
Citation: Uchida, S.; Sasaki, T.;

Yamamoto, H.; Okada, I. Evolution of

“Pay-It-Forward” in the Presence of

the Temptation to Free-Ride. Games

2024, 15, 16. https://doi.org/

10.3390/g15030016

Academic Editors: Ulrich Berger and

Alberto Antonioni

Received: 17 February 2024

Revised: 16 April 2024

Accepted: 19 April 2024

Published: 25 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

games

Article

Evolution of “Pay-It-Forward” in the Presence of the Temptation
to Free-Ride
Satoshi Uchida 1,2,*, Tatsuya Sasaki 3 , Hitoshi Yamamoto 4 and Isamu Okada 5

1 Research Center for Ethi-Culture Studies, RINRI Institute, Tokyo 102-8561, Japan
2 High-Tech Research Center, Kokushikan University, Tokyo 154-8515, Japan
3 Department of Community Development, Koriyama Women’s College, Fukushima 963-8503, Japan;

t.sasaki@koriyama-kgc.ac.jp
4 Faculty of Business Administration, Rissho University, Tokyo 141-8602, Japan; hitoshi@ris.ac.jp
5 Department of Business Administration, Soka University, Tokyo 192-8577, Japan; okada@soka.ac.jp
* Correspondence: s-uchida@rinri-jpn.or.jp

Abstract: “Paying it forward” is a behavior in which people help someone else because they were
helped in the past. Although experimental evidence exists that indicates that real human beings often
“pay-it-forward” even in the face of free-rider risks, the theoretical basis for the evolution of this
behavior remains unclear. In this paper, we propose a game-theoretical model that explains how pay-
it-forward behavior can evolve despite the temptation to free-ride. By assuming that human beings
exhibit cognitive distortions, as predicted by prospect theory, and that free-riding is punished with a
tiny probability, we demonstrate that pay-it-forward, alongside unconditional altruistic behavior, can
evolve and effectively deter free-riding behavior.

Keywords: pay-it-forward; cooperation; social dilemma; punishment; evolutionary game theory;
prospect theory; expected utility theory

1. Introduction

People often “pay-it-forward” by passing on benefits they have received from someone
in the past to others in the future. Experimental and observational studies have provided
evidence that people indeed engage in decisions reflective of pay-it-forward behavior [1,2].
For instance, in [1], game experiments conducted in a laboratory setting revealed that the
altruistic behavior of one game player spread to other players within the social network.
This propagation of altruistic behaviors from one player to another encourages cooperation
among players.

The presence of pay-it-forward behaviors in the real world presents a significant
challenge to game theory, especially within the context of evolutionary game theory. Es-
sentially, when a player chooses to pass on benefits received from someone in the past to
others, they do not gain any immediate personal profits. Consequently, individuals who
opt not to pay-it-forward (i.e., those who engage in “free-riding”) often find themselves
at a greater advantage compared to those who participate in pay-it-forward activities
(“pay-it-forwarders”). Without introducing an additional mechanism, natural selection or
social learning processes are expected to favor non-participants [3]. Thus, identifying a
mechanism that discourages free-riding behavior has become a crucial theoretical challenge.

Unconditional altruistic behavior, in which individuals help others without expect-
ing anything in return, often leads to what is known as the social dilemma, or free-rider
problem, as documented in the literature [4–10]. Pay-it-forward practices, however, repre-
sent a form of conditional altruistic behavior where individuals help others only if they
themselves have received help in the past. This fact highlights that conditional altruistic
behavior shares the same underlying structure as the social dilemma, characterized by the
following: (1) individuals in a society have the choice to either engage in pay-it-forward
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practices or to free-ride, (2) a society comprised mainly of pay-it-forwarders is generally
more beneficial than one filled with free-riders, and (3), on an individual level, free-riders
tend to fare better than pay-it-forwarders. This is because pay-it-forwarders distribute
the benefits they have received to others, whereas free-riders keep any advantages for
themselves. In situations presenting a social dilemma, opting for free-riding becomes more
appealing for individuals irrespective of the choices made by others.

