 𝑖 at time 𝑡. 𝜋𝑖 (𝑡) satisfies

𝜋𝑖 (𝑡) = min
𝛽

∑︁
𝑙∈𝑂𝑈𝑇 (𝑖)

𝛽(𝑖, 𝑙, 𝑡) ·𝑉𝑙 (0, 𝑡), (A2)

𝜋𝑠 (𝑡) = 0.

where, 𝑉𝑙 (0, 𝑡) is the minimum cost entering edge 𝑙 (i.e., 𝑥 = 0) at time 𝑡. 𝜋𝑠 (𝑡) is the terminal
cost at destination 𝑠.

We now show Equations (A1) and (A2) can be reformulated into Equation (1b) in a
discrete-time setting. We first discretize the spatiotemporal domain. On a spatiotemporal
mesh grid, denote Δ𝑥,Δ𝑡 as the spatial and temporal mesh sizes, respectively. Denote
G𝐷 = {N𝐷 ,L𝐷} as the discretized representation of G. To construct G𝐷 from G, we
first discretize edges on a graph. Each edge 𝑙 = (𝑖, 𝑗) ∈ L is divided into a sequence of
adjacent edge cells, denoted as 𝑙𝐷 = {(𝑖, 𝑖1), (𝑖1, 𝑖2), . . . (𝑖 |𝑙𝐷 |−1, 𝑗)}, where |𝑙𝐷 | = len(𝑙)

Δ𝑥
is the

number of adjacent edge cells. The node setN𝐷 is created by augmentingN with auxiliary
nodes 𝑖1, 𝑖2, · · · , |L𝐷 | − 1 that separate newly split edge cells. In summary, a spatially
discretized directed graph G𝐷 is a collection of edge cells and augmented nodes linked by
directed arrows. It preserves the topology of the original graph G but with more edges and
nodes. We discretize the time interval into [· · · , 𝜏Δ𝑡, · · · ], 𝜏 = 0, 1, . . ., where 𝜏 represents
the discretized time instant. The relation between the spatial and temporal resolutions
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needs to fulfill the Courant–Friedrichs–Lewy (CFL) condition to ensure numerical stability:
Δ𝑡 · 𝑢𝑚𝑎𝑥 ⩽ Δ𝑥, where 𝑢𝑚𝑎𝑥 is the maximum velocity. We first reformulate Equation (A1) on
spatiotemporal grids where Δ𝑡 · 𝑢𝑚𝑎𝑥 ⩽ Δ𝑥 as follows

𝑉𝑙 (𝑥, 𝑡 + Δ𝑡) −𝑉𝑙 (𝑥, 𝑡)
Δ𝑡

+min
𝑢
{ 𝑓𝑙 (𝑢, 𝜌)+

𝑢
𝑉𝑙 (𝑥 + Δ𝑥, 𝑡 + Δ𝑡) −𝑉𝑙 (𝑥, 𝑡 + Δ𝑡)

Δ𝑥
} = 0

→ 𝑉𝑙 (𝑥, 𝑡) = min
𝑢
{ 𝑓𝑙 (𝑢, 𝜌)Δ𝑡 + (1 − Δ𝑡

Δ𝑥
𝑢)𝑉𝑙 (𝑥, 𝑡 + Δ𝑡)

+ 𝑢𝑉𝑙 (𝑥 + Δ𝑥, 𝑡 + Δ𝑡).}, 𝑢 ≡ 𝑢(𝑥, 𝑡)

On the graph G𝐷 = {N𝐷 ,L𝐷}, ∀(𝑖, 𝑗) ∈ L𝐷 , 𝑗 ∉ N . We have 𝑉𝑙 (𝑥, 𝑡) = 𝑉 𝜏
𝑖 𝑗

,𝑉𝑙 (𝑥, 𝑡 + Δ𝑡) =
𝑉 𝜏+1
𝑖 𝑗

,𝑉𝑙 (𝑥 + Δ𝑥, 𝑡 + Δ𝑡) = 𝑉 𝜏+1
𝑗𝑘

= 𝜋𝜏+1
𝑗

where ( 𝑗 , 𝑘) is the successor edge cell of (𝑖, 𝑗) in the
interior of an edge. Therefore,

