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Abstract: Nodulation is the most efficient nitrate assimilation system in the ecosystem, while exces‑
sive fertilization has an increased nitrate inhibition effect; deciphering the nitrate signal transduction
mechanism in the process is of the utmost importance. In this study, genome‑wide analyses of the
GmCEP genes were applied to identify nodulation‑related CEP genes; 22 GmCEP family members
were identified, while GmCEP6 was mainly expressed in nodules and significantly responded to ni‑
trate treatment and rhizobium infection, especially in later stages. Overexpression andCRISPR‑Cas9
were used to validate its role in nodulation. We found that GmCEP6 overexpression significantly in‑
creased the nodule number, while GmCEP6 knock‑out significantly decreased the nodule number,
which suggests that GmCEP6 functions as a positive regulator in soybean nodulation. qRT‑PCR
showed that alterations in the expression of GmCEP6 affected the expression of marker genes in the
Nod factor signaling pathway. Lastly, the function of GmCEP6 in nitrate inhibition of nodulation
was analyzed; nodule numbers in the GmCEP6‑overexpressed roots significantly increased under
nitrogen treatments, which suggests that GmCEP6 functions in the resistance to nitrate inhibition.
The study helps us understand that GmCEP6 promotes nodulation and participates in the regula‑
tion of nitrate inhibition of nodulation, which is of great significance for high efficiency utilization
of nitrogen in soybeans.

Keywords: CEP peptide; nitrogen inhibition; soybean; nodulation

1. Introduction
Nitrogen is one of the essential macroelements for plant growth, development, yield,

and quality formation [1]. Therefore, improving nitrogen utilization efficiency is an im‑
portant guarantee for high and stable soybean yields [2]. Legumes can not only absorb
nitrogen from nitrogen‑containing compounds such as ammonium and nitrate contained
in the soil but also provide nitrogen by reducing free nitrogen to ammonia through sym‑
biotic nitrogen fixation with rhizobia. The soybean, as an important symbiotic nitrogen
fixation food crop, needs the rhizobia‑soybean symbiotic system to fix the 50~90% nitro‑
gen nutrition required for its growth [3]. Previous studies have shown that applying an
appropriate amount of nitrogen fertilizer before sowing soybean can promote root nod‑
ule primordium formation and nodule organogenesis, improve the growth performance
of rhizobia, promote plant growth, and provide effective carbon sinks and energy sinks for
symbiotic nitrogen fixation [4]. Therefore, the symbiotic nitrogen fixation system between
legume crops and rhizobia plays a very important role in nitrogen cycling.

Nitrogen uptake by plants from the soil is mainly in the form of nitrate [5]. Nitrate,
however, tends to be unevenly distributed in soils. Thus, plants have evolved a systematic
long‑distance signaling pathway (CEP‑CEPR module) for compensatory nitrate uptake in
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a N‑starvation side of the root system [6]. The CEP polypeptide is one of the largest pep‑
tide signal groups secreted by plants; biochemical and functional evidence suggests that
15 amino acid peptides derived from the C‑terminal region of precursor peptides act as lig‑
ands to regulate various stages of plant growth and development. Although CEP peptides
have long been known to play a role in local cell‑to‑cell communication within specific tis‑
sues, recent advances indicate their new role as long‑distance mobile signals required for
systemic nutritional responses [7,8].

The Arabidopsis genome contains 15 CEP genes [9], of which seven are upregulated
about 10 times in response to N starvation [10]. They are expressed specifically in the
stele of lateral roots and are loaded into xylem vessels for transportation to the shoots [11].
The CEP family peptides are then recognized by receptor kinase CEP receptor 1 (CEPR1),
which is expressed in leaf vascular tissue and induces the production of shoot secondary
signals that up‑regulate nitrate transport genes, such as NRT2.1, at the distal end of the
root to compensate for local N starvation [6]. Because CEP family peptides and CEPR1
are widely presented in seed plants, the CEP‑CEPR signaling module appears to be evo‑
lutionarily conserved [6,8]. InMedicago truncatula, MtCEP1 is the homologous of AtCEP9,
but there are two CEP domains in MtCEP1, which are mainly expressed in the root tip,
root vascular tissue, and lateral root meristem and are induced by different levels of nitro‑
gen treatments [11]. However, the developmental role of CEP polypeptides in soybeans is
not clear.