In this paper, we show that pay-it-forward can be sustainably maintained if individuals
adhere to what is known as prospect theory (PT) and if punishment for not helping others
is applied, albeit infrequently. This stands in contrast to scenarios where individuals are
so rational that they follow the (linear) expected utility theory (EUT), under which pay-it-
forward practices do not persist. In our previous research, we established that prospect
theory facilitates cooperation through peer punishment [11], whereas EUT does not lead
to the same outcome when free-riders are only occasionally punished. We hypothesize
that a similar rationale applies to the evolution of cooperation through pay-it-forward
mechanisms. Investigating this hypothesis is the main focus of the current paper.

Prospect theory is widely recognized as one of the most successful frameworks for
describing the cognitive biases inherent in human decision-making [12–14]. Within this
theory, distortions in the perception of probabilities and the evaluation of outcomes are
represented through a weighting probability function and a value function, respectively.
Both functions are characterized by their non-linearity and asymmetry, capturing the
essence of human irrationality. This theoretical approach highlights how individuals often
deviate from rational decision-making models, particularly in the context of risk and
uncertainty, by assigning disproportionate weights to certain outcomes and probabilities.

Most studies on the evolution of cooperation in evolutionary game theory have tradi-
tionally been conducted under the assumption that individuals adhere to EUT [5]. EUT
posits that individuals are perfectly rational, making their calculations regarding poten-
tial benefits, or so-called expected payoffs, with precision. Contrary to this assumption,
experimental research on both behavioral economics and experimental economics has con-
sistently demonstrated that real humans do not conform to EUT [15,16]. In reality, humans
are incapable of estimating probabilities and values without bias. The capacity to accurately
calculate probabilities and values, devoid of any distortions, underpins the concept of
linearly calculated expected payoffs [17–22]. However, the payoffs, as perceived by real
humans, are subjective, and this subjectivity is a critical factor in the actual decision-making
process. This discrepancy between the theoretical assumptions of EUT and the practical
observations under PT highlights the complexities and nuances in understanding human
behavior in evolutionary game-theoretic contexts.

In the subsequent sections of this paper, we demonstrate that, when individuals exhibit
the level of irrationality encapsulated by PT, pay-it-forward behaviors emerge, and cooper-
ation persists even within parameter regions where conditional altruistic actions cannot be
sustained under the rationality assumptions of EUT. Specifically, the risk associated with
free-riding behaviors is mitigated by the cognitive biases and decision-making patterns
described by PT. Furthermore, the strategy of pay-it-forward behaviors has the potential
to overturn unconditional altruistic behavior, highlighting a critical distinction between
paying-it-forward and unconditional cooperation, despite their superficial similarities.

Following a brief review of the relevant literature in the next section, we will outline our
model before presenting our findings. The paper concludes with a section dedicated to our con-
clusions, summarizing the implications of our research on the understanding of cooperative
behaviors and the influence of cognitive biases on the interactions among individuals.

2. Brief Literature Review

There are several recent papers that have combined evolutionary game theory with
prospect theory, aiming to derive practical implications for addressing social issues. For
instance, the study referenced as [23] considers the irrationality of players, as described
by prospect theory, and constructs an evolutionary game-theoretical model to explore the
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decision-making process of enterprises when choosing between innovation and imitation. A
paper by Sun, Gao, and Li published in 2022 [24] analyzes interactions between enterprises
and governments, particularly in the context of establishing carbon emission regulations.
Meanwhile, the paper referenced as [25] focuses on the decision-making processes of pol-
luting enterprises and their interactions with government bodies. A more recent study [26]
investigates the recycling of power batteries within the electric vehicle industry, proposing
a game model that involves three distinct types of players (governments, manufacturers,
and recycling companies). Each of these papers develops an evolutionary game model that
incorporates aspects of prospect theory.

The evolution of cooperation has been extensively studied within the field of evolu-
tionary game theory, as highlighted in [27]. A recent theoretical study [28] attempts to
elucidate the evolution of cooperative (and coordinated) behavior by incorporating the
effects of prospect theory into a model. This is achieved through the lens of a coordination
game known as the stag-hunt game.

