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Abstract: The sequence of complementarity-determining region 3 of the T-cell receptor (TCR) varies
widely due to the insertion of random bases during V-(D)-J recombination. In this study, we used
single-cell VDJ sequencing using the latest technology, BD Rhapsody, to identify the TCR sequences
of autoreactive T-cells characteristic of Japanese type 1 diabetes mellitus (T1DM) and to clarify the
pairing of TCR of peripheral blood mononuclear cells from four patients with T1DM at the single-cell
level. The expression levels of the TCR alpha variable (TRAV) 17 and TRAV21 in T1DM patients
were higher than those in healthy Japanese subjects. Furthermore, the Shannon index of CD8+ T cells
and FOXP3+ cells in T1DM patients was lower than that of healthy subjects. The gene expression of
PRF1, GZMH, ITGB2, NKG7, CTSW, and CST7 was increased, while the expression of CD4, CD7,
CD5, HLA-A, CD27, and IL-32 was decreased in the CD8+ T cells of T1DM patients. The upregulated
gene expression was IL4R and TNFRSF4 in FOXP3+ cells of T1DM patients. Overall, these findings
demonstrate that TCR diversity and gene expression of CD8+ and FOXP3+ cells are different in
patients with T1DM and healthy subjects.

Keywords: single-cell RNA sequencing; type 1 diabetes; genetic research; genetic screening; T-cell receptor

1. Introduction

T-cell receptors (TCRs) contain a stationary region (C region) and a variable region
(V region), and the structure of the variable region acquires remarkable diversity by re-
configuration of the TCR and immunoglobulin genes. In the case of TCRβ, TCRδ, and
immunoglobulin H chains (heavy chains), three complementarity-determining regions
called complementarity-determining region (CDR) 1, CDR2, and CDR3 are formed by the
recombination of the V, D, and J gene segments. In both TCR and B-cell receptors (BCRs),
CDR1 and CDR2 are encoded in the V segment, and the same gene sequences as in the
germline are used. Conversely, the CDR3 sequence can have significant diversity, even
when the same V, D, and J segments are used, due to the insertion of random bases (N
sequences) during V-(D)-J reconstruction.

It is widely known that abnormalities in B- and T-cell repertoires are involved in the
development and progression of both autoimmune and allergic diseases, but the details
have not been fully elucidated. Recently, comprehensive immunosequencing has been
used to analyze the pathogenesis of type 1 diabetes mellitus (T1DM), rheumatoid arthritis,
systemic lupus erythematosus, and multiple sclerosis [1]. One research group conducted a
comprehensive immunosequencing analysis of TCRs and BCRs using lymphocytes isolated
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from the peripancreatic lymph nodes and spleens of T1DM donors registered with the
Network for Pancreatic Organ Donors with Diabetes (nPOD). They reported the isolated
lymphocytes to have a high frequency of T-cells expressing the TCR beta chain, similar to
GAD14.3, a known glutamic acid decarboxylase 65 (GAD65)-reactive T-cell clone, in the
lymphoid tissues of patients with T1DM [2].

The appearance of effector T-cells that respond to autologous islet antigens is con-
sidered a critical factor in T1DM. It is assumed that effector T-cells with a unique TCR
that reacts with autologous islet antigens are monoclonal and activated [3]. Moreover,
cytotoxic CD8+ T cells are thought to play a major role in the destruction of beta cells
during the development of T1DM [4,5], and TCR variability of regulatory T-cells (Tregs)
has been proposed to be beneficial for the maintenance of self-tolerance [6]. Therefore, it is
important to clarify the variability of TCRs in CD8+ T cells and Tregs in order to elucidate
the pathogenesis of T1DM. The antigen-binding sites for TCRs are determined by genetic
rearrangements and have acquired diversity in the order of 1010 combinations. In the past,
it was difficult to determine the full extent of these vast repertoires of antigen receptors;
however, with the dramatic development of next-generation sequencing (NGS) technology,
it is now possible to identify the gene sequences of TCRs expressed in a desired cell pop-
ulation at the individual clone level. Currently, such comprehensive immunosequencing
technology is being applied to the in vivo monitoring of immune responses and drug
discovery of antibody drugs, vaccines, and cellular drugs and is expected to bring about
significant innovations in various medical fields in the future.

In this study, we will reveal the TCR sequences of characteristic autoreactive T-cells in
Japanese patients with T1DM by single-cell VDJ sequencing.