𝑉 𝜏
𝑖 𝑗 = min

𝑢
{𝑉 𝜏+1

𝑖 𝑗 (1 −
Δ𝑡

Δ𝑥
𝑢𝜏𝑖 𝑗 ) +𝑉 𝜏+1

𝑗𝑘

Δ𝑡

Δ𝑥
𝑢𝜏𝑖 𝑗 + 𝑟 𝜏𝑖 𝑗 }

where, 𝑟 𝜏
𝑖 𝑗
= Δ𝑡 𝑓 (𝑢𝜏

𝑖 𝑗
, 𝜌𝜏

𝑖 𝑗
).

Edge cell (𝑖, 𝑗) ∈ L𝐷 , 𝑗 ∈ N are the last cell on an edge and 𝑗 is the end node of the edge.
It means 𝑗 is also the start node of the next-go-to edge. We have 𝑉 (𝑥 + Δ𝑥, 𝑡 + Δ𝑡) = 𝜋𝜏+1

𝑗
.

Accordingly, ∀(𝑖, 𝑗) ∈ L𝐷 ,

𝑉 𝜏
𝑖 𝑗 = min

𝑢
{𝑉 𝜏+1

𝑖 𝑗 (1 −
Δ𝑡

Δ𝑥
𝑢𝜏𝑖 𝑗 ) + 𝜋𝜏+1𝑗

Δ𝑡

Δ𝑥
𝑢𝜏𝑖 𝑗 + 𝑟 𝜏𝑖 𝑗 }. (A3)

We then look into Equation (A2). We denote 𝛽𝑖,𝑙,𝑡 = 𝛽𝜏𝑖 𝑗 and we assume that agents entering
node 𝑖 and making route choice at time 𝜏 will exist the node at time 𝜏 + 1. We then have
𝜋𝑖 (𝑡) = 𝜋𝜏+1𝑖

,𝑉𝑙 (0, 𝑡) = 𝑉𝑖 𝑗 𝜏+1. Therefore,

𝜋𝜏+1𝑖 = min
𝛽

∑︁
𝑗 :(𝑖, 𝑗 ) ∈L𝐷

𝛽𝜏𝑖 𝑗 ·𝑉 𝜏+1
𝑖 𝑗 ,∀𝑖 ∈ N𝐷 . (A4)

We substitute 𝜋 in Equation (A3) with𝑉 according to Equation (A4) and obtain Equation (1b).
We have ∀(𝑖, 𝑗) ∈ L𝐷 .

𝑃𝜏

| L𝐷 |× |L𝐷 | =



... ... ... ... ...

... ... ... Δ𝑡
Δ𝑥
𝑢𝜏
𝑚𝑖
𝛽𝜏
𝑖 𝑗

...
... ... ... ... ...
... Δ𝑡

Δ𝑥
𝑢𝜏
𝑖 𝑗
𝛽𝜏
𝑗𝑘

... 1 − Δ𝑡
Δ𝑥
𝑢𝜏
𝑖 𝑗

...
... ... ... ... ...


. (A5)

where, ( 𝑗 , 𝑘) is a successor edge cell of (𝑖, 𝑗) ∈ L𝐷 . Below we show that 𝑃𝜏 is a transition
matrix. For diagonal elements of 𝑃𝜏 , ∀(𝑖, 𝑗) ∈ L𝐷 , we have

1 − Δ𝑡

Δ𝑥
𝑢𝜏𝑖 𝑗 ⩽ 1,

1 − Δ𝑡

Δ𝑥
𝑢𝜏𝑖 𝑗 ⩾ 1 − Δ𝑡

Δ𝑥
𝑢𝑚𝑎𝑥 ⩾ 1 − 1 = 0.

For off-diagonal elements,

0 ⩽
Δ𝑡

Δ𝑥
𝑢𝜏𝑖 𝑗 · 𝛽𝜏𝑗𝑘 ⩽

Δ𝑡

Δ𝑥
𝑢𝑚𝑎𝑥 · 1 ⩽ 1, (𝑖, 𝑗), ( 𝑗 , 𝑘) ∈ L𝐷 .
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The sum of elements in each row is:

1 − Δ𝑡

Δ𝑥
𝑢𝜏𝑖 𝑗 +

∑︁
𝑘:( 𝑗,𝑘 ) ∈L𝐷

Δ𝑡

Δ𝑥
𝑢𝜏𝑖 𝑗 · 𝛽𝜏𝑗𝑘 = 1,∀(𝑖, 𝑗) ∈ L𝐷 .

