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Abstract: A mild and efficient protocol for visible-light-photocatalyzed C5 nitration of 8-aminoquinoline
derivatives was developed utilizing Cu(NOj3);-3H,0 as a nitro source. The reaction proceeded
smoothly under very mild conditions, employing Acid Red 94 and a commercial household light
bulb as an organic photosensitizer and a light source, respectively, making this synthetic procedure
green and easy to operate. Furthermore, most products could be obtained through recrystallization,
which enhanced the operational simplicity of this method.
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1. Introduction

Nitroarenes play an important role in the synthesis of dyes, pharmaceuticals, plastics,
explosives, and perfumes [1,2]. The classical methodologies for nitration are based on a
mixed acid H,SO,/HNOj3 protocol, but usually generate the complex mixtures of regioiso-
mers (0-/m-/p- = 19:80:1 at 30 °C), thereby exhibiting from regioselectivity and functional
group compatibility issues [3,4]. In order to overcome these problems, efforts have been
directed towards the development of new nitration protocols. For example, nitroarenes can
be readily accessed via the nitration of aryl boronic acids, aryl halides, pseudo halides, and
aryl carboxylic acids, as well as the oxidation of aromatic primary amines or azides [5-11].
However, all these protocols require prefunctionalized arenes as the starting materials.

The auxiliary-assisted C-H functionalization has become a reliable and robust tool in
modern organic synthesis in recent years [12-22]. Specifically, the direct functionalization
of quinoline ring at the C5 position using the amide unit as a directing group has also
been explored in recent years [23-34], and the nitration of C5 quinoline ring has espe-
cially received considerable attention [35-46]. Recently, the Ribas group described a mild
methodology for C—H nitration of 8-aminoquinoline amides utilizing Co(NO3),-6H,O
as the catalyst and tBuONO as the nitrating agent [38]. However, it tended to suffer
from regioselectivity for quinoline rings (ratio of C5:C7 = 3:1). Subsequently, the Zhang
group developed the copper-catalyzed nitration of 8-aminoquinolines at C5 position using
Cu(NOs3);/NaNO, /PhI(TFA); as the nitration system (Scheme 1, eq 1) [39]. Recently, Fan
also reported an alternative transformation with Fe(NOj3)3-9H,0 as the nitro source [40],
albeit this protocol should be performed at 100 °C (Scheme 1, eq 2). Despite these achieve-
ments attained in this area, these synthetic routes still require expensive oxidants, expensive
metals, or a high reaction temperature. Therefore, the development of a mild and environ-
mentally benign route to synthesize nitro compounds is highly desirable.

The recent developments on visible light photoredox catalysis provides a new pos-
sibility for modern organic synthesis due to their catalysis process with the mild, envi-
ronmentally benign, operationally simple advantages and commercially available pho-
tocatalysts [47]. The research interest of our group is focused on regioselective C-H
functionalization, especially that takes place at an unusual C-H site [28,29,48]. For example,
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we demonstrated the C5-H sulfonylation [28] and phosphonation [29] of 8-aminoquinoline
amides and developed the palladium-catalyzed picolinamide-directed C8-H amination
of 1-naphthylamine derivatives with simple secondary aliphatic amines [47]. Inspired by
these previous and our own reports, we envisioned achieving a mild and efficient protocol
for visible-light-photocatalyzed C5 nitration on the quinoline ring (Scheme 1, eq 3).
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Scheme 1. The direct nitration of C5 quinoline ring.

2. Results and Discussion

Initially, the reaction of N-(quinolin-8-yl)benzamide (1a) was performed as the model
reaction to optimize the reaction parameters at room temperature under air as Scheme 2,
and the results are displayed in Table 1. After various catalysts, solvents, and oxidants
were investigated (see Supporting Information), the desired product 2a was obtained in
68% yield in DCE using K25,0g, Cu(NO3)2-3H,0, and Eosin B as the oxidant, the nitrating
agent, and the photoredox catalyst, respectively (Table 1, entry 1) [49]. Thereafter, various
photocatalysts were checked, and Acid Red 94 could produce the product in a good yield
of 82% (Table 1, entry 7 vs. entries 2-6). However, reducing the amount of Acid Red 94
from 5 mol % to 4 mol % resulted in a lower yield of 68% (Table 1, entry 8 vs. entry 7).
Additionally, performing reaction under a nitrogen or an O, atmosphere did not afford
better results (Table 1, entries 9 and 10 vs. entry 7). When the reaction time decreased to
8 h, a lower yield of 73% was observed (Table 1, entry 11 vs. entry 7). And the conditions in
entry 7, Table 1 was selected as the optimized reaction conditions.

O

photocatalyst
oxidant
N |+ CuiNO3);3H,0 N |
N solvent, light source Na

rt.
1a 2a

Scheme 2. The nitration of 1-naphthylamine derivatives.
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Table 1. Screening optimal conditions ®P.
Entry Catalyst Oxidant Light Source Yield (%) P

1 EosinB K55,04 household light 68
2 EosinY K»5,0g household light 65
3 Ru(bpy)3(PFe)2 K55,04 household light 69
4 Ru(bpy);Cl, K;S,04 household light 75
5 Ru(bpy);Cl,y-6H,O K55,04 household light 76
6 Alizarin Red S K55,0¢ household light 72
7 Acid Red 94 K>S,0g household light 82

8¢ Acid Red 94 K55,04 household light 69

9d Acid Red 94 K,S,05 household light 76

10¢ Acid Red 94 K55,04 household light 68

11f Acid Red 94 K»S,05 household light 73

12 Acid Red 94 K,S,04 blue 66

13 Acid Red 94 K»5,0g green 62

14 Acid Red 94 K;S,04 red 43

15 Acid Red 94 K,S,04 dark 23

16 — K»5,0g household light 25

178 Acid Red 94 K;5,04 household light 51

18h Acid Red 94 K;5,04 household light NR

2 reaction conditions: 1a (0.20 mmol), Cu(NO3),-3H,0O (1.5 equiv), photocatalyst (5 mol %), and K,S,0s (2.5 equiv)
in DCE (1.5 mL) at room temperature under air for 10 h. ? isolated yield of 2a. ¢ photocatalyst (4 mol %). 9 under
Nb. € under O,. f for 8 h. 8 Cu(NO3),-3H,0 (1.0 equiv). hAgNOg, (2.0 equiv) instead of Cu(NO3),-3H,0 (1.5 equiv).
Bold represents optimized conditions.

