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Abstract: Currently, the classification of grapevine black rot disease relies on assessing the percentage
of affected spots in the total area, with a primary focus on accurately segmenting these spots in
images. Particularly challenging are cases in which lesion areas are small and boundaries are ill-
defined, hampering precise segmentation. In our study, we introduce an enhanced U-Net network
tailored for segmenting black rot spots on grape leaves. Leveraging VGG as the U-Net’s backbone,
we strategically position the atrous spatial pyramid pooling (ASPP) module at the base of the
U-Net to serve as a link between the encoder and decoder. Additionally, channel and spatial dual-
attention modules are integrated into the decoder, alongside a feature pyramid network aimed at
fusing diverse levels of feature maps to enhance the segmentation of diseased regions. Our model
outperforms traditional plant disease semantic segmentation approaches like DeeplabV3+, U-Net,
and PSPNet, achieving impressive pixel accuracy (PA) and mean intersection over union (MIoU)
scores of 94.33% and 91.09%, respectively. Demonstrating strong performance across various levels of
spot segmentation, our method showcases its efficacy in enhancing the segmentation accuracy of
black rot spots on grapevines.

Keywords: grape black rot; U-Net; ASPP; dual attention module; feature pyramid

1. Introduction

Grapes are one of the most important fruits in the world, and the healthy and stable
development of their industry is of great significance to the national economic development
and farmers’ income increase. In the cultivation of grapes, the larger the planting area, the
larger the scale of damage when disease occurs and the greater the economic loss caused.
Among grape leaf diseases, black rot, brown spot, and verticillium are the most common, of
which black rot is one of the most important grape diseases worldwide. Black rot is a fungal
disease that causes yield loss in grapes, showing black spots on leaves and fruit, and it is
prevalent in the wetter spring and early summer seasons and affects a wide range of areas.
Therefore, the rapid and accurate identification of grape leaf diseases and implementation
of preventive measures can greatly reduce the degree of its harm in favor of increasing
grape production and income [1]. At present, grape diseases mainly rely on agricultural
experts for on-site identification, and manual identification is subjective, time-consuming,
and labor-intensive, so it is important to develop a fast, accurate, and intelligent grape
disease identification system [2].

Computer vision is widely used in the field of agriculture, and with the development
of image processing and computer technology, image segmentation methods have expe-
rienced three basic stages, as follows: classical segmentation methods, machine learning
methods, and deep learning methods. These methods have been applied in agricultural
disease detection.
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Traditional image segmentation techniques, such as threshold segmentation, can
distinguish lesions from the background by using color and texture properties. Then,
each pixel in the image is compared; if its gray value is greater than the threshold, the
pixel is classified into one category, and if its gray value is less than the threshold, it
is classified into another category. Dutta et al. [3] proposed a method for the efficient
real-time segmentation of diseased leaves on kohlrabi plots by adjusting VI and Otsu
thresholds. ZixiLiu et al. [4] used the Otsu method, OpenCV morphological operation,
and morphological transformation method to outline the outline of the object for corn gray
spots, corn rust, large corn spots, and healthy corn leaves and used the outline to obtain
the difference set between the corn leaves and the background to obtain a complete corn
leaf image. Classical image segmentation methods require high image quality, and if the
environmental conditions change during the image quality, the recognition results will be
poor or even invalid. Therefore, the versatility and robustness of these methods cannot be
satisfying, and the accuracy in practical applications cannot be guaranteed.

With the development of machine learning, many researchers have started to try to
apply it to disease speckle segmentation to improve the accuracy and robustness of segmen-
tation. Attiquekhan et al. [5] used a genetic algorithm (GA) to add a feature selection step
that further speeds up the process of obtaining improved classification results using support
vector machines. Ambarwari et al. [6] used Support Vector Machine (SVM) with RBF kernel
for plant species recognition with 82.67% accuracy. S. Appeltans et al. [7] removed soil
pixels from hyperspectral images through LDA classification and a custom noise filtering
algorithm. Machine learning methods can yield satisfactory segmentation results using
small sample sizes, but these methods require multiple steps of image preprocessing and
are relatively complex to execute. In addition, machine learning-based segmentation meth-
ods are relatively weak in unstructured environments and require researchers to manually
design feature extraction and classifiers, which makes the work more difficult.

With the improvement of computer hardware performance, deep learning has been
rapidly developed. Currently, common deep learning algorithms include the full convo-
lutional neural network algorithm FCN proposed by Long et al. [8] for the problem of ex-
tremely high memory cost and low computational efficiency of CNN. Zhang et al. [9] estab-
lished a full convolutional network (FCN)-based segmentation model for wheat spikelets,
which effectively achieves the segmentation of wheat spikelets in the field environment.
Badrinarayanan et al. [10] proposed SegNet, which uses an inverse convolutional filter to
replace the traditional up-sampling operation, eliminating the need to learn to increase the
sampling rate. Zhao et al. [11] proposed PSPNet, global prior information that is effective
in obtaining high-quality results in scene semantic analyses. DeepakKumar et al. [12] used
pyramid scene parsing network (PSPNet) and fuzzy rule model to develop an innovative
multilevel model (PSGIC) for estimating wheat leaf rust and its infection level. Chen et al.
successively proposed Deeplab [13], DeeplabV2 [14], DeeplabV3 [15], and DeeplabV3+ [16],
which can efficiently extract multi-scale image semantic information. Cai et al. [17,18]
used a modified DeeplabV3+ to segment maple leaves and spots, and then assessed the
extent of disease damage. Ronneberger et al. [19] proposed a new model called U-Net.
The U-Net network improves the FCN network by combining encoding paths that capture
contextual information and decoding paths used for precise positioning, which splices
high-resolution features with decoder up-sampled output features by jumping structures.
Yi, Liu, et al. [20,21] performed algorithm improvement based on U-Net for light bark birch
and rice segmentation. Chen et al. [22], based on the U-Net network, proposed BLSNet to
improve the accuracy of rice lesion segmentation through attention mechanism and multi-
scale extraction. Aiming at the problems of low crop classification accuracy, insufficient
plant disease feature extraction, and inaccurate disease edge segmentation in the traditional
plant classification model, this paper proposes an improved U-Net-based plant disease
segmentation method, i.e., CVU-Net. The experimental results show that CVU-Net can
take into account various requirements, such as accuracy and average intersection-to-union
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ratio, can segment small lesions well, and has good segmentation effects on the edges
of lesions.