Therefore, 𝑃𝜏 is a transition matrix satisfying: (1) each element is between 0 and 1, and
(2) the sum of elements in each row equals 1.

Population dynamics: When all agents follow the optimal control, the population
density distribution on edge 𝑙, denoted as 𝜌𝑙 (𝑥, 𝑡),∀𝑙 ∈ L, evolves over the graph. It is
solved by a deterministic (or first-order) FPK, given the velocity control 𝑢𝑙 (𝑥, 𝑡) of agents:

𝜕𝑡 𝜌𝑙 (𝑥, 𝑡) + 𝜕𝑥 [𝜌𝑙 (𝑥, 𝑡) · 𝑢𝑙 (𝑥, 𝑡)] = 0, (A6)

𝜌𝑙 (𝑥, 0) = 𝜌0 (𝑥),

where 𝜕𝑡 𝜌𝑙 (𝑥, 𝑡), 𝜕𝑥𝜌𝑙 (𝑥, 𝑡) are partial derivatives of 𝜌𝑙 (𝑥, 𝑡) with respect to 𝑡, 𝑥, respectively.
Since agents may not appear or disappear randomly, there is no stochasticity in this
equation. 𝜌𝑙 (𝑥, 0) is the initial population density. At the starting node of edge 𝑙 or the
starting position on edge 𝑙, agents move to the next-go-to edge based on their route choice.
Therefore, the boundary condition is:

𝜌𝑙 (0, 𝑡) = 𝛽(𝑖, 𝑙, 𝑡){
∑︁

ℎ∈𝐼𝑁 (𝑖)
[𝜌ℎ (len(ℎ), 𝑡) · 𝑢ℎ (len(ℎ), 𝑡)}, (A7)

where, 𝑙 ∈ 𝑂𝑈𝑇 (𝑖) and 𝜌𝑙 (0, 𝑡) is the influx entering edge 𝑙 at time 𝑡. For a source node
where new agents appear, this node can be treated as a dummy edge where agents exit this
edge at a speed of 𝑢𝑚𝑎𝑥 to enter a downstream edge. In the above boundary condition, there
is no need to distinguish between an intermediate and a source node explicitly without
loss of generality.

We now show Equations (A6) and (A7) can be reformulated into Equation (1a). We
reformulate Equation (A6) as

𝜌𝑙 (𝑥, 𝑡 + Δ𝑡) − 𝜌𝑙 (𝑥, 𝑡)
Δ𝑡

=
𝜌𝑙 (𝑥 − Δ𝑥, 𝑡)𝑢𝑙 (𝑥 − Δ𝑥, 𝑡) − 𝜌𝑙 (𝑥, 𝑡)𝑢𝑙 (𝑥, 𝑡)

Δ𝑥

𝜌𝑙 (𝑥, 𝑡 + Δ𝑡) = 𝜌𝑙 (𝑥, 𝑡)

+ Δ𝑡

Δ𝑥
[𝜌𝑙 (𝑥 − Δ𝑥, 𝑡)𝑢𝑙 (𝑥 − Δ𝑥, 𝑡) − 𝜌𝑙 (𝑥, 𝑡)𝑢𝑙 (𝑥, 𝑡)]

We denote 𝜌𝑙 (𝑥, 𝑡 + Δ𝑡) = 𝜌𝜏+1
𝑖 𝑗

, 𝜌𝑙 (𝑥, 𝑡) = 𝜌𝜏
𝑖 𝑗

,∀(𝑖, 𝑗) ∈ L𝐷 , 𝑖 ∉ N . 𝜌𝑙 (𝑥 − Δ𝑥, 𝑡) represents
agents entering edge cell (𝑖, 𝑗). If 𝑖 ∉ N , 𝜌𝑙 (𝑥 − Δ𝑥, 𝑡) = 𝛽𝜏