Finally, some other light sources were investigated (e.g., blue LED, green LED, and
red LED), but they could not match the effect of household light (Table 1, entries 12-14 vs.
entry 7); the yield of the target product dropped drastically in the absence of household
light irradiation or photocatalysts (Table 1, entries 15 and 16). The amount of nitro source
Cu(NOs3),-3Hp0 when decreased to 1.0 equiv resulted in a lower yield of 51% (Table 1,
entry 17). However, when AgNO; was utilized as the nitro source, the product was not
obtained (Table 1, entry 18).

With the optimized conditions in hand, the scope of this reaction was investigated, and
the results were summarized in Scheme 3. The results showed that the electronic effect is
not obvious on the benzene ring of benzamides, and the desired products could be obtained
in good yields. When the benzamides possessed electron-donating groups (e.g., Me and
MeO), the desired products were obtained in a yield range of 76-82% (2b-2g); substrates
bearing electron-withdrawing groups (e.g., F, Cl, Br, and CF;3) provided the corresponding
products in yields of 72-78% (2h—-2n). However, 3-nitro-N-(quinolin-8-yl)benzamide did
not produce the corresponding nitration product (20). In addition, the heterocyclic amide
could produce the nitration product in a good yield of 69% (2q), and to our delight, aliphatic
amide could also afford the corresponding product in 73% yield (2r).

The scope of 2-methyl-8-aminoquinoline amides was also investigated (Scheme 4).
Both electron-rich and electron-poor groups on the benzene ring of benzamides were
successfully tolerated in the reaction, and comparatively, substrates containing electron-
donating groups could result in slightly higher yields of the coupling products than those
of electron-withdrawing groups (2a’-2m’). The substrate bearing Me or MeO group on
the phenyl ring could afford the nitrated products in 75-79% yield (2b’—2e’). Moreover,
aromatic amides, possessing F, Cl, Br and CFj, could afford the target compounds 2f'-2m’
in moderate yields (59-71%). Notably, the method was also applicable to five-membered
heterocycles such as thiophene, providing the corresponding products in 72% yield (2n’).
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areaction conditions: 1a (0.20 mmol), Cu(NO3)2-3H20 (1.5 equiv), Acid Red 94 (5 mol %), and
K25:05 (2.5 equiv) in DCE (1.5 mL) at room temperature under air for 10 h. Pisolated yield.

Scheme 3. Substrate scope of 8-aminoquinoline amides *P.

In order to prove the synthetic value of this method, we performed a gram-scale
reaction (Scheme 5), and the nitrated product 2a was isolated in 74% yield. Furthermore,
the obtained product 2a could be easily transformed into 5-nitro-8-aminoquinoline 3 in a
yield of 93% via a hydrolysis process.

In order to obtain the mechanistic information about this transformation, control
experiments were carried out (Scheme 6). No desired product was observed when the ben-
zamides (4 and 5) and benzoate 6 participated in this reaction under the standard conditions.
These results showed that the formation of a chelated complex between 8-aminoquinoline
and the copper salt was crucial to the remote C-H nitration [50]. The addition of TEMPO
to the reaction mixture resulted in the inhibition of the corresponding nitration products,
suggesting that radical steps might be involved in this reaction. In addition, our previous
report has pointed out that the C5 site on the quinoline ring has the largest p, orbital
occupancies and may be the electrophilic reactive site [28].



Catalysts 2024, 14, 263

50f12

o) H Acid Red 94 (5 mol %) o] NO2
Ak K,S,04 (2.5 equiv) Ak
RN |+ Cu(NO3);3H;0 RN |
H N DCE, RT, air, 10 h H o Ne
26 W household light
R? 2
1a'~n' 2a'~n'

NO
o 2 o NO, o NO,
N | N | N |
Na H Na Na
2a', 75% 2b', 75% 2c', 79%
NO: NO
o 2 S o 2 o NO:
N | N | " N |
2¢', 75% 2f', 71%

2d', 78%
o NO, o NO, o NO,
N | ; N | N |
F N& N al Nao
2g', 67% 2h', 67% 2i', 68%

1) NO, o NO, o NO,
F3;C
Br N N ’ N T
Br
2j', 66% 2k 2I', 56%

, 11%

o NO, o NO,
IoRRS WY
NS N

2m', 59% 2n', 72%

areaction conditions: 1a (0.20 mmol), Cu(NOs)2-3H20 (1.5 equiv), Acid Red 94 (5 mol %), and
K25:0s (2.5 equiv) in DCE (1.5 mL) at room temperature under air for 10 h. Pisolated yield.