In this paper, we aim to show a path to the evolution of cooperation through pay-
it-forward behaviors using a prisoner’s-dilemma-type game called the “donation game”.
The mechanism to sustain cooperation via pay-it-forward is a type of so-called indirect
reciprocity mechanism. Indirect reciprocity is one of the five typical mechanisms to sustain
cooperation [29]. In indirect reciprocity, beneficial acts are returned not by the recipient,
as in the direct reciprocity mechanism, but by third parties. In the literature [6], indirect
reciprocity is classified into the following two categories: downstream reciprocity and up-
stream reciprocity. Pay-it-forward is categorized as upstream reciprocity, which represents
the ”I-help-you-because-someone-helped-me” attitude. Downstream reciprocity represents
the “I-help-you-because-you-helped-someone” attitude, which is the mainstream in the
study of indirect reciprocity.

While the literature on the evolution of cooperation via downstream reciprocity is am-
ple [30–38], evolutionary theory has yet to explain the effectiveness of upstream reciprocity
in regard to the evolution of cooperation. A well-cited paper on upstream reciprocity
in the context of evolutionary game theory was published in 2007 [3], but it concludes
that upstream reciprocity can evolve as a “by-product of direct reciprocity”, i.e., upstream
reciprocity works if it is combined with another effective mechanism, direct reciprocity.
In [39], the evolution of upstream reciprocity was explained in a complex network, and
in [40], it was shown that cooperation can evolve by upstream reciprocity only in small
interaction groups. According to a thorough review on the theoretical research of indirect
reciprocity published recently [41], although there is some experimentation on upstream
reciprocity, explaining it via theoretical viewpoints is still challenging.

3. Model
3.1. Game

To maintain simplicity and facilitate analysis of the model, in line with several studies
in the field of the evolution of cooperation [11,42–44], we consider a large, well-mixed
population of individuals (or players). Two players are chosen at random from the popu-
lation from time to time. Let us call the chosen players A and B. Players A and B engage
in the following “donation game” (or “giving game”) [6]: each player decides whether to
help the opponent by paying a cost c. If Player A (B) chooses to help B (A), the opponent
receives a benefit b > c; otherwise A (or B) does not pay anything and B (A) obtains nothing.
Every player in the population is selected as a game player (infinitely) many times and
experiences decision-making processes. From here on, we denote the action “cooperate
with its opponent (or just cooperate)” by “C” and “defect its opponent (or just defect)”
by “D”.

Table 1 shows the payoffs Player A obtains when playing the donation game with
Player B. It consists of four possible outcomes, as both players have two options each. If
both players choose C, Player A gains a benefit of b − c. If Player A chooses C while Player
B opts for D, Player A incurs a loss of c. Conversely, if Player A selects D and Player B
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chooses C, then Player A receives a benefit of b. If both players select D, Player A receives
no benefit (and neither does Player B).

Table 1. Payoffs player A obtains in donation game.

Player B’s Option
Player A’s Option Cooperate (C) Defect (D)

Cooperate (C) b − c −c

Defect (D) b 0

3.2. Game, Strategies and Payoff Matrix

We consider the following three strategies: AC, AD, and S [42]. Strategy AC prescribes
to help others with probability 1 − ε. Due to the shortage of resources, AC-players do not
give help with probability ε, even if they would like to. We call ε an implementation error
and set its value to 0.05. Players using strategy AD are free-riders and never help others.
We call those players AD-players. Strategy S players correspond to pay-it-forward, which
prescribes to choosing C (with probability 1 − ε) if they were helped in the last game. If
they were not helped in the last game, S-players choose D in the current game. We also
refer to the strategies by numbers: AC = strategy 1, AD = strategy 2, and S = strategy 3.

3.3. Payoff Matrix

We examine a type of punishment known as pool punishment [45–51]. In this frame-
work, a punishment institution exists in the population and executes punishment to those
who chose D in the donation game. Players in the population pay a cost d, which will be
used to maintain the punishment institution.

In this paper, we assume that the institution executes punishment with only a small
probability to account for situations where the institution functions insufficiently. From
the viewpoints of players, after the two selected players have played the donation game,
they have a small chance of being punished by the external institution if they chose D in
the donation game. The probability of being punished is δ, which is set to be 0.2 in the
following numerical simulations.