Here, 22 CEP family members were identified in soybeans through systematic bioin‑
formatic study. We found that the expression of GmCEP6was higher in roots and nodules,
and histochemical staining was applied to validate this result. The effect of GmCEP6 on
nodule development was evaluated, and we found that GmCEP6 functioned as a positive
regulator and was partially tolerant to nitrate inhibition of nodulation. The results of this
study may be utilized for high‑nitrogen‑fixation‑efficiency soybean breeding in future.

2. Materials and Methods
2.1. Identification and Bioinformatic Analysis of GmCEP Genes

AtCEPs (Arabidopsis thaliana CEP genes family, AtCEPs) protein sequences were ob‑
tained from theArabidopsis Information Resource database (https://www.arabidopsis.org/,
(accessed on 2 January 2022)) [12]. The genome sequence, gff3 file, and protein sequence of
soybean (Glycinemax)were downloaded from theEnsembl database (http://plants.ensembl.
org/index.html, (accessed on 4 January 2022)) [13]. The Blast wrapper tool in the bioin‑
formatic analysis software TBtools v2.056 was applied to retrieve the GmCEPs based on
the AtCEP protein sequence. After removing the duplicates of the GmCEP sequences,
the amino acid sequences of remaining GmCEPs were submitted to the InterPro database
(https://www.ebi.ac.uk/interpro/, (accessed on 14 January 2022)) [14] for protein domain
prediction. Conserved CEP (C‑terminal Encoded peptide) domains containing GmCEPs
were screened for further analysis. The ProtParam (https://web.expasy.org/protparam/,
(accessed on 11 February 2022)) [15] database was used for the physical and chemical prop‑
erties analysis, including the number of amino acids, theoretical isoelectric point (pI), and
relative molecular mass. The online website MEME (https://meme‑suite.org/meme/, (ac‑
cessed on 17 February 2022)) [16]was used for characteristic analysis of theGmCEPsmotifs.
TheMuscle program ofMEGA‑Xwas applied to construct the CEPs’ phylogenetic tree; the
NJ (neighbor‑joining) [17] adjacency method was used to analyze the evolution distance.

2.2. Plant Materials and Growth Conditions
Soybean (G. max L. cv. Williams 82) seeds (kindly provided by Professor Xia Li from

Huazhong agriculture university for research only) were surface‑sterilized in 95% alcohol
for 1 min and in 5% NaClO for 5 min, then washed several times using ddH2Owater. The
basic nutrient solutionwas referred to in a previous publication [18]. KNO3 was selected as
a nitrogen source to set different nitrate concentrations, with no nitrogen (0 N, 0 mM), low
nitrogen (LN, 4 mM), and high nitrogen (HN, 16 mM). Soyabeans were planted in 12 cm
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square boxes with a common vermiculite substrate. One soyabean plant was planted in
each box and cultured in a growth house with photoperiod cycle (light/dark: 14 h/10 h) at
25 ◦C cultivation temperature, under the light intensity 10,000 lx and 70%. On the 10th day
after seeding, the seedlings developed into the cotyledon stage and were inoculated with
rhizobium bacteria, and the roots were harvested on the 7th day after seeding. After inoc‑
ulation with rhizobia, HAI was the duration of different short‑term treatments within 24 h,
and DPI was the number of days of treatment. Agrobacterium rhizogenes strain K599 was
used for the hairy‑root transformation. The hairy‑root transformation procedure was as
previously described, with some modifications [14]. Soybeans sown with common vermi‑
culite for 3 days were selected for hairy‑root transformation and were inoculated with rhi‑
zobia on the 7th day after planting, and the roots were harvested on the 14th and 28th day
after treatment, respectively. During the whole plant‑growth period, nitrogen‑free nutri‑
ent solution and water were required to be irrigated in rotation. The 14th and 28th days
after inoculating the soybean seedlings with rhizobium were two important early nodu‑
lation development periods. For the nodulation assay, the plants were inoculated with a
suspension of B. japonicum strain USDA110 (30 mL, OD600 = 0.08).

