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Abstract: Adaptive characteristics of plants, such as those associated with photosynthesis and
resource use efficiency, are usually affected by synthesis costs and resource availability. The impact
of extreme climate events such as long-term drought on plant physiological functions needs to be
examined, particularly as it concerns the internal management of water and nitrogen (N) resources.
In this study, we evaluated the resource management strategies for water and N by xerophytic shrubs,
Artemisia ordosica and Salix psammophila, under extreme summer drought. This was carried out by
comparing the plants’ physiological status during periods of wet and dry summer conditions in
2019 and 2021. Compared with the wet period, A. ordosica and S. psammophila both decreased their
light-saturated net carbon (C) assimilation rate (Asat), stomatal conductance (gs), transpiration rate
(E), leaf N content per leaf area (Narea), and photosynthetic N use efficiency (PNUE) during the
summer drought. Whether in wet or dry summers, the gas-exchange parameters and PNUE of A.
ordosica were generally greater than those associated with S. psammophila. The instantaneous water
use efficiency (IWUE) response to drought varied with species. As a drought-tolerant species, the
A. ordosica shrubs increased their IWUE during drought, whereas the S. psammophila shrubs (less
drought-tolerant) decreased theirs. The divergent responses to drought by the two species were
largely related to differences in the sensitivity of gs, and as a result, E. Compared with A. ordosica, S.
psammophila’s inferior plasticity regarding gs response affected its ability to conserve water during
drought. Our research illustrates the need for assessing plasticity in gs when addressing plant
adaptation to long-term drought. A high dry-season IWUE in xerophytic shrubs can benefit the
plants by augmenting their C gain.

Keywords: adaptive plant traits; photosynthesis; resource use efficiencies and availability; seasonal
variation; summer drought; synthesis costs

1. Introduction

Drylands cover around 40% of the earth’s continental area and support more than
38% of the world’s population [1]. Some studies have shown that drought stress may
exacerbate the widespread death of plants worldwide, especially in arid and semiarid
regions, and drought stress is considered one of the most destructive abiotic stresses on
plant survival [2,3]. It is estimated that in the future, many regions around the world
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will experience more severe and widespread droughts, which will lead to increasingly
fierce competition among plants for water resources [4]. Understanding the physiological
adaptation mechanisms of woody plants to extreme drought has emerged as a key focus in
ecology and plant science.

Plant resource use efficiencies (RUEs) are key response variables that reflect the phys-
iological status of terrestrial ecosystems. Measures of RUEs have been widely used to
understand ecosystem responses to climate change and extreme weather events [5–7]. At
the leaf scale, plant carbon (C) assimilation largely depends on the availability of photosyn-
thetic resources, such as light, water, and nitrogen (N). Strong climatic fluctuations (e.g.,
seasonal drought) have been shown to change resource supply [3,8,9], which can affect
plant resource accommodation over several timescales [6,10]. In drylands, how plants make
use of natural resources and maximize their leaf C gains are essential to plant survival.

In environments where light is not a limiting resource, such as in shrublands and
grasslands [11,12], water and available soil nutrients, particularly N, are viewed as the
main constraints on plant C fixation in drylands [13–15]. Instantaneous water use efficiency
(IWUE), defined as the ratio of plant net photosynthesis to transpiration, reflects the
interaction between C gains and water consumption [16,17]. Most plant N is invested in
photosynthesis. The variation in photosynthetic N use efficiency (PNUE, i.e., the ratio of net
photosynthesis to leaf N content) reflects the change in plant C assimilation [18–20]. These
two RUEs are widely viewed as ecological indicators of plant drought tolerance [21–23].