𝑚𝑖
𝜌𝜏
𝑚𝑖

, 𝛽𝜏
𝑚𝑖
≡ 1. If 𝑖 ∈ N , agents

entering (𝑖, 𝑗) is calculated as 𝛽𝜏
𝑖 𝑗

∑
𝑚:(𝑚,𝑖) ∈L𝐷 𝜌𝜏𝑚𝑖

𝑢𝜏
𝑚𝑖

. Therefore,

𝜌𝜏+1𝑖 𝑗 = 𝜌𝜏𝑖 𝑗 +
Δ𝑡

Δ𝑥
(𝛽𝜏𝑖 𝑗

∑︁
𝑚:(𝑚,𝑖) ∈L𝐷

𝜌𝜏𝑚𝑖𝑢
𝜏
𝑚𝑖 − 𝜌𝜏𝑖 𝑗𝑢𝜏𝑖 𝑗 ) (A8)

Therefore, Equation (1a) holds.

Appendix A.2. Toy Example

To further demonstrate the linkage of these MFGs on graphs, below we present a toy
network (Figure A1) and show how each model is formulated on this network.
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Figure A1. Toy example.

The G𝐷-dMFG on the toy network is first presented. We assume 𝜋𝜏+12 = �̃� 𝜏+1
2 and

𝜋𝜏+13 = �̃� 𝜏+1
3 . We have

𝜌𝜏+101 = (1 − Δ𝑡

Δ𝑥
𝑢𝜏01)𝜌

𝜏
01

𝜌𝜏+112 = (1 − Δ𝑡

Δ𝑥
𝑢𝜏12)𝜌

𝜏
12 + 𝛽

𝜏
12𝜌

𝜏
01
Δ𝑡

Δ𝑥
𝑢𝜏01

𝜌𝜏+113 = (1 − Δ𝑡

Δ𝑥
𝑢𝜏13)𝜌

𝜏
13 + 𝛽

𝜏
13𝜌

𝜏
01
Δ𝑡

Δ𝑥
𝑢𝜏01

𝑉 𝜏
01 = min

𝑢
{𝑟 𝜏01 + (1 −

Δ𝑡

Δ𝑥
𝑢𝜏01)𝑉

𝜏+1
01 +

Δ𝑡

Δ𝑥
𝑢𝜏01𝜋

𝜏+1
1 }

𝑉 𝜏
12 = min

𝑢
{𝑟 𝜏12 + (1 −

Δ𝑡

Δ𝑥
𝑢𝜏12)𝑉

𝜏+1
12 +

Δ𝑡

Δ𝑥
𝑢𝜏12𝜋

𝜏+1
2 }

𝑉 𝜏
13 = min

𝑢
{𝑟 𝜏13 + (1 −

Δ𝑡

Δ𝑥
𝑢𝜏13)𝑉

𝜏+1
13 +

Δ𝑡

Δ𝑥
𝑢𝜏13𝜋

𝜏+1
3 }

𝜋𝜏+11 = min
𝛽
{𝛽𝜏12𝑉

𝜏+1
12 + 𝛽

𝜏
13𝑉

𝜏+1
13 }

𝜋𝜏+12 = �̃� 𝜏+1
2

𝜋𝜏+13 = �̃� 𝜏+1
3

We have

[G-MFG]
(𝐹𝑃𝐾) 𝝆𝜏+1 = [𝑃𝜏]𝑇 𝝆𝜏 ,

(𝐻𝐽𝐵) 𝑽𝜏 = min
𝒖,𝜷

𝑃𝜏𝑽𝜏+1 + 𝒓𝜏 ,

𝑃𝜏
5×5 =
1 − Δ𝑡

Δ𝑥
𝑢𝜏01

Δ𝑡
Δ𝑥
𝑢𝜏01𝛽

𝜏
12

Δ𝑡
Δ𝑥
𝑢𝜏01𝛽

𝜏
13 0 0

0 1 − Δ𝑡
Δ𝑥
𝑢𝜏12 0 Δ𝑡

Δ𝑥
𝑢𝜏12 0

0 0 1 − Δ𝑡
Δ𝑥
𝑢𝜏13 0 Δ𝑡

Δ𝑥
𝑢𝜏13

0 0 0 1 0
0 0 0 0 1
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