We assume that AD-players, who never give help to others, do not pay d (See
Section 3.5 for more details). In this sense, AD-players are not only first-order free-riders
but also second-order free-riders. Here, first-order free-riders mean that they do not engage
in cooperative activities, while second-order free-riders are defined as those who do not
contribute to punishment activities. AD-players are assumed to be both first-order and
second-order free-riders at the same time. This is a harsher assumption for the evolution of
cooperation than the assumption that AD-players also pay the cost to maintain the punish-
ment institution, as other types of players are at more of a disadvantage if AD-players do
not incur the punishment cost.

The strength of punishment is denoted by s. Thus, if a player chooses D in the donation
game, and if punishment is executed by the institution (which occurs with probability
δ), the player suffers a fine, s. If punishment is not executed, nothing is imposed on the
player. As a result, we obtain Table 2 as the payoff matrix studied in this paper. This matrix
comprises eight elements, as Player A has two options (C or D), and, for each option, there
are four possibilities depending on whether the opponent, Player B, chooses C or D and
whether the institution executes punishment or not.

Table 2. Payoff matrix M (payoffs Player A obtains in total).

Outcome
Player A’s

Option

Cooperate
Not-Punish

(CN)
Cooperate

Punish (CP)
Defect

Not-Punish
(DN)

Defect
Punish (DP)

Cooperate (C) b − c 0 −c 0

Defect (D) b b − s 0 −s



Games 2024, 15, 16 5 of 15

We call this payoff matrix M. In Table 2, for example, “CP” means that Player B helps
Player A and the institution executes punishment. In this case, if A does not help B, A
obtains benefit b but suffers s at the same time. The total payoff in this case is b − s (= M22).

It is worth noting that if Player A helps Player B, A will never be punished. Conse-
quently, the element of the payoff matrix corresponding to this scenario (M12) is undefined.
For the same reason, M14 is also undefined, as Player A’s action of choosing C will never
result in punishment. We formally put value “0” for the elements M12 and M14 in the
table. However, these values are never used, as these situations never occur. The cost of
implementing punishment is not included in the payoff matrix, as it does not result from
interactions with other players. The cost for punishment is introduced after estimating the
expected payoffs on the basis of interactions with other players (See Section 3.5).

3.4. Strategy Switching

Players occasionally switch their strategies by social learning. As a result of the
switching process, the time evolution of the proportion of strategy i (i ∈ {1, 2, 3}), denoted
by xi, is governed by the so-called replicator equation

.
xi = xi

(
Pi − P

)
,

where Pi is the expected payoff of strategy i and P = ∑3
i=1 xiPi is the expected payoff of the

whole population. Since xi is the proportion of strategy i, ∑3
i=1 xi = 1 holds.

By numerically integrating the replicator equation mentioned above, we can analyze
the stability of each strategy. In the subsequent subsection, we will describe how the
expected payoff Pi is calculated.

3.5. Probability Distribution on M and Expected Payoff Pi
3.5.1. Linear Expected Utility Theory

Expected payoff Pi reflects the long-term payoff of players using strategy i. It can be
determined by calculating the probability that each outcome for payoff matrix Mmn occurs.
The probabilities are dependent on strategies. By Bi, we denote the probability distribution
on M of players using strategy i.

To determine probability distributions, it is crucial to first know the probability of
whether players following a certain strategy will offer help to others. For those adhering to
the AC strategy, this probability is 1 − ε, while for AD, it is 0. To ascertain the probability
that S-players will offer help, we define p as the frequency at which players receive help
from a random player within the population. This frequency, p, can also be interpreted as
the probability of a player being given help by a random participant in the game.

It is important to note that the act of receiving help in the game does not rely on
the strategy used by the recipient. Therefore, p is strategy-independent and represents
the chance that any given player is helped in a game. Consequently, the probability that
S-players will choose action C is represented by (1 − ε)p.

The frequency p evolves over time as individuals engage in the game. We assume that
the dynamics of p occur at a much faster pace than changes in strategy. In essence, players
experience various interactions an infinite number of times before altering their strategies.
This approach keeps the variables xi constant while allowing p to vary, a premise similarly
assumed in Sections 4.2 and 4.3 of [6].

As demonstrated in Appendix A, p reaches an equilibrium defined by the follow-
ing equation:

p = (1 − ε)x1 + (1 − ε)px3.