The contribution of this paper mainly includes the following three parts:

1. A grape black rot spot segmentation model CVU-Net is proposed to achieve the
accurate segmentation of grape black rot spots.

2. A dual-attention mechanism is incorporated into the U-Net encoding network, en-
abling the model to better capture the edge, texture, and semantic information of the
target, thereby producing more accurate segmentation results.

3. The use of multiple atrous convolutions in multi-scale ASPP for parallel sampling
of the input image for feature extraction, enriching the semantic information by
expanding the sensory field, and encoding the global context using image-level
features can avoid the problem of segmentation error due to falling into the local
features, thus improving the segmentation performance of the network.

Because some of the diseased spots on grape leaves are small, and the edges of
the lesions are blurry, there is no way for traditional deep learning methods to identify
them accurately, so to improve the accuracy of disease semantic segmentation, this paper
proposes an improved U-Net network, called CVU-Net network. In this network, we
use the VGG network as the backbone feature extraction network [23], add the attention
mechanism module to the feature extraction network part, and introduce the ASPP module
to increase the field of view of the filter. We compared the segmentation performance of
traditional U-Net, DeeplabV3+, PSP-NET, and the CVU-Net network proposed in this paper
on the grape disease dataset. The experimental results show that CVU-Net outperforms the
other compared networks in terms of segmentation performance. The improved method
in this paper significantly improves the segmentation capability of the network, which
effectively improves the segmentation accuracy of disease images.

The remainder of this article is structured as follows. We start with a description
of the materials and methods of the experiments in Section 2. In Section 3, experiment
results with a detailed discussion about the experiment are given. In Section 4, we discuss
the experiments and suggest directions for future work. Finally, the conclusions of the
experiment are presented in Section 5.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

For this study, we utilized the publicly available Plant Village dataset, which comprises
54,309 RGB images showcasing symptoms of 26 common diseases found on the leaves
of 14 different plant species. Among these, this paper specifically selected 262 images of
grape leaves afflicted with black rot as our test subjects. All of these images are verified by
researchers with expertise in grape diseases.

To label and segment the dataset, this paper employed the LabelMe 4.5.13. LabelMe
is a visual annotation tool developed in Python 3.7.0 and designed using the Qt5 graphic
library. It is used for labeling images for tasks such as semantic segmentation and target
detection. Moreover, LabelMe supports label generation in VOC and COCO formats.

In this paper, LabelMe was used to delineate the shape and location of grape leaf
spots by drawing closed regions through polygons. The labeled data were stored in
JSON format, and the data labels were subsequently converted into binary PNG images
using the json_to_dataset command. In these binary images, the black areas represent the
background, while the red areas represent the leaf spots, as illustrated in Figure 1.

In the real environment, the collected image datasets may be affected by weather, light,
dust, etc., so being more consistent with the real environment also further improves the
robustness and generalization ability of the model. This article performs data enhancement
through random transformation, adjusting image brightness and contrast, adding noise
and translation. Subsequently, the images were resized to a resolution of 256 × 256 pixels.
This process resulted in a total of 2096 experimental data images, thereby creating the grape
leaf spot dataset, PD1. Figure 2 illustrates some of the augmentation outcomes.
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Figure 1. Image annotation status: (a) original image; (b) image marking results. Black represents the
background, and red represents the lesions.
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Figure 2. Data augmentation: (a) original image; (b) flipped and added noise; (c) flipped and reduced
brightness; (d) added noise and reduced brightness; (e) flipped and shifted and reduced brightness;
(f) flipped and shifted.

Using the dataset construction methodology described above, the grape disease images
were randomly divided, with 90% allocated to the training set and the remaining 10%
designated as the test set. To account for the inherent randomness in this process, multiple
tests were conducted to enhance accuracy.

2.2. Data Enhancement

(1) Random rotation transformation

To verify more possibilities, this article simulates multi-angle shooting datasets and
uses rotation and mirror-flipping methods for data enhancement. Random rotation is
calculated as follows:

Set the pixel coordinates of the image before rotation to (x, y), and its coordinates are
expressed as follows: {

x = γ· cos(α)
y = γ· sin(α)

(1)

After rotating by angle β, the coordinates of the corresponding pixel point in the image
are (x′, y′), and the coordinates at this time are expressed as follows:{

x′ = γ· cos(α− β)
y′ = γ· sin(α− β)

(2)

The equivalent transformation is as follows:{{
x′ = γ· cos(α) cos(β) + γ· sin(α) sin(β)
y′ = γ· sin(α) cos(β)− γ· cos(α) sin(β)

(3)
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Putting Formula (1) into Formula (3), we obtain the following:{
x′ = x cos(β) + y sin(β)
y′ = y cos(β)− x sin(β)

(4)

Mirror flipping includes vertical mirror flipping and horizontal mirroring flipping.
The vertical mirror flip uses the horizontal midline as the axis and flips vertically, and the
horizontal mirror flip uses the vertical midline as the axis and flips horizontally.