Plant economic theory projects that plants prefer to maximize their use efficiencies of
the most limiting resources to offset constraints on C uptake [24,25]. Meanwhile, C gain by
plants from resource use declines as the supply of the resource increases [26,27]. Sometimes,
a mutual coupling is established between different RUEs [6,22]. Increases in water supply
can lead to increases in the PNUE and decreases in the IWUE [28]. Instantaneous water use
efficiency can also increase when water supplies are low and nutrient supplies are high [29].
In this context, dryland-adapted plants during short summer droughts can extract soil
water resources and reduce the investment in photosynthetic N. Water–N tradeoffs between
resource acquisition seem to conform with the stress response of plants to water losses [30].
During dry summer conditions in oak–grass dominated savanna, improving the IWUE
by Quercus douglasii comes at a cost by decreasing the PNUE [31]. An improved IWUE
during drought increases drought tolerance [21,32]. Although plants sacrifice their partial
C gain during a drought, any C loss during this time can be counterbalanced later during a
consecutive wet season [6,9].

However, the exact effects of extreme drought on leaf-level photosynthesis in mature
foliage are greatly debated, especially in terms of the IWUE. For instance, trees in the
Amazonian basin and common apple trees significantly reduce their C assimilation rates
during long-term drought but increase their IWUE [4,33]. By comparison, the IWUE
in Pinus ponderosa tends to decrease with strong diffusion disruptions under extended
drought [34]. Erica multiflora, in contrast, will modify its water use strategy depending on
the severity of the drought. E. multiflora is known to increase its IWUE to reduce water
losses during mild drought and decrease its IWUE during severe drought [9]. These studies
have emphasized that there is not always a single suite of tradeoffs between use efficiencies
of constraining and non-constraining resources [12,23]. Together, the impact of long-term
drought on RUEs may be very different than what would be recorded over the short term.

In northwest China, the temperate semiarid climate of the region is extremely variable,
commonly characterized by its very cold winters and hot summers. The precipitation
during summer is featured as infrequent and irregularly distributed, and it is inconsistent
from year to year [35,36]. A typical summer drought is usually accompanied by very
high air temperatures, excessive global solar radiation, and low soil water content. These
conditions typically persist for several months at a time, causing significant problems for
plant growth and survival [2]. Just how local shrubs adjust their internal water and N
budgets to adapt to extreme drought remains uncertain.
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Artemisia ordosica and Salix psammophila are two common shrub species found growing
in the semiarid areas of the Mu Us Desert [37]. A. ordosica is a slow-growing shrub with
short needle-shaped leaves, commonly reaching a height of about 0.5 m. Its main root
extends to about 0.5 m. In contrast, S. psammophila has narrow leaves and a relatively open
canopy. Mature plants can reach a height of between 2–3 m. The plant has an abundance of
horizontally distributed roots [38,39]. Leaf phenology in A. ordosica and S. psammophila is
about the same, with leaf development from April until May, and in September, there is the
onset of leaf senescence. As the dominant shrubs in the area, resource competition between
these two species has drawn much attention [36,38,40].

Previous studies have suggested that A. ordosica can assimilate more C than S. psam-
mophila through improved photosynthetic performance and high PSII photochemical ef-
ficiency during short-term drought [12,41,42]. However, it is unclear whether long-term
drought can further limit water and N budgets in xerophytic plants and change their
interactions. This increases the uncertainty in the prediction of shrubland productivity
in response to extreme weather events [43]. We hypothesize that (i) A. ordosica maintains
higher rates of photosynthesis during severe drought by the efficient use of water resources
and that (ii) the increase in the IWUE in xerophytic shrubs during long-term drought may
be attributed to decreased stomatal conductance. Our main objectives of the study were
to (i) examine the physiological plasticity of two xerophytic shrubs exposed to long-term
summer drought and (ii) elucidate the mechanisms by which water and N budgets in the
shrubs are affected by long-term water shortages.

2. Materials and Methods
2.1. Site Description

This study was conducted at the Yanchi Research Station near the southern edge of
the Mu Us Desert, northwest China (37◦42′31′′ N, 107◦13′47′′ E, 1530 m above mean sea
level, a.s.l.). The climate is mid-temperate, semiarid continental with a mean annual air
temperature of 8.3 ◦C and precipitation (MAP) of 292 mm; the meteorological data were
derived from a local weather station about 20 km from the research station. Precipitation
shows large seasonal (~80% falling during June–September) and inter-annual variations
(145–587 mm for the period 1954–2004) [44]. The soil is an Arenosol (the FAO-UNESCO
soil classification) with a total nitrogen content of 0.1–0.2 g kg−1 and a soil organic carbon
(C) content of about 2.0 g kg−1 [45].