Here, the first term on the right-hand side represents the probability of encountering
an AC-player (x1), who then opts for cooperation (C) with probability 1 − ε. The second
term accounts for the likelihood of meeting an S-player (x3) who, having previously been
given help, chooses C with a probability of (1 − ε)p.
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By solving this equilibrium equation, we find p to be:

p =
(1 − ε)x1

1 − (1 − ε)x3
.

Since probability distributions on M depend on strategies, the expected payoff is
dependent on strategies. Table 3(a)–(c) show probability distributions Bi with parameters
(ε, δ, p). In the tables, ε = 1 − ε, δ = 1 − δ, p = 1 − p.

Table 3. Probability distributions for strategy 1 (a), strategy 2 (b), and strategy 3 (c).

(a) B1

Outcome
Player A’s option

Cooperate
Not-Punish (CN)

Cooperate
Punish (CP)

Defect
Not-Punish (DN)

Defect
Punish (DP)

Cooperate (C) εp 0 εp 0

Defect (D) εδp εδp εδp εδp

(b) B2

Outcome
Player A’s option

Cooperate
Not-Punish (CN)

Cooperate
Punish (CP)

Defect
Not-Punish (DN)

Defect
Punish (DP)

Cooperate (C) 0 0 0 0

Defect (D) δp δp δp δp

(c) B3

Outcome
Player A’s option

Cooperate
Not-Punish (CN)

Cooperate
Punish (CP)

Defect
Not-Punish (DN)

Defect
Punish (DP)

Cooperate (C) εp2 0 εpp 0

Defect (D) (1 − εp)δp (1 − εp)δp (1 − εp)δp (1 − εp)δp

For example, (B 1)22 is the product of the following three probabilities: the probability
that an AC-player is given help by the opponent player of a game (p), the probability that
the AC-player chooses D (ε), and the probability that this behavior (i.e., choosing D) is
punished by the external institution (δ). Note that (Bi)12 = (Bi)14 = 0 for any i.

With these probability distributions on M, the expected payoff of players using strategy
i through interactions with other players is given by

Qi =
2

∑
m=1

4

∑
n=1

(M)mn(Bi)mn.

For example, Q1 = (b − c)εp − cεp + bεδp + (b − s)εδp − sεδp.
Considering that AD-players do not pay any cost to maintain the external punishment

institution, we find the final form of the expected payoff of players following strategy i:

Pi = Qi − d,

for i = 1, 3 and
Pi = Qi,

for i = 2.
Here, d is the cost to maintain the punishment institution. AD-players are at more of

an advantage than AC-players and S-players by the value of d.



Games 2024, 15, 16 7 of 15

3.5.2. Prospect Theory

The way we include prospect theory in our evolutionary game model is essentially the
same as in our previous paper [11]. Thus, we apply a value function and weighting function
to each element of the payoff matrix M and to the probability distribution Bi, respectively:

(V)mn = v((M)mn),
(Wi)mn = w((Bi)mn),

where v and w are the value function and the weighting function, respectively. In
Appendix B, we describe the appearance of the functions.

The subjectively distorted payoff matrix V is independent of strategies. It is well-
known that the nonlinearity of the value function means that the baseline of the payoff
matrix, or the reference point, significantly influences the results, differing from EUT.
Specifically, within the EUT framework, adding the same constant to all elements of the
payoff matrix M does not alter the payoff structure. In other words, the relative superiority
or inferiority of strategies remains unchanged, even if each player consistently receives the
same payoff. However, under PT, adding the same constant (for instance, by assuming each
player obtains a constant payoff in playing a game) can affect the outcomes. We assume the
payoff obtained from the outcome (2,3) in M, which is zero, serves as the so-called reference
point, with no additional constants added.

With these subjective probabilities and payoffs, the expected payoff is calculated as

Pi =
2

∑
m=1

4

∑
n=1

(V)mn(Wi)mn + v(−d),

for i = 1, 3 and

Pi =
2

∑
m=1

4

∑
n=1

(V)mn(Wi)mn,

for i = 2.
Note that we apply only the value function, not the weighting function, to the last

term (−d: the loss of payoff by paying a cost for punishment) for the following reason:
it does not represent a loss suffered through interaction in a game and is therefore not
a stochastic event (hence, the weighting function plays no role). By applying the value
function to d, the perceived impact of the cost for maintaining the punishment institution
is regarded as more significant than its actual impact. We also note that the strategy change
is described by the ordinary replicator dynamics mentioned above.