(2) Brightness and contrast adjustment

Due to the influence of weather and light, the clarity of the dataset will be affected
when collecting the dataset. To better fit the situation of grape diseases in the natural
environment, this article expands the dataset by adjusting the brightness and contrast
to make the dataset model as close as possible to various situations encountered in the
natural environment.

Adjust brightness as follows: Change the brightness of an image by directly adding,
subtracting, multiplying, or dividing operations on each pixel value of the image. Let R
represent the original RGB value, represent the adjusted RGB value, g is the adjustment
factor, and the brightness adjustment formula is as shown in (5).

R = R′(1 + g) (5)

Adjust contrast as follows: Fine and effective contrast adjustment can be achieved by
training a neural network to learn a contrast transformation function. Assuming m to be
the median of image brightness, the meanings of R, R’ and g are the same as above, and the
specific calculation method is shown in (6).

R = m +
(
R′ − m

)
(1 + g) (6)

(3) Add noise as follows:

By adding noise to simulate the interference factors that would appear in the real
world, the performance of the segmentation algorithm can be tested and evaluated by
adding noise to the image, and the robustness of the algorithm can be further improved.

Gaussian noise is a kind of random noise that obeys Gaussian distribution (also called
normal distribution). It is characterized by adding random disturbances in the form of a
bell-shaped curve to the image. It has two parameters, mean and variance, where the mean
reflects the symmetry The direction of the axis and the variance represent the width of the
normal distribution curve, and its probability density function is shown in Equation (7).
Among these, the random variable is x, the mathematical expectation is µ, and the variance
is σ2.

f(x) =
1√
2πσ

exp(− (x − µ)2

2σ2 ) (7)

Salt-and-pepper noise, also known as impulse noise, is a type of noise commonly
used in image processing. Its characteristic is that black pixels or white pixels will appear
randomly in the image, or they may appear at the same time. The occurrence of salt-and-
pepper noise can be introduced due to sensor failure, signal transmission errors, or other
issues during image acquisition.

Salt-and-pepper noise usually causes obvious black and white spots in the image,
seriously affecting the look and quality of the image. Gaussian noise will make the image
as a whole feel blurry and distorted, reducing the clarity and contrast of the image. This
paper uses a combination of Gaussian noise and salt-and-pepper noise to improve the
robustness of the algorithm and greatly increase the generalization effect of the model.
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2.3. Experiment Platform and Evaluation Metrics

The hardware and software configurations used for the experiments in this paper are
shown in Table 1.

Table 1. Experimental hardware and software configuration.

Item Detail

CPU 12thGenIntel(R) Core (TM)i5-12400@2.50 GHz
RAM 16 GB

Operating system Windows11 64-bit
CUDA CUDA 11.6
Python Python3.7

Optimizer Adam

In our experiments, this paper employed two evaluation metrics, pixel accuracy (PA)
and mean intersection over union (MIoU), to assess the segmentation performance of grape
disease images. The formula is as follows, where k denotes the total number of categories,
Pij denotes the number of pixels belonging to category i but predicted to belong to category
j, Pii denotes the number of pixels correctly predicted, and Pij and Pji denote false positive
and false negative results, respectively.

(1) Pixel accuracy (PA)

PA represents the ratio of correctly predicted pixels to the total number of pixels. Its
calculation formula is as follows:

PA =
∑k

i=0 Pii

∑k
i=0 ∑k

j=0 Pij
(8)

(2) Mean intersection over union (MIoU)

MIoU is a widely used evaluation metric in experimental studies of semantic segmen-
tation. It involves calculating the ratio of the intersection between the real and predicted
sets to the union of the real and predicted sets for each category, and then calculating the
average across all categories. The calculation formula is as follows:

MIoU =
1

k + 1

k

∑
i=0

Pii

∑k
i=0 Pij + ∑k

i=0 Pji − Pii
(9)