The shrubland community is dominated by a mixture of xerophytic shrub species,
including A. ordosica, Hedysarum mongolicum, S. psammophila, and Hedysarum scoparium, with
mean area coverage of 35, 30, 15, and 5%, respectively. A minor grass component accounts
for about 15% of the ground coverage, involving a mixture of Leymus secalinus, Stipa glareosa,
and Pennisetum centrasiaticum. All plants grow naturally without human interference. The
upper soil (i.e., 0–30 cm) water supply is entirely derived from precipitation, as the water
table lies well below 8 m below ground.

2.2. Gas-Exchange Measurements

The long-term observation plot (20 m × 30 m) was located on a fixed sand dune on the
western side of the Yanchi Research Station. The terrain of the plot was characterized by
its flat topography, with slopes measuring less than 10◦ [46]. The dominant shrub species
within this plot were A. ordosica and S. psammophila, with an average age of 17 years [47].
Gas exchange measurements were conducted on three randomly established 5 m × 5 m
plots in the experimental plot. Three individuals each of both A. ordosica and S. psammophila
with similar growth and no pests or diseases were selected in each plot as biological
repetitions (n = 9). The growth information of the individual plants is shown in Table 1.
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Table 1. Growth characteristics of monitored sample plants of Artemisia ordosica and Salix psammophila
in 2021. Bracketed values are standard error of estimate (SE, n = 9).

Variables
Species

A. ordosica S. psammophila

Crown diameter (cm × cm) 115 × 105 127 × 112
Maximum height (cm) 57 (5) 222 (13)
Canopy coverage (%) 82 (5) 93 (3)

Aboveground biomass (g m−2) 433 (32) 2910 (78)

Leaf gas exchange measurements were acquired in situ on fully expanded leaves of
A. ordosica and S. psammophila, using a portable gas exchange analyzer (LI-6400; Li-Cor
Inc., Lincoln, NE, USA) equipped with a chamber with red and blue LED light sources
(6400-02B; Li-Cor Inc., Lincoln, NE, USA). The measurements were conducted every ten
days from June until August in 2019 and 2021. A cluster of sunlit leaves in the upper
canopy of each individual were measured between 8:00 and 10:00 am (Standard Beijing
Time, UTC+8 h, before the stomata closed at noon) on near-cloud-free, sunny days. Before
making measurements, the leaves were acclimated in the chamber for 15–20 min at a
temperature of 25 ◦C, relative humidity of 50–70%, CO2 concentration of 400 parts per
million by volume (ppm), and a light-saturated photosynthetic photon flux density (PPFD)
of 1800 µmol m−2 s−1(based on the results of light response curves, Figure S1) until the net
C assimilation rate (An) stabilized [42,43]. Then, the light-saturated net C assimilation rate
(Asat), stomatal conductance (gs), and transpiration rate (E) were recorded; the IWUE was
calculated as the ratio of Asat to E.

2.3. Specific Leaf Area and N Concentration

Owing to the fact that the leaf areas of A. ordosica and S. psammophila are very small, a
cluster of leaves measured by gas exchange cannot directly measure leaf traits (e.g., leaf
nitrogen concentration). Following the gas exchange measurements, leaf samples were
excised from neighboring shrubs (n = 9) with characteristics similar to the shrubs used in
the gas exchange measurements to assess the leaf area, dry weight, and N concentration of
the foliage [12,43]. The leaf area was computed from photographs of the sampled foliage
using the ImageJ software version_v1.8.0 [48]. Each leaf was subsequently oven-dried
for 72 h at 65 ◦C and weighed to facilitate the calculation of the leaf dry mass per leaf
area (LMA). The leaf N concentration (LNC) was determined with an elemental analyzer
(Vario Max CN Element Analyzer, Elementar, LSB, Langenselbold, Germany). The nitrogen
content per leaf area (i.e., Narea) was estimated from the LNC and LMA, with the PNUE
being specified as the ratio of Asat to Narea.