2.3. Vector Construction
For the GmCEP6 promoter, a GUS reporter fusion construct, 2369 bp upstream ATG

of GmCEP6 region, was selected and amplified from cv. Williams 82 genomic DNA and
cloned into pMDC162 though a gateway system. TheGmCEP6 full‑length coding sequence
was cloned into pB7RWG2.0 using the same strategy for the overexpression construction.
For theCRISPR‑Cas9 construction, the top two reliable sgRNAs (small guideRNA, sgRNA),
CATGAACTACTCGGTAGTGAGGGandCCGTAGCATTAGAAGCCTAGGGwere selected.
Then, vector pCBC‑DT1T2 was used as a template to clone the two CRISPR fragments, and
the two obtained products were inserted into vector pKSE401‑GFP.

2.4. RNA Extraction and Expression Analysis
RNAprep Pure Plant plus Trizol Kit was used to extract RNA from collected transgenic

hairy roots, soybean leaves, roots, and nodules, and the first‑strand cDNA was synthesized
using a super Mix Kit (Hifair II 1 strand cDNA Synthesis SuperMix, gDNA digester plus)
(Yeasen Biotech Co. Ltd., Shanghai, China). qPCR was performed using SYBR Green Jump‑
Start Taq ReadyMix (Sigma‑Aldrich, St. Louis, MO, USA). GmCYP2 was used as an internal
control [19]. (The primers used in this study are shown in Table S1).

2.5. Histochemical Analysis of GmCEP6 Expression
Composite transgenic roots expressing GmCEP6pro:GUS were inoculated with B. japon‑

icum strainUSDA110. The transformedhairy roots at different infection andnodulation stages
were stained with X‑Gluc at 37 ◦C for 8 h to test for β‑glucuronidase activity. GUS activity
was observed with a light microscope (OLYMPUS U‑TV0.5XC‑3).

2.6. Statistical Analysis
One‑way analysis of variance (ANOVA) and Student’s t‑test were used to performed

p values. The gene expression and nodule numbers were analyzed using IBM SPSS 22.0 and
GraphPad Prism 5 (GraphPad Software). The data aremeanswith±SE (Standard Error) from
three independent replicates. The statistical differences are marked as follows: * p < 0.05;
** p < 0.01; *** p < 0.001.

3. Results
3.1. Identification and Physicochemical Properties of the Soybean CEP Family Gene

22 soybean CEP gene family members were obtained from the soybean genome by us‑
ing BLAST and HMMER search and were named GmCEP1‑22 according to their chromoso‑
mal positions; the amino acids residues encoded by them ranged from 80 (GmCEP6) to 163
(GmCEP20), and the molecular weights of the 22 GmCEPs ranged from 8740.03 (GmCEP6)
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to 17,533.65 (GmCEP20) Da. Theoretical isoelectric points of 22 GmCEPs family members
ranged from 6.26 (GmCEP22) to 10.60 (GmCEP19) and belonged to alkaline proteins (Table 1).
Six members of the GmCEPs family contained two CEP motifs, while 16 contained one. Con‑
served domains analysis of GmCEP family members showed that Motif 1 and Motif 2 were
present in all CEP proteins. Motif 5 is the secondmotif in theGmCEP family, with 16 CEP pro‑
teins containing this motif. The least contained motif is Motif 9, with only two CEP proteins
containing this motif (Table 1; Figure S1). We found there were no introns in all 22 GmCEP
gene family members, according to the gene structure analysis (Figure S2).

Table 1. Characteristics of GmCEP family members.