Scheme 4. Substrate scope of 2-methyl-8-aminoquinoline amides *P.
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Scheme 5. A gram-scale experiment.
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Scheme 6. Control experiments.
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On the basis of the above experiments and previous reports, a plausible mechanism
for this visible-light-promoted remote C-H nitration is proposed in Scheme 7. First, Acid
Red 94 is excited by the household light, generating the excited state Acid Red 94*. Then,
Acid Red 94* undergoes a reductive quenching process with Cu(NO3),, yielding a NO, e
and Acid Red 94 radical anion. The Acid Red 94 radical anion could be oxidized by the
K;,5,0g, regenerating the ground state Acid Red 94 to complete the photocatalytic cycle. On
the other hand, the coordination of 1a with Cu(NQO3), affords the chelated intermediate A.
Afterwards, the deprotonation of the amide group leads to the formation of the complex B.
Then, an intermediate radical C is formed by the electronic attack of the nitro radical (NO,e)
at the C5 position of intermediate B. After that, the cationic intermediate D is generated
through the oxidation of the intermediate radical C by the sulfate radical anion. Finally,
a metal dissociation process of D occurs after the proton transfer process, providing the
desired product 2a, along with the regeneration of Cu(NOs); to fulfill the catalytic cycle.

HNO3

NH ;\ j % Acid Red 94
OsN- Cu . | o
NOg N/Cu
1a v( A Acid Red 94~ Acid Red 94
Cu(NO,)2 >_'<(SO42.
S,06%
2a . NO, 28
0 N’C E

SO,
O3 N,Cu<- Na

so;
so42-

Scheme 7. A plausible reaction mechanism.

3. Conclusions

We have developed a mild and green protocol for the C5 nitration on the quinoline ring
of 8-aminoquinoline amides, producing the corresponding product in moderate-to-good
yields. This reaction proceeded smoothly at room temperature in air under visible light
photoredox catalysis. Moreover, this transformation also showed good functional group
tolerance and provided a practical synthetic route for 5-nitro-8-aminoquinoline derivatives.

4. Experimental
4.1. General Information

The 'H and '3C NMR spectra were recorded on a Bruker DPX-400 spectrometer (Bruker
BioSpin, Faellanden, Switzerland) with CDCl; as the solvent and TMS (Alfa Aesar, Shang-
hai, China) as an internal standard. Melting points were measured using a X-5 microscopic
(Gongyi Yuhua Yiqi, Zhengzhou, China) apparatus and are uncorrected. High-resolution
mass spectra were obtained with Agilent Technologies 1290-6540 UHPLC/ Accurate-Mass
Quadrupole Time-of-Flight LC/MS (Agilent Technologies, Wilmington, NC, USA). All
solvents were used directly without further purification. Dichloromethane, ethyl acetate,
and hexane were used for column chromatography. The commercials were obtained from
commercial sources and used as-received without further purification unless otherwise
noted. For the detailed experimental information, please see the Supplementary Materials.



Catalysts 2024, 14, 263

7 of 12

4.2. Typical Procedure for Synthesizing the Catalytic C5-H Nitration of 8-Aminoquinoline Amides

(2a-2p, 2a’-2m’): To a 10 mL reaction tube, the mixture of amide (0.2 mmol),
Cu(NO3),-3H,0 (0.3 mmol, 1.5 equiv), Acid Red 94 (0.01 mmol, 5 mol %), K»S,0g (0.5 mmol,
2.5 equiv), and DCE (1.5 mL) was added. The resulting mixture was stirred under the irra-
diation of 26 W household light under air at room temperature for 10 h. Upon completion,
the mixture was filtered through a celite pad and washed with CH,Cl,, the solvent was
removed under reduced pressure and then followed by recrystallization to produce the
corresponding product using hexane-CH,Cl, as a solvent.

(2q, 2r and 2n’): To a 10 mL reaction tube, the mixture of amide (0.2 mmol),
Cu(NOs);-3H,0 (0.3 mmol, 1.5 equiv), Acid Red 94 (0.01 mmol, 5 mol %), K,S,Og (0.5 mmol,
2.5 equiv), and DCE (1.5 mL) was added. Upon completion, the solvent was removed
under reduced pressure, and the residue was purified by silica gel column chromatography
to produce the corresponding product.

N-(5-nitroquinolin-8-yl)benzamide (2a) [36]: Yellow solid in 82% yield; mp
215-216 °C; 'H NMR (400 MHz, CDCl3) 6 11.07 (s, 1H), 9.30 (d, | = 8.6 Hz, 1H), 9.00
(d,J=8.8Hz 1H),8.95(d, ] = 3.3 Hz, 1H), 8.59 (d, ] = 8.8 Hz, 1H), 8.08 (d, ] = 7.28 Hz, 2H),
7.75 (dd, ] = 8.8, 4.1 Hz, 1H), 7.66-7.63 (m, 1H), 7.60-7.56 (m, 2H); 13C NMR (100 MHz,
CDCl3) 4 165.7, 149.1, 140.9, 138.7, 137.8, 134.1, 133.4, 132.7, 129.0, 127.9, 127.5, 124.7,
121.8,113.7.

2-methyl-N-(5-nitroquinolin-8-yl)benzamide(2b) [36]: Yellow solid in 79% yield; mp
192-193 °C; 'H NMR (400 MHz, CDCl3) 6 10.58 (s, 1H), 9.30 (d, ] = 8.8 Hz, 1H), 9.01 (d,
J=8.8Hz, 1H), 8.88 (d, ] = 2.8 Hz, 1H), 8.61 (d, ] = 8.8 Hz, 1H), 7.74-7.69 (m, 2H), 7.74-7.69
(m, 1H), 7.38-7.34 (m, 2H), 2.62 (s, 3H); 1*C NMR (100 MHz, CDCl3) 6 168.3, 149.1, 141.0,
138.8,137.6,137.3,135.5, 133.4, 131.7, 131.1, 127.9, 127.3 126 .2, 124.7, 121.8, 113.7, 20.3.