2.4. Network Architecture

U-Net is a neural network model that consists of an encoder–decoder architecture as
shown in Figure 3. The encoder part uses the CNN architecture as a contraction path to
extract image features and reduce resolution, and the contraction path has four sub-blocks,
each of which consists of two consecutive 3 × 3 convolutions, the ReLU activation function,
and the maximum pooling layer for down-sampling. Two 3 × 3 convolution operations
can effectively reduce the neural network complexity and keep the original segmentation
accuracy unchanged. In each down-sampling step, the number of feature channels is dou-
bled. The decoder part consists of convolutional blocks containing up-sampling operations
to form an extended path to repair the image detail information, locate the boundary of
the segmented object, and gradually restore the spatial resolution of the feature map. In
the expansion path, the sub-blocks contain two consecutive 3 × 3 convolutions, the ReLU
activation function, and the up-sampling inverse convolution layer. Up-sampling expands
the feature map to twice its original size and restores missing detail information. Splicing
is a unique U-Net feature that clips the low-level detail features captured by the down-
sampling process in the same layer and splices them into the high-level semantic features
extracted using the up-sampling process. The final output segmentation result combines
both the object category recognition basis provided by the low-resolution information
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and the accurate positioning segmentation basis provided by the high-resolution features,
which improves the problem of insufficient information in the up-sampling process and
achieves accurate segmentation.
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The U-Net model achieves excellent segmentation results on a variety of datasets, but
the U-Net model also has some shortcomings. Firstly, the redundancy is too large, as each
pixel point needs to take a patch, and then the similarity of the patches of two neighboring
pixels is very high, which leads to a very large amount of redundancy, resulting in very
slow network training. Secondly, high classification accuracy and localization accuracy
cannot coexist; when the sensory field is chosen to be larger, the dimensionality reduction
multiplier of the corresponding pooling layer behind it will increase, which will lead
to lower localization accuracy, but if the sensory field is smaller, then the classification
accuracy will be lower. Then, the shallow network information is directly input into the
decoder part will cause the poor segmentation of lesion edges. To improve the segmentation
performance of the model, and at the same time improve the abovementioned shortcomings,
this paper makes the following improvements on the traditional U-Net model structure:
(1) Use VGG to replace the U-Net feature extraction network as follows: based on the U-Net
framework, the network used for the method feature extraction is replaced with VGG,
which greatly improves the training accuracy of the network, and obtains a more accurate
segmentation algorithm. (2) Add an ASPP module as follows: replace ordinary convolution
with atrous convolution and add spatial pyramid pooling structure to effectively reduce
the loss of local information and lack of correlation of long-distance information caused
by the gridding effect, and different scale features can be obtained without using pooling
layer. (3) Adding CA as follows: CA is added to the feature extraction module and ASPP
module to reduce the loss of accuracy to train a more accurate segmentation method and
improve the segmentation accuracy of the proposed model for grape disease images. The
improved model structure is shown in Figure 4.
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mechanism is added.

2.5. Optimizing the Feature Extraction Part

In this paper, U-Net is used as the basic framework for constructing the model, and
the convolutional layer and the max pooling layer of the VGG16 network are used as the
encoder of the U-Net network to improve the efficiency and accuracy of the image feature
interpretation to improve the semantic segmentation accuracy of the U-Net and to reduce
the influence of other factors on the interpretation accuracy of the model. The backbone
feature extraction network part is shown in Figure 5.
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The encoder can use VGG to obtain feature layer after feature layer for stacking for
convolution and max pooling. Five initial effective feature layers can be obtained using the
backbone feature extraction part for the next stacking and stitching.

2.6. Attention Mechanism

Attention mechanisms in deep learning select the information that is more critical to
the task from a large amount of information, and combining attention mechanisms with
fast convolution can better improve the performance of semantic segmentation tasks. To
date, the most popular attention mechanism is still squeeze and excite (SE) attention [24].
SENet is designed to enable the network to perform dynamic channel feature recalibration
to improve the network’s representational capabilities, the structure of which is shown in
Figure 6. From the structure, it can be seen that for an input X, it is convolved to obtain a
feature map (U), for which an SE module can be attached to attach the channel attention;
for U, the spatial information of each of its channels is first compressed to a single value,
i.e., a vector of size 1 × 1 × C is obtained from the U of size H × W × C. Then, a set of FC
layers are applied to the vector to perform a weighting adjustment to obtain a 1 × 1 × C
channel attention vector; finally, the channel attention vector is weighted to U to form a
weighted feature map. However, SENet only considers encoding inter-channel information
and ignores the importance of positional information, which is crucial for capturing object
structure in visual tasks.
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Subsequent work, such as BAM [25] and CBAM [26], exploits positional information by
reducing the number of channels followed by a large-size convolution, which is then used
to compute spatial attention. However, convolution can only establish local relationships
but cannot model the long-term dependencies necessary for visual tasks.

Coordinate attention (CA) [27], on the other hand, enables lightweight networks to
pay attention to a large area while avoiding incurring large computational overheads by
embedding location information into the channel attention. To mitigate the loss of loca-
tion information caused by 2D global pooling, CA decomposes the channel attention into
two parallel 1D feature encoding processes to efficiently integrate spatial coordinates to
input information into the generated attention graph. Specifically, CA uses two 1D global
pooling operations to aggregate input features along vertical and horizontal directions
into two separate direction-aware feature maps, respectively. These two feature maps
embedded with direction-specific information are then encoded into two separate atten-
tion maps, each capturing the long-range dependencies of the input feature maps along
one spatial direction. Thus, location information can be provided in advance in the gen-
erated attention maps. The two attention maps are then applied to the input feature map
using multiplication to emphasize the representation of interest. Because this attention
operation distinguishes spatial directions (i.e., coordinates) and generates coordinate-aware
feature maps, the proposed method is referred to as coordinate attention.

The CA module encodes channel relations and long-range dependencies through pre-
cise position information, similar to the SE module, which is also divided into
two steps, coordinate information embedding and coordinate attention generation; its
specific structure is shown in Figure 7.



Agronomy 2024, 14, 925 10 of 20Agronomy 2024, 14, x FOR PEER REVIEW 10 of 20 
 

 

 

Figure 7. CA structure. 