Gene Name Gene ID Chromosomal
Location

Number of
Amino Acids

Theoretical
pI

Molecular
Weight (Average)

CEP Motif
Number

GmCEP1 Glyma.01G184800 1 99 8.71 11,292.71 1
GmCEP2 Glyma.01G184900 1 87 9.82 9211.79 1
GmCEP3 Glyma.01G185000 1 150 8.74 16,377.5 2
GmCEP4 Glyma.01G185100 1 94 7.09 10,099.56 1
GmCEP5 Glyma.05G083900 5 86 7.8 9800.21 1
GmCEP6 Glyma.05G084000 5 80 10.24 8740.03 1
GmCEP7 Glyma.05G084100 5 156 9.3 16,969.18 2
GmCEP8 Glyma.05G161100 5 96 10.21 10,600.58 1
GmCEP9 Glyma.08G118500 8 93 9.92 10,181.12 1
GmCEP10 Glyma.09G218000 9 85 9.1 9335.88 1
GmCEP11 Glyma.11G057100 11 87 8.03 9270.58 1
GmCEP12 Glyma.11G057200 11 148 9.34 15,859.04 2
GmCEP13 Glyma.11G057300 11 87 9.83 9277.83 1
GmCEP14 Glyma.13G226600 13 94 10.14 10,213.95 1
GmCEP15 Glyma.15G085800 15 88 9.78 9634.2 1
GmCEP16 Glyma.16G108400 16 82 9.3 9010.27 1
GmCEP17 Glyma.17G176500 17 86 9.14 9865.22 1
GmCEP18 Glyma.17G176800 17 152 8.89 16,346.37 2
GmCEP19 Glyma.17G176900 17 87 10.6 9658.01 1
GmCEP20 Glyma.17G177000 17 163 9.27 17,533.65 2
GmCEP21 Glyma.17G177300 17 158 8.63 17,110.26 2
GmCEP22 Glyma.17G244700 17 108 6.26 11,742.32 1

3.2. Phylogenetic Analysis of CEPs in Soybeans
In order to study the evolutionary relationships of soybeans with other plants, 22 soy‑

bean CEP amino acids sequences were aligned with 15 Arabidopsis thaliana (At) AtCEP pro‑
teins, 11Medicago truncatula (Mt) MtCEP proteins, and 15Oryza sativa (Os) OsCEP sequences,
collected for analysis. As shown in Figure 1, the CEP familymembers of the four species were
divided into three subfamilies (I, II, and III). There were 24 gene family members in group I
that contained 14 rice CEP family members. The remaining family members were from Ara‑
bidopsis (five), soybean (four), and one from M. truncatula. Except AtCEP16, the CEP family
members in Group II were from soybean andM. truncatula, which suggests it may be a dicots‑
or even legume‑specific group CEP. TenArabidopsis and eleven soybean CEP familymembers
were distributed in Group III.
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soybean CEPs, indicating that it might be involved in soybean and rhizobia interaction. 
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Figure 1. Phylogenetic analysis of CEPs in G. max (Gm), O. sativa (Os), A. thaliana (At), andM. trun‑
catula (Mt). The amino acid sequences of GmCEPs, OsCEPs, AtCEPs, andMtCEPswere downloaded
and submitted into MEGA‑X v10.0.0 software for alignment and phylogenetic tree construction; the
phylogenetic tree was constructed using the NJ (neighbor‑joining) adjacencymethodwith 1000 boot‑
strap replicates.

3.3. Digital Expression Pattern of CEPs in Soybeans
Adynamic expressionHeatmapwas constructed to dissect the soybean symbiotic related