3-methyl-N-(5-nitroquinolin-8-yl)benzamide (2c): Yellow solid in 82% yield; mp
201-202 °C; 'H NMR (400 MHz, CDCl3) § 11.04 (s, 1H), 9.30 (d, ] = 8.5 Hz, 1H), 9.01 (d,
J =89 Hz, 1H), 8.96 (d, ] = 2.8 Hz, 1H), 8.60 (d, ] = 8.8Hz, 1H), 7.88 (d, ] = 11.9 Hz, 2H), 7.75
(dd, ] =9.1,4.1 Hz, 1H), 7.49-7.45 (m, 2H), 2.49 (s, 3H); 13C NMR (100 MHz, CDCl3) 6 165.94,
149.1, 141.0, 139.0, 138.6, 137.8, 134.2, 133.4, 128.9, 128.2, 127.9, 124.7, 124.4, 121.8, 113.7, 21.5;
HRMS (ESI): calculated for C1;H;3N303: [M + H]* requires 308.1030, found 308.1031.

4-methyl-N-(5-nitroquinolin-8-yl)benzamide (2d) [37]: Yellow solid in 80% yield; mp
210-211 °C; 'H NMR (400 MHz, CDCl3) & 11.05 (s, 1H), 9.31 (d, ] = 8.7 Hz, 1H), 9.02 (d,
J=8.8Hz, 1H), 896 (d, | = 3.4 Hz, 1H), 8.61 (d, ] =8.8 Hz, 1H), 7.99 (d, ] = 7.8 Hz, 2H), 7.74
(dd, ] =8.9,4.1 Hz, 1H), 7.38 (d, ] = 7.9 Hz, 2H), 2.48 (s, 3H); 13C NMR (100 MHz, CDCl;)
5165.7,149.0, 143.4, 141.0, 138.6, 137.8, 133.5, 131.4, 129.7,128.0, 127.5, 124.7,121.9, 113.7,
21.6; HRMS (ESI): calculated for C1yH13N303: [M + H]* requires 308.1030, found 308.1033.

2-methoxy-N-(5-nitroquinolin-8-yl)benzamide (2e): Yellow solid in 75% yield; mp
208-209 °C; 'H NMR (400 MHz, CDCl3) & 12.68 (s, 1H), 9.26 (d, ] = 7.9 Hz, 1H), 9.06 (d,
J=89Hz, 1H), 8.93 (d, ] = 2.8 Hz, 1H), 8.56 (d, | = 8.8Hz, 1H), 8.31 (d, ] = 6.7, 1H), 7.69 (dd,
] =8.8, 4.1 Hz, 1H), 7.57-7.54 (m, 1H), 7.17-7.14 (m, 1H), 7.08 (d, ] = 8.2 Hz, 1H), 4.20 (s,
3H); 13C NMR (100 MHz, CDCl3) 6 164.2, 157.9, 148.9, 142.2, 138.4, 138.2, 134.0, 133.1, 132.6,
128.1,124.4,121.9,121.5,121.4, 114.4, 111.7, 56.2; HRMS (ESI): calculated for C17H13N304:
[M + H]* requires 324.0979, found 324.0977.

4-methoxy-N-(5-nitroquinolin-8-yl)benzamide (2f) [35]: Yellow solid in 78% yield;
mp 260-261 °C; 'H NMR (400 MHz, CDCl3) 6 11.03 (s, 1H), 9.34 (d, ] = 8.6 Hz, 1H), 9.01 (d,
J=89Hz, 1H), 896 (d, ] = 3.6 Hz, 1H), 8.63 (d, ] =8.9 Hz, 1H), 8.07 (d, ] = 8.7 Hz, 2H), 7.76
(dd, ] = 8.9, 4.1 Hz, 1H), 7.07 (d, ] = 8.6 Hz, 2H), 3.92 (s, 3H); 1*C NMR (100 MHz, CDCl3) 6
165.2,163.2,149.0, 141.2, 138.5, 137.8, 133.5, 129.5, 128.1, 126.4, 124.7, 121.9, 114.3, 113.5, 55.6.

3,5-dimethoxy-N-(5-nitroquinolin-8-yl)benzamide (2g): Yellow solid in 78% yield;
mp 200-201 °C; 'H NMR (400 MHz, CDCl3) & 11.00 (s, 1H), 9.30 (d, ] = 8.8 Hz, 1H), 8.99-8.95
(m, 2H), 8.61 (d, ] = 8.8 Hz, 1H), 7.76 (dd, | = 8.9, 4.1 Hz, 1H), 7.20 (s, 2H), 6.71 (s, 2H),
3.91 (s, 6H); 13C NMR (100 MHz, CDCl3) & 165.6, 161.2, 149.2, 140.8, 138.8, 137.8, 136.3,
133.4,127.9,124.8,121.8, 113.8, 105.5, 104.4, 55.7; HRMS (ESI): calculated for C1gH15N30s:
[M + HJ* requires 354.1084, found 354.1087.
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3-fluoro-N-(5-nitroquinolin-8-yl)benzamide (2h): Yellow solid in 73% yield; mp
236-237 °C; 'H NMR (400 MHz, CDCl3) 6 11.06 (s, 1H), 9.31 (d, ] = 8.7 Hz, 1H), 9.01-8.98
(m, 2H), 8.61 (d, | = 8.8 Hz, 1H), 7.88 (d, | = 7.6 Hz, 1H), 7.80-7.76 (m, 2H), 7.60-7.55 (m,
1H),7.36-7.33 (m, 1H); 1*C NMR (100 MHz, CDCl3) 6 164.4, 163.0, 149.2, 140.5, 139.0, 137.8,
136.4,133.5, 130.8, 127.8, 124.8, 122.9, 121.8, 119.7, 114.9, 113.9; HRMS (ESI): calculated for
C16H10FN303: [M + H]* requires 312.0779, found 312.0781.