For an input X, each channel is initially encoded using a pooling kernel of size (H, 1) 

along the horizontal coordinate direction or a pooling kernel of size (1, W) along the ver-

tical coordinate direction. This results in the expression of the output for the cth channel 

with a height of h as follows: 

Zc
h(h) =

1

W
∑ XC(h, i)

0≤i<W

 (10) 

Similarly, the output of the cth channel with width w is expressed as follows: 

Zc
w(w) =

1

H
∑ XC(j, w)

0≤i<H

 (11) 

With the above transformation, the features are aggregated along two directions, re-

sulting in a pair of direction-aware feature maps that are able to obtain a global sensory 

field and accurately encode positional information. They are then modified using the 1 × 

1 convolutional transform function F1 as follows: 

f = δ (F1([zh, zw])) (12) 

where [·,·] denotes the cascade operation along the spatial dimension, and δ is a nonlinear 

activation function, which is an intermediate feature map that encodes spatial information 

in the horizontal and vertical directions. This is the shrinkage rate used to control the size 

of the SE block. Then, f is decomposed into two independent tensors f hϵRC/r×H  and 

f wϵRC/r×W along the spatial dimension, Fh and Fw are transformed using two additional 

1 × 1 convolutions, and f h and f w are transformed into tensor inputs X with the same 

number of channels to obtain gh and gw, respectively, as follows: 

gh = σ[Fh(f h)] (13) 

gw = σ[Fw(f w)] (14) 

where σ represents the sigmoid function. To reduce the computational overhead and 

model complexity, papers typically decrease the number of channels in f using an appro-

priate shrinkage rate r. Subsequently, gh and gw are expanded and employed as atten-

tion weights, respectively. Finally, the output Y of the CA module can be expressed as: 

yc(i, j) = xc(i, j) × gc
h(i) × gc

w(j) (15) 

2.7. FPN-Based Feature Fusion Branching 

During the process of CNN learning image features, the image resolution gradually 

decreases due to deep convolutional operations. This can result in lower-resolution deep 

features at the output, leading to recognition errors for objects that occupy a relatively 

small percentage of pixels in the image. To enhance multi-scale detection accuracy, it is 

beneficial to combine features from different network layers during training. 

Feature pyramid network (FPN) [28] is a method used for fusing feature maps from 

different layers to enhance the feature extraction process. Its specific structure is depicted 

Figure 7. CA structure.

For an input X, each channel is initially encoded using a pooling kernel of size (H, 1)
along the horizontal coordinate direction or a pooling kernel of size (1, W) along the vertical
coordinate direction. This results in the expression of the output for the cth channel with a
height of h as follows:

Zh
c (h) =

1
W ∑

0≤i<W
XC(h, i) (10)

Similarly, the output of the cth channel with width w is expressed as follows:

Zw
c (w) =

1
H ∑

0≤i<H
XC(j, w) (11)

With the above transformation, the features are aggregated along two directions,
resulting in a pair of direction-aware feature maps that are able to obtain a global sensory
field and accurately encode positional information. They are then modified using the
1 × 1 convolutional transform function F1 as follows:

f = δ
(

F1

([
zh, zw

]))
(12)

where [·,·] denotes the cascade operation along the spatial dimension, and δ is a nonlinear
activation function, which is an intermediate feature map that encodes spatial information
in the horizontal and vertical directions. This is the shrinkage rate used to control the size
of the SE block. Then, f is decomposed into two independent tensors fh ∈ RC/r×H and
fw ∈ RC/r×W along the spatial dimension, Fh and Fw are transformed using two additional
1 × 1 convolutions, and fh and fw are transformed into tensor inputs X with the same
number of channels to obtain gh and gw, respectively, as follows:

gh = σ
[
Fh

(
fh
)]

(13)

gw = σ[Fw(fw)] (14)

where σ represents the sigmoid function. To reduce the computational overhead and model
complexity, papers typically decrease the number of channels in f using an appropriate
shrinkage rate r. Subsequently, gh and gw are expanded and employed as attention weights,
respectively. Finally, the output Y of the CA module can be expressed as:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (15)

2.7. FPN-Based Feature Fusion Branching

During the process of CNN learning image features, the image resolution gradually
decreases due to deep convolutional operations. This can result in lower-resolution deep
features at the output, leading to recognition errors for objects that occupy a relatively
small percentage of pixels in the image. To enhance multi-scale detection accuracy, it is
beneficial to combine features from different network layers during training.

Feature pyramid network (FPN) [28] is a method used for fusing feature maps from
different layers to enhance the feature extraction process. Its specific structure is depicted
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in Figure 8. FPN can fuse feature maps that capture different scales of information. As
illustrated in the figure, FPN generates a new set of deep features by up-sampling the
deep features twice, stacking them with the shallow features, and then convolving them
to produce a new set of deep features. Feature fusion occurs sequentially, allowing the
prediction network to incorporate five preliminary and effective feature maps generated by
the VGG component of the U-Net backbone network. The fused feature map contains richer
semantic and spatial information because it incorporates features from various levels. This
enrichment contributes to the improved segmentation performance of the U-Net network.

Agronomy 2024, 14, x FOR PEER REVIEW 11 of 20 
 

 

in Figure 8. FPN can fuse feature maps that capture different scales of information. As 

illustrated in the figure, FPN generates a new set of deep features by up-sampling the 

deep features twice, stacking them with the shallow features, and then convolving them 

to produce a new set of deep features. Feature fusion occurs sequentially, allowing the 

prediction network to incorporate five preliminary and effective feature maps generated 

by the VGG component of the U-Net backbone network. The fused feature map contains 

richer semantic and spatial information because it incorporates features from various lev-

els. This enrichment contributes to the improved segmentation performance of the U-Net 

network. 

Feature layer after feature layer can be obtained using VGG for stacking for convo-

lution and max pooling. Five initial valid feature layers can be obtained using the back-

bone feature extraction part for the next stacking and stitching. 