4. Results
4.1. Analysis in Case of EUT

In the context of expected utility theory (EUT), the replicator dynamics can be thor-
oughly analyzed due to the simplicity of the expected payoffs. The expected payoffs for
AC-players, AD-players, and S-players are, respectively represented as

P1 = pb − (1 − ε)c − εδs − d,

P2 = pb − δs,

P3 = pb − (1 − ε)pc − [1 − (1 − ε)p]δs − d.

From these equations, it can be demonstrated that AD-players become extinct through
the replicator dynamics, while AC-players evolve and are sustained, provided the pun-
ishment is effective or substantial enough (that is, if the parameters s or δ surpass certain
threshold values).

Specifically, P1 > P2 suggests that δs > c + d / (1 − ε), while P1 > P3 implies δs > c.
If these conditions are met, the AC strategy emerges as the unique evolutionarily stable
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strategy (ESS), leading all players to eventually adopt it, resulting in x1 = 1. Conversely,
when P1 < P2, the AD strategy becomes the unique ESS.

The S strategy can never be an ESS because a population consisting solely of S-players
is vulnerable to invasion by an AD-player. Indeed, at the point where x3 = 1, which implies
p = 0, we find that P3 = −δs − d < −δs = P2. This indicates the inability of the S strategy
to sustain itself as a stable strategy in the population if players follow EUT.

In the following numerical investigations, we fix parameter values as b = 5.0, c =
1.0, ε = 0.05, d = 0.05. With these values, the conditions P1 > P2 and P1 > P3 hold if
δs > 20/19 ≈ 1.05. Figure 1a–c display trajectories in the state space obtained by numerically
integrating the replicator dynamics with δ = 0.2 and with s = 5.6, 5.1, 4.6, respectively.
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AD

S

AC

Figure 1. Trajectories and vector fields yielded by replicator dynamics for case of linear expected
utility theory, with s = 5.6 (a), s = 5.1 (b) and s = 4.6 (c). Initial conditions are random. State space
is simplex defined by {(x1, x2, x3)|0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1, x1 + x2 + x3 = 1}, which is
represented as an equilateral triangle. Arrows in trajectories show in which direction state (x1, x2, x3)

evolves. Other parameters: b = 5.0, c = 1.0, ε = 0.05, d = 0.05, δ = 0.2.
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The replicator dynamics analyzed to produce the figure are given by the following
coupled equation system:

dx1

dt
= x1

(
P1 −

3

∑
i=1

xiPi

)
,

dx2

dt
= x2

(
P2 −

3

∑
i=1

xiPi

)
,

dx3

dt
= x3

(
P3 −

3

∑
i=1

xiPi

)
.

The initial conditions are set randomly. The state space is represented as the simplex
{(x1, x2, x3)|0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1, x1 + x2 + x3 = 1}, visualized as an equilat-
eral triangle. The vertex AC corresponds to (x1, x2, x3) = (1, 0, 0), AD to (0, 1, 0) and S to
(0, 0, 1). The state of the population (x1, x2, x3) evolves within this space according to the repli-
cator equation. The figures also illustrate vector fields generated by the replicator dynamics.

If s is sufficiently large, for example, 5.6, all trajectories converge to the vertex AC, as
predicted by the above analysis (see Figure 1a). Consequently, all players ultimately adopt
strategy AC, consistently aiming to help others.

With lower values of s, as depicted in Figure 1b,c, all trajectories converge towards
the AD strategy. At these parameter values, rational individuals opt for the AD strategy
because the punishment executed by the institution is insufficiently severe (i.e., s is small)
and the probability of being punished is too low (i.e., δ is small). Consequently, the punitive
institution fails to function effectively in this scenario.

A notable difference between Figure 1b (s = 5.1) and Figure 1c (s = 4.6) is observed in
the vector directions on the edge between AC and S. In the former scenario, AC is able to
invade S, whereas, in the latter, S invades AC. However, it is important to note that S can
never achieve evolutionary stability as it is susceptible to invasion by AD. Consequently,
we can deduce that the pay-it-forward strategy, S, does not significantly contribute to the
evolution of cooperation with the institutional punishment within the EUT framework.