4-fluoro-N-(5-nitroquinolin-8-yl)benzamide (2i): Yellow solid in 75% yield; mp
218-219 °C; 'H NMR (400 MHz, CDCl3) & 11.03 (s, 1H), 9.31 (d, ] = 8.6 Hz, 1H),
9.01-8.96 (m, 2H), 8.60 (d, | = 8.8 Hz, 1H), 8.13-8.09 (m, 2H), 7.77 (dd, | = 9.2, 4.1 Hz,
1H), 7.29-7.24 (m, 2H); 13C NMR (100 MHz, CDCl3) 5 165.5, 164.6, 149.1, 140.7, 138.8, 137.7,
133.5,130.4,130.0, 127.9, 124.8, 121.8, 116.2, 113.7; HRMS (ESI): calculated for C14H19FN305:
[M + HJ* requires 312.0779, found 312.0778.

3-chloro-N-(5-nitroquinolin-8-yl)benzamide (2j): Yellow solid in 74% yield; mp
234-235 °C; 'H NMR (400 MHz, CDCl3) & 11.04 (s, 1H), 9.31 (d, | = 8.7 Hz, 1H), 8.99
(d, ] = 8.8Hz, 2H), 8.62 (d, ] = 8.8 Hz, 1H),8.07 (s, 1H), 7.96 (d, | = 7.5 Hz, 1H), 7.78 (dd,
J =9.1,4.1 Hz, 1H), 7.62 (d, ] = 7.8 Hz, 1H), 7.52 (t, ] = 7.8Hz, 1H); '*C NMR (100 MHz,
CDCl3) 6 164.4,149.2, 140.5, 139.0, 137.8, 135.9, 135.3, 133.5, 132.7, 130.3, 127.9, 127.8, 125 4,
124.8,121.8, 114.0; HRMS (ESI): calculated for C14H19CIN3O3: [M + H]* requires 328.0483,
found 328.0483.

4-chloro-N-(5-nitroquinolin-8-yl)benzamide (2k) [37]: Yellow solid in 76% yield; mp
210-212 °C; 'H NMR (400 MHz, CDCl3) § 11.05 (s, 1H), 9.32 (d, ] = 8.1 Hz, 1H), 9.01-8.97
(m, 2H), 8.62 (d, ] =8.8 Hz, 1H), 8.04 (d, ] =8.5 Hz, 2H), 7.77 (dd, ] = 9.1, 4.1 Hz, 1H), 7.56 (d,
] = 8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) & 164.7, 149.2, 140.6, 139.1, 138.9, 137.8, 133.5,
132.5,129.4, 128.9, 127.8, 124.8, 121.8, 113.9; HRMS (ESI): calculated for C15H19oCIN3O3:
[M + HJ* requires 328.0483, found 328.0484.

3-bromo-N-(5-nitroquinolin-8-yl)benzamide (21): Yellow solid in 78% yield; mp
213-214 °C; 'H NMR (400 MHz, CDCl3) & 11.00 (s, 1H), 9.36 (d, | = 8.8 Hz, 1H), 8.96 (d,
J =89 Hz, 2H), 8.61 (d, | = 8.8 Hz, 1H), 8.23 (s, 1H), 8.01 (d, ] = 7.7 Hz, 1H), 7.78-7.75
(m, 2H), 7.49 (t, ] = 7.8 Hz, 1H); '3C NMR (100 MHz, CDCl3) 6 164.2, 149.2, 140.4, 139.0,
137.8,136.1, 135.6, 133.5, 130.8, 130.5, 127.8, 125.9, 124.8, 123.3, 121.8, 114.0, HRMS (ESI):
calculated for C16H19BrN3O3: [M + H]* requires 371.9978, found 371.9979.

4-bromo-N-(5-nitroquinolin-8-yl)benzamide (2m): Yellow solid in 72% yield; mp
279-280 °C; 'H NMR (400 MHz, CDCl3) 6 11.06 (s, 1H), 9.32 (d, ] = 8.2 Hz, 1H), 9.01-8.97
(m, 2H), 8.62 (d, ] = 8.9 Hz, 1H),7.96 (d, ] = 8.3Hz, 2H), 7.78 (dd, ] = 8.9,4.3 Hz, 1H), 7.72 (d,
] =8.5 Hz, 2H); 13C NMR (100 MHz, CDCl3) 6 164.8, 149.2, 140.6, 138.9, 137.8, 133.5, 133.0,
132.3,129.0, 127.8, 127.6, 124.8, 121.8, 113.9; HRMS (ESI): calculated for C14H;oBrN3O5: [M
+ HJ* requires 371.9978, found 371.9977.

N-(5-nitroquinolin-8-yl)-3-(trifluoromethyl)benzamide (2n): Yellow solid in 75%
yield; mp 181-182 °C; 'H NMR (400 MHz, CDCl3) & 11.08 (s, 1H), 9.30 (d, ] = 8.6 Hz, 1H),
8.99-8.97 (m, 2H), 8.61 (d, | = 8.8 Hz, 1H), 8.36 (s, 1H), 8.25 (d, ] = 7.6 Hz, 1H), 7.90 (d,
] =7.6 Hz, 1H), 7.79-7.72 (m, 2H); '3C NMR (100 MHz, CDCl3) § 164.2, 149.3, 140.3, 139.1,
137.7,135.0, 133.7, 133.5, 130.4, 129.7, 129.2, 127.7, 124.9, 124.7, 122.1, 114.0; HRMS (ESI):
calculated for C17H9F3N30s: [M + H]* requires 362.0747, found 362.0748.