2. Materials and Methods
2.1. Study Design and Participants

The KAMOGAWA-DM cohort study is an ongoing prospective cohort study that was
approved by the Ethics Committee of the Kyoto Prefectural University of Medicine in
2013 (Kyoto, Japan, RBMR-E-466) [7]. Informed consent was obtained from all patients
involved in the KAMOGAWA-DM cohort study. We randomly selected 4 patients with
T1DM who visited our diabetes outpatient clinic from April to May 2021. In addition,
PBMCs were collected on the day of the visit, and the experiment was conducted on the
same day using fresh specimens without cryopreservation. In addition, none of those four
patients had any apparent infection during the study period. T1DM was diagnosed based
on the criteria of the American Diabetes Association [8]. According to the recommendation
of the Committee of Experts of the American Diabetes Association, T1DM was divided into
type 1A diabetes (i.e., immune-mediated), type 1 B (i.e., other forms of diabetes with severe
insulin deficiency but without proof of autoimmune etiology, also known as idiopathic) [9],
and slowly progressive insulin-dependent diabetes mellitus (SPIDDM) at all participating
institutions in this study [10–13].

Furthermore, we used the scRNA-seq data generated from a healthy subject in a
previous study from the NCBI’s Gene Expression Omnibus under accession number
GSE150060 [14].

2.2. Data Collection

Information regarding patients’ background demographics (i.e., age, sex, disease du-
ration, and smoking habits) was gathered from their medical records. Blood pressure was
measured in an outpatient clinic. After an overnight fast, venous blood samples were
collected to measure fasting plasma levels of glucose, C-peptide, triglycerides, total choles-
terol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, creatinine,
and uric acid. The hemoglobin A1c level was determined by high-performance liquid chro-
matography and presented herein using the National Glycohemoglobin Standardization
Program unit.
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2.3. BD Rhapsody Single Cell Analysis System

Heparin was added to the syringe when peripheral blood was collected. Periph-
eral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation,
counted, and resuspended in 650 µL of cold sample buffer for loading on a BD Rhapsody
cartridge. Targeted scRNA-seq with TCR analysis was performed using the BD Rhapsody
Express system (BD Biosciences, Piscataway, NJ, USA). Cell capture and library preparation
were performed using the BD Rhapsody Targeted mRNA and AbSeq Reagent Kit (BD
Biosciences), according to the manufacturer’s instructions. Briefly, 1 × 104 cells from each
fresh blood sample were captured in a microwell plate with beads. This was followed
by cell lysis, bead retrieval, cDNA synthesis, template switching, Klenow extension, and
library preparation (a targeted gene library using a human T-cell expression panel and
a TCR gene library) following the BD Rhapsody VDJ CDR3 protocol. The final pooled
libraries were spiked with 20% PhiX control DNA to increase the sequence complexity and
subsequently sequenced (75 bp× 225 bp paired-end) on a HiSeq X Ten sequencer (Illumina,
San Diego, CA, USA). In this study, HLA typing was not tested because the number of cells
in each sample was not sufficient.

2.4. Data Analyses

The FASTQ files obtained from the sequences were processed using the BD Rhapsody
Targeted Analysis Pipeline with V(D)J processing incorporated (BD Biosciences) in the Seven
Bridges Platform (https://www.sevenbridges.com/d, accecessed on 20 October 2021). First,
low-quality read pairs were removed based on read length, average base quality score,
and highest single-base frequency. High-quality R1 reads were analyzed to identify cell
labels and unique molecular identifier (UMI) sequences. The high-quality R2 reads were
aligned with the reference panel sequences (Human T cell Expression panel) and TCR gene
segments from the international ImMunoGeneTics information system® (IMGT.org) using
the program Bowtie2. IGBlast was utilized for CDR3 determination. Reads with identical
cell labels, identical UMI sequences, and identical genes were folded into a single molecule.
The obtained counts were subjected to error correction algorithms (recursive substitution
error correction (RSEC) and distribution-based error correction (DBEC)) developed by BD
Biosciences. The DBEC-adjusted number of molecule data obtained from the Rhapsody
pipeline was imported into SeqGeq version 1.6.0, and quality control was then performed
to gate out cells that were significantly smaller and with low numbers of expressed genes
(dead cells). Subsequently, dimensional reduction and unbiased clustering in SeqGeq were
performed using the Seurat plug-in. Briefly, Seurat was set up to include all genes used,
and the QC function, log normalization, and UMAP (uniform manifold approximation and
projection) were used for dimensionality reduction. These plug-ins output data, includ-
ing UMAP, lists of upregulated and downregulated genes, and annotation information,
using the PBMC gene model. Further clustering analysis was completed with manual
curation. Integration of the cluster information and TCR CDR3 information in each cell
was performed using the VDJExploler plug-in of SeqGeq. As a parameter for the structural
diversity of the genes, the Shannon index H′ was calculated [15].