4.2. Numerical Results in Case of PT

Figure 2a–c illustrate the trajectories and vector fields when prospect theory is applied,
using the same parameter values as in Figure 1. We highlight the following two observa-
tions: (1) Figure 2b demonstrates that, even with parameter values for which AD is the
unique evolutionarily stable strategy under EUT, cooperation evolves when players adhere
to PT; that is, AC is the ESS. (2) In Figure 2c, a new stable fixed point, called T, emerges on
the edge between S and AC. This fixed point represents a mixed state mainly comprising
S-players, with AC-players also being present. The system exhibits bi-stability, as some
trajectories converge towards the vertex AD, depending on their initial conditions.

In the case of Figures 1 and 2c in particular, the AD strategy has several advantages.
First, the condition b > s indicates that the punishment is not severe enough to offset the
benefits gained from free-riding. In addition, with δ being relatively small, choosing the D
strategy entails an 80% chance of avoiding punishment. As such, AD players face a low
probability (0.2) of being penalized despite consistently choosing D. Moreover, AD players
receive an additional payoff from d, as they incur no costs to support the institution.

It should be noted that, if all players were to adopt strategy S, cooperation would
fail to materialize. This is due to the spread of action D across the population as a result
of implementation errors. Consequently, at vertex S, the rate of cooperation is zero. This
phenomenon can be understood by examining the equation for the variable p, as discussed
earlier. Importantly, p represents the cooperation rate of the entire population, which equals
zero when x1 = 0 (i.e., in the absence of AC-players).
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Figure 2. Trajectories and vector fields yielded by replicator dynamics for the case of prospect theory,
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Plotting the value of p (the ”cooperation rate”) as a function of x1 on the edge between
S and AC reveals that p increases sharply with even small increments in x1 (see Figure 3).
Since x1 and x3 are related by x3 = 1 − x1 along this edge, p effectively becomes a function
of a single variable. At the stable fixed-point T, where x1 is approximately 0.1, the value of
p is around 0.6, indicating that more than half of the population engages in helping others.
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Figure 3. Value of p as a function of x1 on edge between S and AC, with the same parameter values
used in Figure 2. Note that p is equivalent to cooperation rate in population. x1 = 0 corresponds to
cooperation rate at vertex S, and x1 = 1 to vertex AC. Note that x1 and x3 are not independent, as
x3 = 1 − x1 holds. Therefore, p is a function with one variable (x1). We see p = 0 at x1 = 0. However,
the value of p sharply increases as x1 increases, as far as x1 is small.

Figure 4 demonstrates that, when the punishment strength s becomes smaller (s = 3 is
chosen for this figure), all trajectories converge to the vertex AD. In this case, qualitative
differences between EUT and PT are eliminated.
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with s = 3. Other parameter values are the same as in Figures 1 and 2.

5. Conclusions

We have seen that there is a set of parameter values with which prospect theory
leads to the evolution of pay-it-forward behaviors and with which linear expected utility
theory does not. Ironically, punishment is more effective when people are irrational. One
reason why even minimal punishment can be highly effective lies in the fact that players
disproportionately fear the small possibility of punishment, perceiving it as more likely to
occur than it actually does. Cognitive distortions described by PT significantly contribute
to mitigating the risk of catastrophic population collapse due to free-riding.

As mentioned in the Introduction, in [11] it was demonstrated that combining prospect
theory with punishment enables it to evolve and sustain the unconditional strategy AC,
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thus preventing free-riders from infiltrating a population of cooperators. In this paper, we
applied a similar logic to pay-it-forward and have shown that prospect theory, coupled with
slight punishment, facilitates the evolution of pay-it-forward. Given that the fixed-point T
is located near vertex S, we can assert that the pay-it-forward strategy is ”risk-dominant”
over the unconditional strategy AC, making it more advantageous than unconditional
altruistic behaviors.

We noted that the probability of an S-player helping another player X does not rely on
X’s strategy, indicating that S-players do not discriminate among other players. However,
an S-player’s decision to help another is contingent upon whether the S-player received
help in the previous game. Thus, while pay-it-forwarders do not discriminate, their actions
are conditional. Taking these facts into account, we suggest that strategy S serves as
an intermediate strategy between unconditional altruistic strategies, such as AC, and
conditional cooperative strategies like “stern-judging”, “simple-standing”, or “image-
scoring” in downstream indirect reciprocity.