2-chloro-4-methoxy-N-(5-nitroquinolin-8-yl)benzamide (2p): Yellow solid in 65%
yield; mp 262-263 °C; 'H NMR (400 MHz, CDCl3) § 10.99 (s, 1H), 9.33 (d, ] = 8.8 Hz, 1H),
8.99-8.97 (m, 2H), 8.62 (d, | = 8.8 Hz, 1H), 8.14 (d, ] = 1.2 Hz, 1H), 8.02 (d, ] = 8.6 Hz, 1H),
7.77 (dd, ] = 8.9, 4.1 Hz, 1H), 7.10 (d, ] = 8.5 Hz, 1H), 4.03 (s, 3H); *C NMR (100 MHz,
CDCl;) 6 164.1,158.5, 149.1, 140.8, 138.7, 137.8, 133.5, 129.7, 127.9, 127.7, 1272, 124.8, 123.3,
121.9, 113.7, 111.8, 56.5; HRMS (ESI): calculated for C17H;,CIN3O4: [M + H]* requires
358.0589, found 358.0591.

N-(5-nitroquinolin-8-yl)thiophene-2-carboxamide (2q) [35]: Yellow solid in 69% yield;
mp 220-221 °C; 'H NMR (400 MHz, CDCl3) & 10.90 (s, 1H), 9.30 (d, ] = 8.8 Hz, 1H), 8.96-8.95
(m, 1H), 8.91 (d, ] =8.8 Hz, 1H), 8.59 (d, ] =8.8 Hz, 1H), 7.88 (d, ] = 3.1 Hz, 1H), 7.76 (dd,
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] =89,4.1Hz, 1H), 7.65 (d, ] = 4.8 Hz, 1H), 7.24-7.21 (m, 1H); '3C NMR (100 MHz, CDCl3)
5160.2,149.1, 140.6, 139.0, 138.7, 137.5, 133.5, 132.2, 129.4, 128.2, 127.9, 124.8, 121.9, 113.7.

N-(5-nitroquinolin-8-yl)pivalamide (2r) [37]: Yellow solid in 73% yield; mp 172—
173 °C; 'H NMR (400 MHz, CDCl3) § 10.59 (s, 1H), 9.27-9.25 (m, 1H), 8.92 (d, ] = 3.0 Hz,
1H), 8.84 (d, ] = 8.8 Hz, 1H), 8.54 (d, ] = 8.8 Hz, 1H), 7.71 (dd, ] = 8.8, 4.1 Hz, 1H), 1.45 (s,
9H); 13C NMR (100 MHz, CDCl3) & 177.8, 149.0, 141.0, 138.3, 137.7, 133.3, 127.9, 124.6, 121.7,
113.4, 40.7, 27.6.

N-(2-methyl-5-nitroquinolin-8-yl)benzamide (2a’) [37]: Yellow solid in 75% yield;
mp 202-203 °C; 'H NMR (400 MHz, CDCl3) § 11.08 (s, 1H), 9.12 (d, | = 8.9 Hz, 1H), 8.91
(d, ] = 8.8, 1H), 8.49 (d, ] = 8.8 Hz, 1H), 8.05 (d, ] = 7.3 Hz, 2H), 7.66-7.57 (m, 4H), 2.81 (s,
3H); 13C NMR (100 MHz, CDCl3) & 165.5, 158.5, 140.1, 138.7, 137.3, 134.3, 133.3, 132.6, 129.1,
127.4,126.7, 125.6, 119.9, 113.7, 25.2; HRMS (ESI): calculated for C1;H;3N303: [M + H]*
requires 308.1030, found 308.1035.

2-methyl-N-(2-methyl-5-nitroquinolin-8-yl)benzamide (2b’): Yellow solid in 75%
yield; mp 209-210 °C; 'H NMR (400 MHz, CDCl3) § 10.62 (s, 1H), 9.15 (d, ] = 8.9 Hz, 1H),
8.96 (d, ] =8.8,1H),851(d, ] =88 Hz, 1H),7.72(d, ] =74 Hz, 1H), 7.58 (d, ] = 8.9 Hz, 1H),
7.48-7.44 (m, 1H), 7.39-7.35 (m, 2H), 2.75 (s, 3H), 2.64 (s, 3H); '3C NMR (100 MHz, CDCl3)
5 168.2,158.6,140.3, 138.9, 137.2, 137.2, 135.6, 133.3, 131.8, 131.1, 127.5, 126.7, 126.3, 125.6,
120.0, 113.7, 25.1, 20.4; HRMS (ESI): calculated for C13H;5N303: [M + H]* requires 322.1186,
found 322.1190.

3-methyl-N-(2-methyl-5-nitroquinolin-8-yl)benzamide (2¢’): Yellow solid in 79%
yield; mp 184-185 °C; 'H NMR (400 MHz, CDCl3) & 11.04 (s, 1H), 9.15 (d, ] = 8.9 Hz, 1H),
8.93 (d, ] = 8.8 Hz, 1H), 8.51 (d, ] = 8.8 Hz, 1H), 7.91 (s, 1H), 7.81 (d, ] = 6.9 Hz, 1H), 7.59 (d,
J = 8.9 Hz, 1H), 7.49-7.43 (m, 2H), 2.83 (s, 3H), 2.47 (s, 3H); 1*C NMR (100 MHz, CDCl3)
5165.7,158.4,140.2, 139.0, 138.7, 137.3, 134.3, 133.4, 133.3, 128.9, 128.3, 126.8, 125.6, 124.2,
120.0, 113.7, 25.2, 21.5; HRMS (ESI): calculated for C1gH;5N303: [M + H]* requires 322.1186,
found 322.1190.