H′ = −
S

∑
i=1

pilnpi

S: Number of genes observed in the sample
pi: Ratio of genes i to the total sample

2.5. Detection of CD8+ Cells and FOXP3 Expression in Tregs Using Whole Transcriptome
scRNA-seq Data

FOXP3 expression was assessed in two publicly available genomic datasets, combining
3 mRNA and surface protein expression datasets. Then, 10k PBMC datasets were generated
using v3 chemistry (7865 cells passing QC, average reads per cell of mRNA library 10k

https://www.sevenbridges.com/d
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PBMC dataset generated using v3 chemistry (7865 cells passing QC, average reads per
cell for mRNA libraries: 35,433) and the 5k PBMC dataset generated using NextGEM
chemistry (5527 cells passing QC, average reads per cell for mRNA libraries: 30,853). See
https://support.10xgenomics.com/single-cell-gene-expression/datasets/, accessed on
20 October 2021). CD8+ or FOXP3+ T cells were defined as cells expressing one or more
copies of CD8 or FOXP3 (UMI).

2.6. TCR CDR3 Motif Identification

All TCR CDR3 amino acid sequences from the current study were aligned using the
MEME suite (https://meme-suite.org/meme/tools/meme) [16].

3. Results
3.1. Single-Cell mRNA Immunophenotyping Identifies Distinct Trajectories of T-Cell
Differentiation in Blood

Sample 1 (S1) was from a male patient with type 1A T1DM, Sample 2 (S2) was from
a female patient with type 1B T1DM, Sample 3 (S3) was from a patient with type 1B
T1DM, and Sample 4 (S4) was obtained from a patient with SPIDDM (Table 1). Using
immunosequencing, we attempted to comprehensively analyze the TCRs expressed by
T-cells in the peripheral blood of patients.

Table 1. Clinical characteristics of the study patients.

Sample 1 2 3 4

Sex Male Female Male Male
Type 1A 1B 1B SPIDDM
Age, yrs 71 68 47 49
Disease duration 16 46 19 7
Height, cm 169 150.2 181 168.4
Body weight, kg 57 45 100 76
Body mass index, kg/m2 20.0 19.9 30.5 26.8
Fasting plasma glucose, mmol/L 7.2 4.3 11.3 7.3
Hemoglobin A1c, % 8.1 7.5 7.5 8.5
C-peptide, mmol/L <0.01 <0.01 <0.01 0.301
Creatinine, mmol/L 65.4 66.3 86.6 84.9
Estimated GFR, mL/min/1.73 m2 79.4 58.5 66.1 66.8
Urine albumin to creatinine ratio, mg/gCr 3673 64 8 19
Anti-GAD antibody 237 <5 <5 18.1

Cr, creatinine; GAD, glutamic acid decarboxylase; GFR, glomerular filtration rate; SPIDDM, slowly progressive
insulin-dependent diabetes mellitus.

First, to determine the usage rate of TCR variable (TRV) and TCR joining (TRJ) genes,
we counted the number of copies (reads) of USRs containing each TRV and TRJ. For the TCR
alpha (TRA) repertoire, eight pseudogenes (AV8-5, AV11, AV15, AV28, AV31, AV32, AV33,
and AV37) were not expressed in each patient. AV8-7 was classified as an ORF (defined
by IMGT based on the sequence of splicing sites, recombination signals, and regulatory
elements), which was also not expressed. Moreover, AV7, AV8-6-1, AV8-7, AV9-1, AV14-1,
AV18, and AV46 were not expressed in any patient. The majority of TRA in S1, S2, and
S3 was AV9-2, AV12-1, AV12-3, AV13-1, and AV17, whereas in S4, AV12-1, AV12-3, and
AV13-1 were common to S1, S2, and S3; however, AV-2 and AV13-2 had specifically high
rates (Figure 1).

https://support.10xgenomics.com/single-cell-gene-expression/datasets/
https://meme-suite.org/meme/tools/meme
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Figure 1. The frequency of TRAV. (A–D) Usage of TRAV in patients with T1DM (S1-S4). The numbers
of TCR sequences bearing the respective TRAVs were counted. The percentage frequencies of TRAV
were calculated and are shown.

None of the patients expressed any of the three pseudogenes AJ51, AJ55, and AJ60,
while AJ1, AJ2, AJ14, AJ19, AJ25, AJ59, and AJ61 were not expressed in any of the patients.
In S1, S2, and S3, the expression of AJ9, AJ20, AJ29, AJ34, and AJ49 had high rates, whereas
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in S4, AJ9 was common to S1, S2, and S3; however, AJ11, AJ40, AJ42, and AJ53 had
specifically high rates (Figure 2).