2.4. Hydrometeorological Measurements

Environmental factors were measured at the same time that the gas exchange measure-
ments were acquired. Air temperature (Ta) and relative humidity (RH) were measured with
a humidity and temperature probe (HMP155 A, Vaisala, Helsinki, Finland), while photo-
synthetically active radiation (PAR) was measured with a quantum flux sensor (PAR-LITE,
Kipp & Zonen, Delft, The Netherlands), both mounted on a 6 m tall eddy-covariance (EC)
tower located nearby (about 100 m). Precipitation (PPT) was assessed by a tipping-bucket
rain gauge (TE525WS, Campbell Scientific Inc., Logan, UT, USA) installed in an opening
adjacent to the EC tower. The volumetric soil water content near the tower was measured
at two soil depths (i.e., at 10 and 30 cm depths), with each depth having three replicate
sensors installed (i.e., ECH2O-5TE, Decagon Devices, Pullman, WA, USA). In this study,
we only considered the effect of the soil volumetric water content at a 30 cm depth on the
photosynthesis of Artemisia ordosica and Salix psammophila due to the fact that the main root
systems of two species are usually distributed at about a 30 cm soil depth [42].
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2.5. Data Analysis

The data were checked for normality (by means of the Kolmogorov–Smirnov test)
and homogeneity of variance (Levene’s test). For all variables, the data were analyzed by
two-way ANOVA, with season and species as the main fixed factors plus a season × species
interaction term. Linear regression was used to determine the relationship between the
PNUE, IWUE, and related biophysical factors. Slopes of linear regression were used
to denote the sensitivity of the RUEs to the various biophysical factors. Testing of the
differences in the slopes between species or years was accomplished with the diffslope
option in the Simba R-library. All statistical analyses were performed using the R platform
version 3.6.3 (The R Development Core Team) and SPSS version 25.0 (SPSS Inc., Chicago,
IL, USA). The critical p-value denoting statistical significance was set at 0.05.

3. Results
3.1. Seasonal Changes in Environmental Factors

According to the meteorological data from the local weather station over the past
60 years (i.e., from 1962–2021), we compared the shrubs’ responses during a wet summer
in 2019 against their responses during an unusually dry summer in 2021 (Figures 1 and 2).
The total precipitation (PPT) during the summer of 2019 was 189 mm, which was 27%
greater than the 1962–2021 mean. During this time, the volumetric soil water content (VWC)
remained high, ranging from 0.066–0.16 m3m−3 during the entire summer, with a mean
value of 0.10 m3m−3 (Figure 2).
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Figure 1. Interannual variation in annual total precipitation (PPT) during the June–August period of
1962–2021. The cross-hatched vertical areas show the years with the driest summers (1965 and 2021)
during the past 60 years (1962–2021).

By contrast, during the unusually dry summer of 2021 (i.e., June–August), the PPT
was the lowest (68 mm) over the 60-year period (except for 1965), which was about 54 and
64% lower than the 60-year and 2019 means, respectively. The soil water content during
the summer of 2021 remained low, ranging from 0.059–0.082 m3m−3 (Figure 2), and the
mean VWC decreased by about 35% relative to the 2019 mean.

Moreover, the mean air temperature (Ta) was 1.8 ◦C greater than the 2019 mean, and
the mean water vapor pressure deficit (VPD) was 49% greater than the 2019 mean (Figure 2).
Especially in July, the mean Ta was 3.7 ◦C greater than the 2019 mean, and the mean VPD
was 61% greater than the 2019 mean. Although both shrub species experienced severe
drought during the summer of 2021, no widespread leaf discoloration (i.e., progressive
color change from green to yellow) or shedding was observed.
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Figure 2. Seasonal variation in daily mean air temperatures (Ta, (a,b)), water vapor pressure deficit
(VPD, (c,d)), photosynthetically active radiation (PAR, (e,f)), and volumetric soil water content at a
30 cm depth (VWC, (g,h)) during the summer (i.e., June–August) of 2019 and 2021, respectively.