  
(a) (b) 

Figure 8. Enhancement of the structure of the part of the feature extraction network. (a) Enhanced 

feature extraction partial model; (b) enhancement of the feature extraction component implementa-

tion approach. 

2.8. Multi-Scale Feature Fusion for Hollow Space Pyramid Pooling ASPP 

The pooling operation of the semantic segmentation network in the process of ex-

panding the receptive field and aggregating contextual information makes it easy to lose 

position and dense semantic information, while atrous convolution reduces the depend-

ence on parameters and calculation processes on the basis of ensuring the image resolu-

tion properties. It requires fewer parameters to achieve the expansion effect of the effective 

receptive field of the convolution kernel and effectively aggregate contextual information. 

Consider a 2D atrous convolution that applies atrous convolution on the input feature 

map x for each position i and filter w of the input feature map y, as follows: 

y[i] = ∑ x[i + r ∙ k] ∙ w[k]

K

k=1

 (16) 

where k denotes the convolution kernel size and r denotes the sampling rate. The above 

formula indicates that a new filter is obtained by inserting r − 1 zero values along each 

spatial dimension between two consecutive filter values. Then, the feature mapping x is 

Figure 8. Enhancement of the structure of the part of the feature extraction network. (a) Enhanced feature
extraction partial model; (b) enhancement of the feature extraction component implementation approach.

Feature layer after feature layer can be obtained using VGG for stacking for convolu-
tion and max pooling. Five initial valid feature layers can be obtained using the backbone
feature extraction part for the next stacking and stitching.

2.8. Multi-Scale Feature Fusion for Hollow Space Pyramid Pooling ASPP

The pooling operation of the semantic segmentation network in the process of ex-
panding the receptive field and aggregating contextual information makes it easy to lose
position and dense semantic information, while atrous convolution reduces the dependence
on parameters and calculation processes on the basis of ensuring the image resolution
properties. It requires fewer parameters to achieve the expansion effect of the effective
receptive field of the convolution kernel and effectively aggregate contextual information.
Consider a 2D atrous convolution that applies atrous convolution on the input feature map
x for each position i and filter w of the input feature map y, as follows:

y[i] =
K

∑
k=1

x[i + r·k]·w[k] (16)

where k denotes the convolution kernel size and r denotes the sampling rate. The above
formula indicates that a new filter is obtained by inserting r − 1 zero values along each
spatial dimension between two consecutive filter values. Then, the feature mapping
x is convolved through this filter to obtain the final feature map. Consequently, atrous
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convolution can control the sensory field of the filter and the compactness of the network
output features by adjusting the sampling rate, all without increasing the number of
parameters or computational effort.

Multi-scale fusion’s atrous spatial pyramid pooling ASPP uses atrous convolution
with multi-level atrous sampling rates to sample feature maps in parallel, allowing the
ASPP module to learn image features from different receptive fields [29]. Because the
dilated convolution with a large sampling rate will degenerate into a 1 × 1 convolution
due to the inability of the image boundary response to capture long-range information, the
image-level features obtained through global average pooling are integrated into the ASPP
module, that is, the image-level features. The feature map outputs by the four convolution
branches are input into a 1 × 1 convolution layer and then bilinearly up-sampled to a
specific spatial dimension. The calculation process is as shown in the following formula:

Y = Concat(image(X), H1,1(x), H6,3(x), H12,3(x), H18,3(x)) (17)

In the formula, Hr,n(x) represents the atrous convolution with sampling rate r and
convolution kernel size n×n on level features, image(x) represents using the global average
pooling method to extract image-level features from the input x, and the ASPP structure is
shown in Figure 9.
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The ASPP structure expands the sensory field and enhances semantic information
through parallel sampling using atrous convolution at multiple sampling rates. Addition-
ally, image-level features effectively capture global contextual information and account for
context relationships, thereby preventing segmentation errors arising from overreliance on
local features and ultimately improving target segmentation accuracy. Therefore, before
up-sampling, the feature map containing high-level semantic information is input to the
ASPP module to obtain features of different scales, which helps to improve the network’s
lesion extraction performance.

3. Results
3.1. Determination of Training Parameters

Because too small and too large learning rates can lead to very slow model convergence
and model non-convergence, it is necessary to determine an appropriate initial learning
rate. This article designs and tests the accuracy of the U-Net model trained with four initial
learning rates. The results are shown in Figure 10. It can be seen that when the learning rate
is 0.0001, the epoch is 100, and the average intersection and merger ratio of the method on
the PD1 dataset is 86.81%, which achieves good segmentation results. On this basis, based
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on the empirical values of commonly used network training hyperparameters and repeated
testing, starting network hyperparameters are provided for subsequent experiments on the
CVU-Net model, as shown in Table 2.
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Table 2. Training parameters.

Epoch Batch Size Lr Input Shape

100 16 0.0001 512 × 512

3.2. Comparison of Different Attention Mechanisms

To verify the difference between using different attention mechanisms on the detection
performance of the algorithm, while controlling other variables consistently, this exper-
iment will add the following four attention mechanisms: SENet, CBAM, ECA, and CA
to the original model for comparison and analysis. The original model is an improved
U-Net model with added VGG and ASPP modules. Using MIoU and PA as indicators, seg-
mentation experiments were conducted on the grape disease image test set with complex
backgrounds. Table 3 shows the comparison results of different attention mechanisms. As
can be seen from the table, the MIoU and PA indicators of the CA attention mechanism are
the highest, reaching 91.09% and 94.33%, respectively. Therefore, this paper selects CA as
the most appropriate attention mechanism based on its performance and uses the training
set to evaluate the segmentation performance of the CVU-Net model.