4-methyl-N-(2-methyl-5-nitroquinolin-8-yl)benzamide (2d’): Yellow solid in 78%
yield; mp 206-207 °C; 'H NMR (400 MHz, CDCl3) § 10.99 (s, 1H), 9.09 (d, ] = 8.9 Hz, 1H),
8.86 (d, ] =8.8 Hz, 1H), 8.44 (d, ] =8.8 Hz, 1H), 7.92 (d, ] =7.9 Hz, 2H), 7.55 (d, ] = 8.9 Hz,
1H), 7.37 (d, ] = 7.8 Hz, 2H), 2.81 (s, 3H), 2.45 (s, 3H); '3C NMR (100 MHz, CDCl3) § 165.4,
158.4, 143.3, 140.2, 138.5, 137.2, 133.2, 131.3, 129.7, 127 4, 126.8, 125.6, 120.0, 113.5, 25.2, 21.6;
HRMS (ESI): calculated for C1gH15N303: [M + H]* requires 322.1186, found 322.1189.

2-methoxy-N-(2-methyl-5-nitroquinolin-8-yl)benzamide (2¢’): Yellow solid in 75%
yield; mp 258-259 °C; 'H NMR (400 MHz, CDCl3) & 12.46 (s, 1H), 9.17 (d, ] = 8.9 Hz, 1H),
9.10 (d, ] = 8.9 Hz, 1H), 8.51 (d, ] = 8.9 Hz, 1H), 8.33 (d, ] = 6.6 Hz, 1H), 7.60-7.55 (m, 2H),
7.18 (t,] =7.6 Hz, 1H), 7.11 (d, ] = 8.3 Hz, 1H), 4.23 (s, 3H), 2.86 (s, 3H); 13C NMR (100 MHz,
CDCl;) 6 164.3,157.9, 157.8, 141.6, 137.8, 134.0, 133.2, 132.8, 127.0, 125.3, 121.7, 121.6, 120.1,
114.7,111.6, 56.2, 25.3; HRMS (ESI): calculated for C1gH;5N304: [M + H]* requires 338.1135,
found 338.1139.

3-fluoro-N-(2-methyl-5-nitroquinolin-8-yl)benzamide (2f'): Yellow solid in 71% yield;
mp 251-252 °C; 'H NMR (400 MHz, CDCl3) 6 11.10 (s, 1H), 9.17 (d, ] = 8.9 Hz, 1H), 8.94
(d, ] =8.8 Hz, 1H), 8.53 (d, ] = 8.8 Hz, 1H), 7.85 (d, ] = 7.7 Hz, 1H), 7.78 (d, ] = 9.2 Hz, 1H),
7.63-7.55 (m, 2H), 7.36-7.32 (m, 1H), 2.84 (s, 3H);!3C NMR (100 MHz, CDCl3) § 164.3, 161.8,
158.7,139.8,139.1, 137.4, 136.6, 133.5, 130.8, 126.7, 125.7, 122.8, 120.0, 119.6, 114.9, 113.9, 25.3;
HRMS (ESI): calculated for C1;H1,FN3O3: [M + H]* requires 326.0935, found 326.0938.

4-fluoro-N-(2-methyl-5-nitroquinolin-8-yl)benzamide (2g’): Yellow solid in 66%
yield; mp 218-219 °C; 'H NMR (400 MHz, CDCl3) & 11.07 (s, 1H), 9.16 (d, ] = 8.9 Hz,
1H), 8.93 (d, ] = 8.8, 1H), 8.52 (d, ] = 8.8 Hz, 1H), 8.11-8.08 (m, 2H), 7.62 (d, | = 8.9 Hz, 1H),
7.29-7.25 (m, 2H), 2.83 (s, 3H);'*C NMR (100 MHz, CDCl3) 6 166.7, 164.3, 158.5, 140.0, 138.9,
137.3,133.5,130.5,129.9, 126.7, 125.7, 120.0, 116.2, 113.8, 25.3; HRMS (ESI): calculated for
C17H12EN3O3: [M + H]* requires 326.0935, found 326.0938.