GmCEPgenes; the online transcriptomedata of nine soybean tissues coveredmost organs, and
the developmental stages were analyzed. As shown in Figure 2, the results show that CEP
genes had diverse expression patterns in different developmental stages of organs and tissues;
for instance, most GmCEPs had similar expression levels in various tissues, while GmCEP22,
GmCEP15, and GmCEP5 had extremely low expression in other tissues, except for a higher
expression in one or two special tissues, which suggests that they might play a special role
in their corresponding biological processes. In particular, we found that GmCEP6 was the
highest expressed gene in root nodules among the 22 soybeanCEPs, indicating that itmight be
involved in soybean and rhizobia interaction. Nitrogen, including nitrate, ammonia, and urea,
had a significant effect on rhizobium infection and nodule initiation; the expression changes
of the above three nitrogen treatments of roots and leaves were compared to standard values.
We found thatGmCEP6was the only genewhichwas dramatically affected by the three kinds
of nitrogen treatment of both the leaf and root.
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Figure 2. The GmCEP expression profiles in different organs with or without treatments. The tran‑
scriptome data of GmCEP genes in nine tissues (root, stem, bud, leaf, flower, nodule, root tip, pod,
and seed) and three different treatment development stages (ammonia treatment, nitrogen treatment,
and urea treatment of root and leaf) were obtained from the phytozome database. The Heatmap
package in Tbtools [20] software was applied to show the expressed FPKM value in different tissues.

3.4. GmCEP6 Is Preferentially Expressed in Soybean Nodules
Bioinformatics analysis revealed that the full length transcript of GmCEP6 was 730 bp

with an entire exon, the cDNA contained a 5′ untranslated region (UTR) of 101 nucleotides
and 3′ UTR of 386 bp, and the gene contained a 243 bp open reading frame (ORF) (Figure 3A),
encoding a predicted 80 amino acid residues proteins with conserved C‑terminally encoded
peptides (CEP) (66‑80aa) (Figure 3B), similar to its homologs in other plant species. A com‑
parative analysis of GmCEP6 transcript levels was performed. Firstly, the relative expression
level ofGmCEP6 in nodules, root, stem, and leaveswas determined using qRT‑PCR, as shown
in Figure 3C;GmCEP6wasmainly expressed in roots and nodules, which indicates a possible
role of GmCEP6 in nodulation (Figure 3C). To further check the GmCEP6 expression in re‑
sponse to rhizobium infection, soybean seedlings were inoculated with Bradyrhizobium japon‑
icum USDA110, and the transcript abundance of GmCEP6 at different stages was confirmed,
as shown in Figure 3D; GmCEP6was weakly induced by USDA110 treatment and peaked at
16 DPI in infected roots, while dramatically decreased at 28 DPI. In addition, GmCEP6 was
markedly higher expressed in nodules than in roots at the checked time points (Figure 3D).
Finally, to visually determine the expression profile of GmCEP6 in soybean nodulation, trans‑
genic hairy roots harboring the ‑2kb promoter region upstream of GmCEP6 ATG were fused
to the β‑glucuronidase (GUS) reporter (pCEP6:GUS). Histochemical GUS staining was per‑
formed in transgenic hairy roots inoculated with rhizobia at 10 DPI. We found that GmCEP6
wasmainly expressed in the pericycle, nodule primordium, lateral root primordium, and root
nodule (Figure 3E–I). In addition, GUS signaling was mainly detected in the infection zone of
mature nodules (28 DPI). These results suggest thatGmCEP6may play a vital role in soybean
nodulation and nitrogen fixation.
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3.5. GmCEP6 Plays a Key Role in Soybean Nodulation
To determine the roles ofGmCEP6 in soybean nodulation, we generated transgenic hairy

roots carrying GmCEP6 overexpressing (OE) or GmCEP6‑CRISPR cas9 (KO). As shown in
Figure 4, both GmCEP6 overexpressing (OE) and GmCEP6‑CRISPR cas9 (KO) significantly af‑
fected soybean nodulation. In GmCEP6 overexpressing roots, qRT‑PCR was applied to check
the overexpression efficiency; the result showed that the transcript of GmCEP6 was about
20‑fold in the GmCEP6‑OE roots that in the control roots (Figure 4D). Then, the nodule num‑
bers per root was quantified at 14 and 28 days after inoculation; we found, in GmCEP6 over‑
expressing hairy roots, the nodule number increased by 2.875 times (14 DPI) and four times
(28 DPI), respectively. These data suggested that GmCEP6 plays a positive role in regulating
soybean nodulation.