Table 3. Comparative results of different attention mechanisms.

Method MIoU (%) PA (%)

original 90.06 92.98
SENet 90.43 93.46
CBAM 90.40 93.44
ECA 90.48 93.66
CA 91.09 94.33
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3.3. Ablation Experiments

To assess the performance of the proposed CVU-Net method in the task of grape
disease semantic segmentation, it was compared with traditional semantic segmentation
methods such as FCN, PSPNet, U-Net, and DeeplabV3+. MIoU and PA were selected as
metrics to evaluate the segmentation performance of each method.

To test the generalization ability of CVU-Net and verify its robustness, segmentation
and comparison experiments were conducted on the constructed training and test sets.
To confirm the effectiveness of the CVU-Net concept, which includes using a network
that provides better segmentation than the original feature extraction network (VGG),
incorporating an ASPP module into the jump connection section and adding CA to both
the enhanced feature extraction module and the ASPP module, the following ablation
experiments were performed on the test set.

(1) VU-Net: Based on the traditional U-Net architecture, the feature extraction network is
replaced with the VGG network, which has a superior segmentation effect.

(2) AVU-Net: Building upon VU-Net, an ASPP module is integrated into the jump
connection layer.

(3) CVU-Net1: Extending AVU-Net, CA is introduced into the enhanced feature extraction
module.

(4) CVU-Net: Further enhancing AVU-Net, CA is integrated into both the enhanced
feature extraction module and the ASPP module.

Table 4 presents the experimental results of different configurations on the PD1 dataset.
It is evident that CVU-Net outperforms the other configurations, indicating that the addi-
tion of the CA module after the feature extraction module and ASPP module effectively
enhances the model’s segmentation capabilities.

Table 4. CVU-Net ablation experiment results.

Method MIoU (%) PA (%)

U-Net 86.16 90.66
scheme1 89.37 92.61
scheme2 90.06 92.98
scheme3 90.78 93.67
scheme4 91.09 94.33

3.4. Fivefold Cross Validation

To further compare the performance of different models or parameter settings, we
found the best model or parameter configuration. Fivefold cross-validation experiments
were performed for different parameter selections. We divided the dataset into five equally
sized subsets. In each iteration of the fivefold cross-validation, four of the five subsets were
used to train the model, while the remaining subsets were used to test its performance. This
process was performed five times, ensuring that each subset was used once as a test set.
We chose four parameter schemes, as shown in the Table 5. For the performance indicators
MIoU and PA, the mean of five cross-validations was calculated, and the experimental
results are shown in the Table 6.

Table 5. Specific parameter settings for different solutions.

Scheme Bitch Size Lr

scheme1 8 0.001
scheme2 8 0.0001
scheme3 16 0.001
scheme4 16 0.0001



Agronomy 2024, 14, 925 15 of 20

Table 6. Fivefold cross-validation results.

Method MIoU (%) PA (%)

scheme1 90.88 92.61
scheme2 91.03 92.98
scheme3 91.07 93.67
scheme4 91.13 94.33

It can be seen from the experimental results that when the bitch size is 16 and the
learning rate is 0.0001, the values of MIoU and PA are the highest, reaching 91.18% and
94.40%, respectively. After weighing the evaluation indicators of different schemes, we
finally chose scheme4 to carry out the next experiment.

3.5. Performance Comparison of Different Segmentation Methods

This paper compared CVU-Net with traditional U-Net, PSPNet, and DeeplabV3+.
The comparison results of different segmentation algorithms are presented in Table 7. As
shown in the table, the improved method in this paper achieves a pixel accuracy (PA)
of 94.33%, which is 3.67%, 3.57%, and 5.41% higher than that of the traditional U-Net
algorithm, PSPNet algorithm, and DeeplabV3+ algorithm, respectively. Regarding the
mean intersection over union (MIoU), the improved method in this paper attains a value
of 91.13%. In terms of MIoU, it outperforms the traditional U-Net algorithm, PSPNet
algorithm, and DeeplabV3+ algorithm by 4.97%, 5.51%, and 5.44%, respectively. These
experimental results demonstrate that the incorporation of the depth attention mech-
anism in this paper’s method enhances the model’s feature extraction capability and
significantly improves the accuracy of grape semantic segmentation. The visualization
of the segmentation results is shown in Figure 11. In Figure 11, the first column repre-
sents the original grape leaf images, the second column depicts the manually labeled
images, the third column displays the segmentation results from the DeeplabV3+ model,
the fourth column shows the segmentation results from the PSPNet model, the fifth column
exhibits the segmentation results from the U-Net model, and finally, the sixth column
demonstrates the segmentation results from the CVU-Net model proposed in this paper.
It can be seen from the visualization results that the U-Net model segmentation is more
accurate, but small lesions will be missed and misidentified; the PSPNet model is not
effective and will identify dense small lesions as one large lesion. Spot edge detection
is not accurate enough; the DeeplabV3+ model will miss the detection of small lesions
and produce unclear edge segmentation of large lesions. CVU-Net is more accurate in
segmenting the edges of lesions and small lesions, which is basically consistent with the
annotation situation, and can achieve very good accuracy results. The visualization results
prove that adding the ASPP module can enhance the model’s perception of the input image
and capture a wider range of contextual information. Adding CA to the feature extraction
module and ASPP module can help the model further learn the correlation between features
and focus on important feature channels to more accurately segment the lesion area and
lesion edge.