3.2. Seasonal Changes in Asat, gs, and E

The parameters Asat, gs, and E for both species gradually increased over time during
the wet summer (Figure 3a–f). The photosynthetic performance of A. ordosica peaked in
early August, and the peak date of S. psammophila was about 20 days behind that of A.
ordosica. Better photosynthesis was observed during the wet summer in A. ordosica. The
mean Asat, gs, and E in S. psammophila were significantly lower (by 60.9, 63.3, and 62.2%,
respectively) than the same values in A. ordosica during the wet summer (Figure 3a–f).
Relative to the wet summer, the dry summer had significant declines in photosynthesis
in both species, leading to a variable impact on the two species (Figure 3a–f). All the
gas exchange parameters declined from early July until early August (DOY 183–213),
maintaining low levels until the end of the study period. The mean Asat, gs, and E in S.
psammophila were significantly lower at about 68.2, 61.5, and 44.1%, respectively, of the
equivalent values in A. ordosica during the dry summer (Table 2). There were significant
interactions between season and species for gs and E (Table 2).
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Figure 3. Seasonal difference in light-saturated net C assimilation rate (Asat, (a,b)), stomatal conduc-
tance (gs, (c,d)), and transpiration rate (E, (e,f)) in A. ordosica (AO, left-side panels) and S. psammophila
(SP, right-side panels), respectively. Error bars represent standard error. Asterisks represent significant
differences in each measurement point on the same DOY between wet and dry summers (p < 0.05).

Table 2. Two-way ANOVA results of the effect of season, species, and season × species on plant
parameters.

Variables
Season Species Season × Species

F p F p F p

Asat 17.56 <0.0001 38.15 <0.0001 2.17 0.15
gs 42.17 <0.0001 57.17 <0.0001 10.62 <0.01
E 17.61 <0.001 34.16 <0.001 7.81 <0.05

IWUE 0.98 0.33 12.11 <0.01 15.89 <0.0001
PNUE 15.40 <0.001 35.59 <0.0001 0.69 0.41
LMA 2.03 0.09 22.73 <0.0001 0.53 0.47
Narea 14.51 <0.001 20.09 <0.0001 0.21 0.65
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3.3. Seasonal Changes in LMA and Narea

The seasonal LMA values associated with A. ordosica and S. psammophila during the wet
summer usually reached their maxima in early June (121.0 vs. 106.6 g m−2, respectively) and
subsequently decreasing during the rest of June, stabilizing from July–August (Figure 4a,b).
The leaf mass per leaf area in A. ordosica showed higher seasonal variability than the LMA
in S. psammophila (Figure 4a,b). The mean LMA in the two shrub species did not differ
between the two summers. Irrespective of wet or dry conditions, the mean LMA associated
with A. ordosica was appreciably greater than the LMA in S. psammophila (Figure 4; Table 2).
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Figure 4. Seasonal variation in leaf mass and N content per leaf area (LMA, (a,b); Narea, (c,d))
associated with A. ordosica (AO, left-side panels) and S. psammophila (SP, right-side panels), respec-
tively. Error bars represent standard error. Asterisks represent significant differences for individual
measurements during the same DOY during both wet and dry summer periods (p < 0.05).

The seasonal patterns in Narea were generally similar to those of the LMA, while in
the wet summer, Narea reached the maximum at the end of summer, and the peak dates
were about 60 days behind the LMA. Compared with the wet summer, the dry-summer
mean Narea for A. ordosica and S. psammophila decreased by 17.9 and 17.7%, respectively.
Regardless of wetness, the mean Narea associated with A. ordosica was largely greater than
the corresponding value in S. psammophila (Figure 4; Table 2).

3.4. Seasonal Changes in the PNUE and IWUE and Their Controlling Factors

The seasonal PNUE during the wet summer was generally lowest in early summer,
peaking in August (Figure 5c,d). The mean PNUE of A. ordosica was about twice that of S.
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psammophila. During the dry summer, seasonal variations in the PNUE were mostly similar
to the variation observed in both Asat and gs (Figure 3a–d). The mean PNUE in A. ordosica
and S. psammophila significantly decreased from the wet to the dry summer, with reductions
of 35.7 and 47.4%, respectively.
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Figure 5. Seasonal variation in photosynthetic N and instantaneous water use efficiencies (PNUE,
(a,b); IWUE, (c,d)) in A. ordosica (AO, left-side panels) and S. psammophila (SP, right-side panels)
for the wet and dry summer periods, respectively. Error bars represent standard error. Asterisks
represent significant differences for individual measurements during the same DOY during both wet
and dry summer periods (p < 0.05).