To further check this, the effect ofGmCEP6 on soybean nodulation was evaluated inGm‑
CEP6‑CRISPR cas9 transgenic roots; gene editing and knock‑out efficiency were validated by
sequencing, and deletions and mutations can be detected in GmCEP6‑KO roots (Figure S3).
As shown in Figure 4E,F, in GmCEP6‑KO root lines, nodule numbers at 14 and 28 days were
decreased by 17 times and 44 times, respectively, compared with the control. Combined with
the overexpression results, it is suggested that GmCEP6 is critical for the regulation of soy‑
bean nodulation.
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3.6. GmCEP6 Affects the Expression of Related Genes in Nodulation Signal Pathway
As soybean nodule numbers were significantly affected byGmCEP6 overexpression and

GmCEP6 knock‑out, we questioned whether GmCEP6 regulates soybean nodulation through
the NF (Nodular Factor, NF) signaling pathway. To this end, we examined the expression
pattern of several NF pathway marker genes in GmCEP6 overexpressed or knocked‑out soy‑
bean roots. We selected GmENOD40 (Early nodulin), GmNINa (Nodule Inception), GmNSP1
(Nodulation Signaling Pathway 1), NF‑YA1 (GmHAP2‑1), and NF‑YA2 (GmHAP2‑2) to ver‑
ify this [21–24]. As shown in Figure 5, the expression of GmNINa, GmENOD40, GmNSP1,
GmHAP2‑1, and GmHAP2‑2 in GmCEP6‑OE roots was significantly increased compared with
that in empty vector control roots at 7 DPI. Meanwhile, we found the expression levels of
these genes in GmCEP6‑KO hairy roots were markedly reduced. These results suggest that
GmCEP6 regulates soybean nodulation and nodule number controlling via modulating these
symbiosis‑related Nod factor signaling pathway genes.

Nodule number is regulated by an autoregulatory mechanism and by the nitrogen state
of roots; a previous study on Medicago truncatula has shown that MtCEP1 increased nodula‑
tion and promoted nodule development at different nitrate concentrations. In order to inves‑
tigate the response degree of CEP6 to nitrogen, we selected a medium concentration (4 mM)
of nitrogen and high concentration (16 mM) of nitrate for treatment. It was found that CEP6
decreased with the increase of nitrogen concentration. However, we observed GmCEP6 over‑
expression in the hairy roots of 35s where CEP6 was treated with a high concentration of
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nitrate. Compared with WT, the number of overexpressed nodules was significantly higher.
These results indicated that soybean nodulation is enhanced by overexpression of GmCEP6,
and this tolerance to nitrogen inhibition for nodulation engaged by GmCEP6 could have ben‑
eficial outcomes in soybean breeding.
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4. Discussion
CEP peptides play multiple roles in various plant biological processes. The first iden‑

tified C‑Terminally encoded secreted peptide AtCEP1 significantly arrests root growth [25].
The following reports proved thatCEPgenes responded to nitrogendeficiency, drought stress,
and salt stress [26]. The CEP peptides were percepted by shoot expressed LRR‑RLK CEPR, to
mediate a systematic regulating of nitrogen deficiency [6]. Moreover, the CEP peptides and
cytokinin converge on CEPD glutaredoxins to inhibit root growth through a local system [27].
The CEP peptides family number varied in different plants; there were 15 CEP peptides in A.
thaliana, 11 inM. truncatula, 15 inO. sativa, 6 in C. sativus, and 21 in P. sativum. The function of
several CEPs in the above plants have been identified. However, little is known about the CEP
peptide family in soybeans. In this study, a systematic bioinformatics analysis was applied to
identify soybean CEP peptides. A total of 22 GmCEPs were characterized from the soybean
genome; the GmCEP proteins showed similar features to the previously discovered CEP fam‑
ily (Figure 1; Table 1). On analyzing the expression patterns of GmCEPs in the transcriptome,
therewere diverse expression patterns ofGmCEPs in different developmental stages of organs
and tissues, implying multiple roles of GmCEPs in regulating different biological processes
in soybeans (Figure 2).