Table 7. Comparison results of different segmentation methods.

Method MIoU (%) PA (%)

U-Net 86.16 90.66
PSPNet 85.62 90.76

DeeplabV3+ 85.69 88.92
CVU-Net 91.13 94.33
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3.6. Disease Spot Grading and Comparison Experiments

Because there is no clear grading standard for the degree of grape leaf spots, to more
accurately analyze the grading of the degree of grape leaf black rot spots, this paper takes
the standard Grapevine Downy Mildew Disease classification method [30] developed by
the People’s Republic of China as a reference to develop a grading standard for grape black
rot leaf spots. This paper is based on the principle of pixel point statistics. Using Python to
achieve the statistics of the area of the disease spot, the leaves are divided into three levels,
as follows: level 1, level 2, and level 3. the specific grading standards are shown in Table 8.

Table 8. Grading criteria for black rot spots on grapes.

Disease Spot Level The Range of k Quantity

Level 1 0 ≤ k ≤ 5% 808
Level 2 5% ≤ k ≤ 25% 800
Level 3 25% ≤ k ≤ 50% 488

Where k is the proportion of the diseased area to the whole image, the principle
calculation formula is as follows:

k =
Aspot

Aimage
=

∑ (x, y) ∈ Rspotn
∑(x, y) ∈ Rimagen

(18)



Agronomy 2024, 14, 925 17 of 20

In the formula, Aspot is the area of the lesion area, Aimage is the area of the whole
image, Rspot indicates the lesion area, and Rimage indicates the image area.

To measure the effectiveness of this model, based on the grading PD1, a comparison
experiment was conducted using the traditional U-Net, VGG + U-Net, and ASPP + VGG +
U-Net with the method of this paper, as shown in the following table, in which VU-Net
denotes the model of the traditional U-Net introducing the VGG network, and AVU-Net
denotes the model of the traditional U-Net introducing the VGG network and the model of
ASPP module.

As can be seen from Table 9, the highest segmentation accuracy of all models for the
level 3 category in the experiment may be due to the larger area of the level 3 leaf spot. A
comparison of the segmentation accuracy of each model for the level 3 lesions is shown in
Figure 12.

Table 9. Comparative accuracy experiments of different models.

Model
PA (%)

Level 1 Level 2 Level 3

U-Net 78.97 87.98 90.69
VU-Net 79.47 89.19 92.26

AVU-Net 80.87 90.3 93.53
CVU-Net 84.55 91.33 94.69
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Figure 12. Comparison of segmentation accuracy of each model for graded lesions.

It can be clearly seen from Figure 12 and Table 9 that compared with the U-Net model,
VU-Net model, and AVU-Net model, the segmentation accuracy of the level 3 category of
this model has increased by 4.0%, 2.43%, and 1.16%, respectively. For the other two types
of lesion levels, this model is improved compared to the U-Net model, VU-Net model, and
AVU-Net model.
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4. Discussion

The main work of this article includes the following four parts: first, improve the
segmentation accuracy of the algorithm, improve the segmentation accuracy for low-level
disease categories, and effectively improve the algorithm’s segmentation accuracy for
low-level disease categories; second, select further research and experiments will be carried
out on grape leaves with different degrees of disease; the third is to study how to reduce
the interference of uncertain factors, such as noise and shadows in the image, on the
segmentation accuracy of the algorithm; and the fourth is to conduct further research
on the unclear segmentation of lesion edges and the misdetection or missed detection of
small lesions.

It can be seen from the experiments that the method CVU-Net proposed in this paper
can extract the diseased areas in the images more effectively than methods such as U-Net,
DeeplabV3+, and PSPNet. The PA of the whole grape disease image dataset reaches 94.33%,
and MioU reaches 91.09%, which are 4.93% and 3.67% higher than the traditional U-Net
network, respectively. The robustness of CVU-Net was fully verified by comparing it with
the other three semantic segmentation methods on the grape disease test set. Although
CVU-Net segmented the grape disease image more accurately than the other test methods,
its segmentation of the occluded region was not accurate for the grape disease leaves that
were occluded by leaves in more complex cases. Therefore, we recommend constructing
a relevant dataset and conducting further experimental studies in the future to address
this issue.

5. Conclusions

In response to the low accuracy of grape disease image segmentation, this paper
proposes a segmentation method CVU-Net based on a deep learning network. Our method
combines the U-Net model with the VGG network, significantly improving the training
accuracy of the network and achieving more precise segmentation results.

We incorporate the ASPP module into the skip connection part, expanding the recep-
tive field and aggregating context information to avoid the loss of position information and
dense semantic information caused by pooling operations while reducing the dependence
on parameters and calculation processes. It can help the model better capture the edge
information of the image and retain the detailed features of the image, allowing the model
to produce more refined and accurate segmentation results.

In this paper, we introduce CA into the feature extraction module and ASPP module,
which can better restore the edge information of objects and further improve the feature
extraction capabilities of the method, reducing missed objects. Experiments on PD1 show
that our method can effectively extract the areas of grape leaf black rot disease spots
and achieve more accurate and efficient segmentation of disease spots. However, the
segmentation effect on other disease images of grape leaves is unknown. In the next
step, we will pre-train the model on other grape disease image datasets to achieve the
segmentation and recognition of different diseases in real environments.
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