3-chloro-N-(2-methyl-5-nitroquinolin-8-yl)benzamide (2h’): Yellow solid in 67%
yield; mp 215-216 °C; 'H NMR (400 MHz, CDCl3) 6 11.08 (s, 1H), 9.15 (d, ] = 8.9 Hz, 1H),
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8.91 (d, ] =8.8 Hz, 1H), 8.51 (d, | = 8.8 Hz, 1H), 8.07 (s, 1H), 7.94 (d, ] = 7.6 Hz, 1H), 7.62
(d, ] =9.2 Hz, 2H), 7.53 (t, | = 7.8 Hz, 1H), 2.83 (s, 3H);'3C NMR (100 MHz, CDCl3) 6
164.1, 158.7, 139.7, 139.1, 137.3, 136.1, 135.4, 133.4, 132.6, 130.3, 127.9, 126.6, 125.7, 125.2,
120.0, 113.9, 25.3; HRMS (ESI): calculated for C17H1,CIN3O3: [M + H]* requires 342.0640,
found 342.0642.
4-chloro-N-(2-methyl-5-nitroquinolin-8-yl)benzamide (2i’) [37]: Yellow solid in 68%
yield; mp 221-222 °C; 'H NMR (400 MHz, CDCl3) 6 11.08 (s, 1H), 9.16 (d, ] = 8.9 Hz, 1H),
8.93(d, ] =8.8 Hz, 1H), 8.52 (d, ] = 8.8 Hz, 1H), 8.02 (d, ] =8.2 Hz, 2H), 7.62 (d, ] = 8.9 Hz,
1H), 7.56 (d, ] = 8.2 Hz, 2H), 2.84 (s, 3H); 3C NMR (100 MHz, CDCl3) 6 164.5, 158.6, 139.9,
140.0, 139.0, 137.3, 133.5, 132.7, 129.4, 128.8, 126.7, 125.7, 120.0, 113.9, 25.3; HRMS (ESI):
calculated for C17H1,CIN3O3: [M + H]* requires 342.0640, found 342.0641.
3-bromo-N-(2-methyl-5-nitroquinolin-8-yl)benzamide (2j’): Yellow solid in 66%
yield; mp 203-204 °C; 'H NMR (400 MHz, CDCl3) & 11.09 (s, 1H), 9.16 (d, ] = 8.9 Hz, 1H),
8.91 (d, ] =8.8 Hz, 1H), 8.51 (d, | = 8.8 Hz, 1H), 8.23 (s, 1H), 7.99 (d, ] = 7.7 Hz, 1H), 7.76
(d,]=79Hz 1H),7.62 (d, ] = 8.9 Hz, 1H), 7.47 (t, ] = 7.8 Hz, 1H), 2.88 (s, 3H);!3C NMR
(100 MHz, CDCl3) 6 164.0, 158.7, 139.7, 139.1, 137.3, 136.2, 135.5, 133.4, 130.9, 130.5, 126.6,
125.7,125.7,123.3,119.9, 113.9, 25.3; HRMS (ESI): calculated for C17H1,BrN3;O3: [M + H]*
requires 386.0135, found 386.0136.
4-bromo-N-(2-methyl-5-nitroquinolin-8-yl)benzamide (2k’): Yellow solid in 71%
yield; mp 249-250 °C; 'H NMR (400 MHz, CDCl3) § 11.09 (s, 1H), 9.15 (d, ] = 8.9 Hz, 1H),
9.17(d, ] =9.0,1H), 893 (d, ] = 8.8 Hz, 1H), 8.52 (d, ] = 8.8 Hz, 1H), 7.94(d, | = 8.4 Hz, 2H),
7.44 (d,] = 8.4 Hz, 2H), 7.61 (d, ] = 8.9 Hz, 1H), 2.83 (s, 3H); *C NMR (100 MHz, CDCl3) &
164.7,158.6, 139.8, 139.0, 137.3, 133.5, 133.2, 132.4, 128.9, 127.5, 126.7, 125.7, 120.0, 113.9, 25.3;
HRMS (ESI): calculated for C1;H1,BrN3O3: [M + H]* requires 386.0135, found 386.0136.
N-(2-methyl-5-nitroquinolin-8-y1)-3-(trifluoromethyl)benzamide (21’): Yellow solid
in 56% yield; mp 191-192 °C; IH NMR (400 MHz, CDCl3) 6 11.19 (s, 1H), 9.15 (d, ] = 8.9 Hz,
1H), 8.92 (d, ] = 8.8 Hz, 1H), 8.53 (d, ] = 8.8 Hz, 1H), 8.34 (s, 1H), 8.26 (d, ] = 7.7 Hz, 1H),
7.90 (d,] = 7.7 Hz, 1H), 7.74 (, ] = 7.7 Hz, 1H), 7.63 (d, | = 8.9 Hz, 1H), 2.84 (s, 3H);13C
NMR (100 MHz, CDCl3) ¢ 164.0, 158.7, 139.6, 139.2, 137.3, 135.1, 133.5, 131.7, 130.5, 129.8,
129.1,126.6,125.8,124.5, 123.6, 119.9, 113.9, 25.2; HRMS (ESI): calculated for C1gH;,F3N3O3:
[M + H]* requires 376.0904, found 376.0907.
N-(2-methyl-5-nitroquinolin-8-y1)-4-(trifluoromethyl)benzamide (2m’): Yellow solid
in 59% yield; mp 208-209 °C; 'H NMR (400 MHz, CDCl3) 6 11.16 (s, 1H), 9.18 (d, ] = 8.9 Hz,
1H), 8.96 (d, ] = 8.8 Hz, 1H), 8.54 (d, | = 8.8 Hz, 1H), 8.20 (d, ] = 8.0 Hz, 2H), 7.87 (d,
J =8.1Hz, 2H), 7.64 (d, ] = 8.9 Hz, 1H), 2.84 (s, 3H); 1*C NMR (100 MHz, CDCl3) § 164.3,
158.7,139.6,139.3,137.6, 137.4, 134.1, 133.5, 127.9, 126.6, 126.2, 125.8, 123.6, 120.0, 114.1, 25.3;
HRMS (ESI): calculated for C1gH12F3N3O3: [M + H]* requires 376.0904, found 376.0905.
N-(2-methyl-5-nitroquinolin-8-yl)thiophene-2-carboxamide (2n’): Yellow solid in
72% yield; mp 257-258 °C; 'H NMR (400 MHz, CDCl3) § 10.98 (s, 1H), 9.16 (d, ] = 8.8 Hz,
1H),8.85(d, ] =8.8 Hz, 1H),8.51 (d, ] =8.7Hz, 1H), 7.85 (d, ] =2.4 Hz, 1H), 7.67 (d, | = 4.5 Hz,
1H),7.61 (d, ] = 8.9 Hz,1H), 7.23 (d, ] = 3.9 Hz, 1H), 2.84 (s, 3H); >*C NMR (100 MHz, CDCl;)
5160.1, 158.5,139.9, 139.2, 138.8, 137.1, 133.4, 132.0, 129.3, 128.2, 126.8, 125.7, 120.0, 113.7,
25.2; HRMS (ESI): calculated for C15H11N303S: [M + H]* requires 314.0594, found 314.0596.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/ catal14040263/s1, Table S1: Screening of reaction conditions. Copies of 1H and 13C NMR
spectra for the products.
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