Legumes can specifically interact with their compatible rhizobia in the surrounding soil
to form nodules. However, nodulation and nitrogen fixation in mature nodules is an high en‑
ergy consumption process; thus, host legumes have evolved a root–shoot–root long‑distance
auto‑regulation of nodulation (AON) system to refine the number of nodules [28,29]. NOD‑
ULE INCEPTION (NIN) induced the expression of CLE ROOT SIGNAL1 (CLE‑RS1) and
CLE‑RS2 to activate AON [30]. Another phenomenon in legume nodulation is sensitivity
to soil nitrogen content; interestingly, recent studies have shown plants to also have a long‑
distance system (CEP‑CEPR) in the nitrogen assimilation signaling pathway [6]. In legumes,
the key transcriptional factor NIN coordinates CEP and CLE signaling peptides, combin‑
ing these two long‑distance signaling pathways to balance nitrogen absorption and symbi‑
otic nitrogen fixation in order to meet high nitrogen demands [31]. In this study, another
symbiosis‑related CEP gene was characterized; we first identified a nodulation‑related Gm‑
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CEP6 as regulating soybean nodulation (Figures 3 and 4) and as sharing a phenotype with
reported legume CEP overexpression; the nodule number of its overexpression being close to
the super‑noduling phenotype of the NARKmutant in soybeans [18,30]. Moreover,MtCEP1
promoted MtNRT2.1 expression and nodulation dependent on compact root architecture 2
(MtCRA2) in low nitrate conditions [32]; MtCEP1/MtCRA2 balances root and nodule devel‑
opment by reducing auxin and ethylene responses [33]. Another study reports thatMtCEP1,
2, and 12 redundantly regulate lateral root number and nodulation. Further study is needed
to clarify the function diversification of GmCEPs family members, to construct the relation‑
ship between cytokinin and GmCEP, and to determine the relationship between the AON
shoot‑center component and CEPR [34]. We also need to clarify the roles of carbon signals in
balancing the AON pathway and CEP‑CEPR pathways that regulate nodule numbers.

5. Conclusions
In this study, a comprehensive analysis of theGmCEP geneswas conducted at thewhole‑

genome level; a total of 22members in the CEP gene familywere identified, and the structural
features and evolutionary relationships of the GmCEPs were systematically analyzed. Fur‑
ther expression pattern analysis found that GmCEP6 was mainly expressed in nodules and
showed significant responses to nitrate treatment and rhizobial infection, indicating its in‑
volvement in nodulation‑related processes. Both overexpression andCRISPR‑Cas9were used
to validate its role in nodulation. The results demonstrated that overexpression of GmCEP6
significantly increased nodule numbers, while knock‑out of GmCEP6 led to a significant de‑
crease, suggesting that GmCEP6 acts as a positive regulator in soybean nodulation. qRT‑PCR
results showed that changes in GmCEP6 expression positively influenced the expression of
marker genes in the Nod factor signaling pathway. Finally, an analysis of the role ofGmCEP6
in nitrate inhibition of nodulation revealed that, under nitrogen treatment, overexpression of
GmCEP6 significantly increased nodule numbers, indicating its involvement in resistance to
nitrate inhibition.

SupplementaryMaterials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agronomy14050988/s1, Figure S1: Motifs analysis of GmCEPs. Each block
represented the position and strength of a motif. The blocks of GmCEPs motif were predicted using
MEME. The motif sequence were listed in lower panel; Figure S2: Gene structure of 22 GmCEP genes.
The gene structure information of GmCEPswere obtained through gff file of soybean, the diagram was
constructed by Tbtools software; Figure S3: Validation of the mutation of GmCEP6‑edited hairy roots.
(A) Sequence of a region of soybeanGmCEP6with two target sites indicated. (B) Alignment of sequences
of target‑1 mutated alleles identified from cloned PCR fragments from crispr cas9 GmCEP6 (KO) trans‑
genic root lines. Highlighting blue denotes the degree of homology of the aligned fragments, and only
aligned regions of interest are displayed. Each trait represents a different mutation type. The most
mutation was a base shift, represented by a green triangle, with a total of 5 (n = 13); Table S1: Primer
sequences used in this study.
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