Unlike the seasonal trends in the PNUE during the wet summer, the seasonal IWUE
usually fluctuated around 3 µmol mmol−1 during the wet summer, irrespective of species.
The response of the IWUE to long-term drought varied as a function of species (Figure 5c,d).
The instantaneous water use efficiency in A. ordosica continuously increased as the drought
persisted, eventually reaching a net increase of about 28% during the wet summer. In
S. psammophila, the IWUE steadily decreased during the dry summer and was usually
<1.2 µmol mmol−1 at the end of the July–August period. There was a significant interaction
effect between season and species on the IWUE (Table 2).

The results revealed that the seasonal variations in the plant RUEs during the wet
summer were largely linked to variations in gs (Figure 6). Both the PNUE and IWUE
increased with increasing gs (Figure 6c–f). During the dry summer, the PNUE in A. ordosica
generally decreased with decreasing gs, VWC, and Narea (Figure S2; Table S1), whereas in
S. psammophila, the PNUE decreased with increasing Ta and decreasing gs, VWC, LMA,
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and Narea (Figure S2; Table S1). The seasonal IWUE in A. ordosica during the dry summer
increased with decreasing gs, LMA, Narea, and VWC (Figure S3; Table S1). In contrast,
the IWUE in S. psammophila decreased with decreasing gs and VWC and increasing Ta
(Figure S3; Table S1).
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Figure 6. Pairwise relationships between light-saturated net C assimilation rates (Asat, (a,b)), instanta-
neous water use efficiency (IWUE, (c,d)), photosynthetic N use efficiency (PNUE, (e,f)), and stomatal
conductance (gs) associated with A. ordosica (AO, left-side panels) and S. psammophila (SP, right-side
panels), respectively. Subscripted letters that differ, both across and within panels, denote statistically
significant differences (i.e., p < 0.05).
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4. Discussion
4.1. Seasonal Response of Leaf Photosynthesis to Long-Term Summer Drought

Compared with the wet summer, the severe summer drought significantly reduced
Asat in A. ordosica and S. psammophila by 45.1 and 55.4%, respectively. These results were
consistent with reductions observed in C assimilation in deciduous plants exposed to
drought [33,49]. These results support the conclusion that A. ordosica had a greater tolerance
to drought than S. psammophila (Table 2; [12,38,42]).

It is well documented that under drought, plants optimize C assimilation while mini-
mizing water losses by reducing gs [50,51]. The strong coupling between net assimilation
and gs reveals the importance of water in controlling assimilation rates [8,42,52]. Some stud-
ies have shown that there is a diversity of stomatal responses among plant species [49,53].
Compared to the wet season, the C assimilation rate in two xerophytic shrubs, namely
Ipomoea carnea and Jatropha gossypifolia, decreased during dry seasons, while the relative
stomatal limitation (Ls) in J. gossypifolia decreased by 27% [54]. Down-regulation of pho-
tosynthesis in some Mediterranean shrubs (e.g., Erica multiflora and Eugenia uniflora) was
strongly coupled with metabolic damage and biochemical restrictions and depended less
on gs [9,55].

In this study, Asat tended to decrease as gs decreased in both the wet and dry sum-
mers (Figure 6a,b). The slopes of the Asat-to-gs relationships for each species were clearly
steeper during the drought, indicating that drought stress increased the sensitivity of gs in
both shrubs. This is consistent with findings associated with plants in savanna commu-
nities [8,56]. Moreover, although the degree of the decrease in gs of the two species in the
dry summer was very close, the mean gs of S. psammophila in the dry summer was only
about 38% of that of A. ordosica. This result indicated that S. psammophila, with a low carbon
assimilation rate, underwent stricter stomatal closure during the dry summer.