Indeed, the bi-stable structure depicted in Figure 2c resembles the structure commonly
observed in studies on downstream indirect reciprocity, where it has been found that,
if players adopt strategies that consider so called “second-order information”, such as
stern-judging or simple-standing in downstream reciprocity, the system exhibits bi-stability.
Conversely, we have demonstrated that, when players adhere to prospect theory, upstream
reciprocity exhibits a similar structure.

Image-scoring, a strategy in downstream reciprocity that relies solely on first-order
information, is insufficient for the evolution of cooperation within the framework of EUT.
Consequently, image-scoring fails to sustain stable cooperation in traditional settings [6],
even though experimental evidence suggests that real humans only consider first-order
information. Investigations into how the cognitive distortions described by prospect theory
influence the stability of conditional strategies that use only first-order information in
downstream indirect reciprocity present an intriguing research avenue.
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Appendix A

The frequency p changes over time τ. It is important to note that we use a distinct
symbol, τ, for the time during which p changes, as opposed to the symbol t, which is
usually used to describe changes in xi. The proportion of players participating in a game
within the short time interval [τ, τ + ∆τ] is proportional to ∆τ, denoted as a∆τ, with a
being some positive constant. The probability that these players receive help in a game is
given by (1 − ε)x1 + (1 − ε)px3. The first term represents the probability of encountering
AC-players who do not make an implementation error, while the second term pertains to
encounters with S-players who were previously given help and, consequently, will offer
support, assuming they do not make an implementation error. As a result, the frequency of
players who have received help at time τ + ∆τ is given by

p(τ + ∆τ) = (1 − a∆τ)p(τ) + a∆τ[(1 − ε)x1 + (1 − ε)p(τ)x3].
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Taking the limit as ∆τ → 0 , we derive the following time evolution equation for p:

dp
dτ

= −ap + a[(1 − ε)x1 + (1 − ε)px3],

the equilibrium point of which is p∗ = (1−ε)x1
1−(1−ε)x3

. This equilibrium is stable since the
derivative of p with respect to τ (i.e., dp/dτ) is positive if p < p∗ and negative if p∗ < p.

Appendix B

We briefly outline the essence of prospect theory utilized in this paper, focusing on the
value function and the weighting function [12–14]. It is important to note that the following
description closely mirrors Section 2.2.2 of reference [11].

As mentioned in the main text, each element (B i)mn of the probability distribution
Bi gives the probability that the outcome (m, n) occurs in a game. In the framework of
PT, players calculate this probability distribution subjectively. The subjective probability
distribution is given by applying a nonlinear function, called a weighting function, to the
original probability (B i)mn :

(Wi)mn = w((Bi)mn),

with
w(x) =

xγ[
xγ + (1 − x)γ] 1

γ

,

where x is an objectively given probability.
We set the value of parameter γ to 0.65, which is an often-used value in prospect

theory. The shape of the function with this parameter value is shown in the left panel of
Figure A1 (solid curve) and, together in the case with γ = 1, drawn as a dashed line, which
corresponds to objectively given probabilities. According to this function, small objective
probabilities are estimated to be greater than they are because w(x) > x for small x.

The value function has the form

v(x) =
{

xα (x ≥ 0)
−λ(−x)α (x ≤ 0)

,

where x represents an objectively given payoff. We choose the values of the two parameters
α and λ to be 0.88 and 2.25, respectively according to the literature on prospect theory. The
right panel in Figure A1 shows the value function with these parameter values (solid curve)
together with the linear function (drawn by the dashed line). Parameter α < 1 implies
that the value function is concave. A person obeying this function is called risk-averse.
Parameter λ > 1 means that a person following this function is more sensitive to a loss
than a gain (“loss-averse”).
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by y. Linear function with γ = 1 corresponding to linear expected utility theory is also displayed
(dashed line). (Right panel) Value function (solid curve) v(x) with parameters α = 0.88, λ = 2.25.
Argument of the function x represents objectively given outcomes and function outputs subjective
values. Linear function with α = λ = 1 is also shown (dashed line).
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