Drought adjustments of biochemical and structural traits indicated the changes in
activity of the photosynthetic apparatus [31]. In our study, the differences in the LMA
between species were greater than the seasonal differences (Table 2). This was consistent
with prior results [21]. Some studies have reported that tropical trees and blue oak trees can
maintain a stable leaf N content even after being exposed to severe drought [8,57,58]. At our
study site, we observed a rapid decrease in Narea during the dry summer in both species.
This result was consistent with previous studies concerning xerophytic shrubs [43,59].
Moreover, the down-regulations of the quantum yield of photosystem II (PSII) and leaf
photosynthetic capacity induced by drought were generally related to the decrease in the
leaf nitrogen content [60]. The high N losses and low Asat values in S. psammophila during
drought, compared to A. ordosica, suggested that S. psammophila may have suffered more
from extensive metabolic damage than A. ordosica [42,50].

4.2. Tradeoffs between the IWUE and PNUE during Long-Term Summer Drought

The means of the IWUE for the two xerophyte shrubs were well within the range
(i.e., 1.0–6.5 µmol mmol−1) reported for 14 separate shrubland species [39,61–63]. We
found that the two xerophytic species took diverse water use strategies in the wet summer.
Despite the fact that there were no species differences in the IWUE during the wet summer
between A. ordosica and S. psammophila, the transpiration rate in A. ordosica during the wet
summer was significantly greater than the rate in S. psammophila (Figure 3e), indicating
that A. ordosica used a more wasteful water use strategy during the wet summer period
than S. psammophila [42]. A similar water-wasting strategy was observed in a desert annual
sunflower, Helianthus anomalus, whereby more leaf N was transported by transpiration
flow [64]. This could explain why the leaf N content and PNUE in A. ordosica were
substantially higher than the corresponding values in S. psammophila. We infer that under
conditions of high soil water availability, xerophytic species that invest more N resources
into photosynthesis are capable of assimilating more C.

Temporal variations in RUEs are affected by climatic factors [6,10], plant physiol-
ogy [12,65], and soil nutrient content [15]. Understanding the dynamics in the IWUE and
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PNUE and their underlying regulatory mechanisms can improve our ability to predict the
effects of climate change on C and water cycles in dryland ecosystems. We found that for
the two shrub species, whether in the wet or dry summer conditions, the seasonal variations
in the IWUE and PNUE were largely dependent on changes in gs, which is consistent with
prior studies that have reported strong correlations between plant resource acquisition
and gs [12]. Both the IWUE and PNUE were shown to respond differently to the wet and
dry summer conditions. This suggests that xerophytic shrubs have elevated physiological
plasticity in terms of resource acquisition. The seasonal adjustments in the water and N
use strategies in the xerophytic shrubs during the severe summer drought were largely
triggered in response to reductions in soil moisture, a result that is comparable to studies
on Cneorum tricoccon [66], Ephedra alata [67], and Stipa breviflora communities [68]. The
drought-induced reduction in the PNUE in the two species was consistent with previous
studies [57]. Some studies have reported that the reduction in PNUE under drought stress
was completely caused by assimilation loss [8,31]. In our study, the drought adaptation
of the PNUE was closely related to stomatal closure and leaf nitrogen loss (Table S1). The
decrease in the PNUE was mainly due to the greater drought sensitivity of the net assimila-
tion rate compared to Narea, and this was consistent with findings in other drought-tolerant
species [21].

The relationship between dissimilar RUEs may exhibit various patterns at different
spatiotemporal scales and environmental settings [23,35]. We found that the seasonal
relationship between the IWUE and PNUE during the dry summer depended on the
response of the IWUE to long-term drought at the species level. The tradeoff by sacrificing
the PNUE while increasing the IWUE was only observed in highly drought-tolerant species
such as A. ordosica (Figure 7). This result contradicts the belief that patterns of the IWUE
and PNUE in co-existing plant species tend to converge [28,29].
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Figure 7. Seasonal relationships between instantaneous water and photosynthetic N use efficiencies
(i.e., IWUE and PNUE) in A. ordosica (AO, (a)) and S. psammophila (SP, (b)) during the wet and dry
summer periods.

In water-limited environments, photosynthetic C gains and water losses by transpira-
tion are in a permanent state of adjustment, as both are regulated in opposite directions
with changes in gs [28]. However, the duration of drought played a critical role in regulating
the response of the IWUE [9,10]. During the short-term drought, the observed increase
in the IWUE was largely due to the fact that the sensitivity of the net assimilation rate
to gs was often lower than the sensitivity of the transpiration rate to gs [15,69]. During a
long-term drought, a slow or conservative strategy may become disadvantageous because
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slow traits are costly to maintain [3]. A sustained low gs may amplify the limitations of
stomatal closure on plant physiology. For example, a further decrease in gs causes cor-
responding decreases in Fv/Fm and the rubisco initial activity [70], further affecting the
IWUE [33,34]. Some studies have emphasized interspecific differences in plasticity in the
IWUE [51,71], with the difference largely determined by differences in the regulation of
stomatal conductance and transpiration [70,72]. We found significant species differences
in the ability to regulate the IWUE via gs, as suggested by the range in gs and the degree
that the stomata could remain open during the dry summer conditions (Figure 3; Figure 8).
In general, A. ordosica presented a higher plasticity to drought by maximizing Asat during
favorable conditions in early summer and regulating gs (causing the IWUE to increase) dur-
ing prolonged drought. However, the low sensitivity of E to changes in gs in S. psammophila
suggested an even weaker control of E under extremely low gs (Figure 8). Our research
illustrated the need to assess plasticity in gs when addressing plant adaptation to long-term
summer drought.
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Figure 8. Relationships between transpiration rate (E) and stomatal conductance (gs) in A. ordosica
(AO) and S. psammophila (SP) during summer drought. The inset illustrates changes in transpiration
rate (E) under various levels of stomatal conductance (gs) in the two shrub species. The different
subscripted letters assigned to slopes denote statistically significant differences (i.e., p < 0.05).

5. Conclusions

Whether during wet conditions or drought, the gas exchange parameters and PNUE
in A. ordosica were greater than those in S. psammophila. A. ordosica maintained greater
photosynthetic performance and an increased IWUE during severe summer drought,
supporting the belief that A. ordosica is more tolerant of drought than S. psammophila.
The seasonal trends in the IWUE and PNUE were more highly dependent on changes
in stomatal conductance. The seasonal adjustments in both the IWUE and PNUE in the
xerophytic shrubs during drought responded to local reductions in soil moisture. Moreover,
the seasonal relationships between the IWUE and PNUE depended more on the response
of the IWUE at the species level, largely because of differences in the plasticity of stomatal
conductance. Our findings emphasized that physiologically plastic species can maintain
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their positions in extreme hot–dry environments by constantly adjusting their rate of
photosynthesis and resource use efficiency.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy14050975/s1, Figure S1: Photosynthetic light-response
curves of A. ordosica (AO, left-side panels) and S. psammophila (SP, right-side panels). Different colours
represent different individuals of A. ordosica and S. psammophila; Figure S2: Pairwise relationships
between photosynthetic N use efficiency (PNUE) and air temperature (Ta, a and b), water vapor
pressure deficit (VPD, c and d), photosynthetically active radiation (PAR, e and f), and volumetric
soil water content at a 30 cm depth (VWC, g and h) associated with A. ordosica (AO, left-side panels)
and S. psammophila (SP, right-side panels), respectively; Figure S3: Pairwise relationships between
instantaneous water use efficiency (IWUE) and air temperature (Ta, a and b), water vapor pressure
deficit (VPD, c and d), photosynthetically active radiation (PAR, e and f), and volumetric soil water
content at a 30 cm depth (VWC, g and h) associated with A. ordosica (AO, left-side panels) and
S. psammophila (SP, right-side panels), respectively; Table S1. Correlation coefficients for pairwise
relationships between resource use efficiency (RUE, with respect to water and N use) and leaf mass
and N content per leaf area (LMA and Narea). Statistically significant correlations (p < 0.05) are
displayed in bold.
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