Cells 2022, 11, x FOR PEER REVIEW 6 of 21 
 

 

In S1, S2, and S3, the expression of AJ9, AJ20, AJ29, AJ34, and AJ49 had high rates, whereas 

in S4, AJ9 was common to S1, S2, and S3; however, AJ11, AJ40, AJ42, and AJ53 had spe-

cifically high rates (Figure 2). 

 

Figure 2. The frequency of TRAJ. (A–D) Usage of TRAV in patients with T1DM (S1-S4). The number 

of TCR sequences bearing the respective TRAJ was counted. The percentage frequencies of TRAJ 

were calculated and are shown. 

As for TCR beta (TRB) genes, out of the 5 pseudogenes (BV1, BV3-2, BV12-1, BV12-2, 

and BV21-1), BV1, BV3-2, BV12-2, and BV21-1 were expressed. Of the six ORF genes (BV5-

3, BV5-7, BV6-7, BV7-1, BV17, and BV23-1), only BV23-1 was expressed (Figure 3). 

Figure 2. The frequency of TRAJ. (A–D) Usage of TRAV in patients with T1DM (S1-S4). The number
of TCR sequences bearing the respective TRAJ was counted. The percentage frequencies of TRAJ
were calculated and are shown.

As for TCR beta (TRB) genes, out of the 5 pseudogenes (BV1, BV3-2, BV12-1, BV12-2,
and BV21-1), BV1, BV3-2, BV12-2, and BV21-1 were expressed. Of the six ORF genes (BV5-3,
BV5-7, BV6-7, BV7-1, BV17, and BV23-1), only BV23-1 was expressed (Figure 3).
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Figure 3. The frequency of TRBV. (A–D) Usage of TRBV in patients with T1DM (S1-S4). The number
of TCR sequences bearing respective TRBVs was counted. The percentage frequencies of TRBV were
calculated and are shown.

Of BJ, in each patient, BJ1-1, BJ2-1, BJ2-2, BJ2-3, and BJ2-7 were in the majority
(Figure 4).
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Figure 4. The frequency of TRBJ. (A–D) Usage of TRBJ in patients with T1DM (S1-S4). The number
of TCR sequences bearing respective TRBJs was counted. The percentage frequencies of TRBJ were
calculated and are shown.

3.2. Recombination of TRAV and TRAJ

The genetic recombination of 41 TRAVs and 50 TRAJs (excluding pseudogenes, ORFs,
and low-expressed genes) resulted in a total of 2050 AV-AJ recombinants. Notably, the
AV1-1-AV6 gene did not preferentially combine with the AJ50-AJ58 gene, and similarly,
little recombination was observed between the AV35-AV41 gene and AJ3-AJ16. For TRB,
650 genetic recombinations occurred in 50 BV genes (excluding 11 pseudogenes and 5 ORFs)
and 13 BJ genes (excluding pseudogenes). There were no restrictions on the combination of
TRBV and TRBJ, as observed in the TRA. The Shannon index H’ was used as a diversity
index to evaluate the diversity of TRA and TRB. Shannon-index H’ of TRA and TRB in S1
was 10.80 and 10.83, that in S2 was 11.62 and 11.69, that in S3 was 10.26 and 10.57, and that
in S4 was 11.37 and 11.25, respectively (Table 2).

Table 2. Shannon-index H′.

TRA TRB

S1 10.80 10.83
S2 11.62 11.69
S3 10.26 10.57
S4 11.37 11.25

S1 FOXP3+ 5.37 5.57
S2 FOXP3+ 6.27 6.35
S3 FOXP3+ 5.62 6.14
S4 FOXP3+ 5.84 5.77

S1 CD8+ 9.17 9.14
S2 CD8+ 9.74 9.77
S3 CD8+ 8.24 8.61
S4 CD8+ 9.44 9.37

TRA, T-cell receptor alpha; TRAB, T-cell receptor beta.
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No significantly high repertoires were identified in S1, but AV12-1/AJ45, AV12-3/AJ49,
AV12-3/AJ54, and AV9-2/AJ57 in S2, AV1-2/AJ33, AV12-2/AJ21, AV21/AJ20, and AV12-
3/AJ40 in S3, and AV12-1/AJ11, AV2/AJ40, and AV13-2/AJ56 in S4 were expressed at a
significantly high rate (Figure 5).
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Figure 5. 3D images of TRA repertoires. (A–D) The number of TCR sequence reads bearing a given
gene recombination of TRAV with TRAJ was counted. The mean percentage frequencies are shown
in the 3D bar graph. The X-axis and Y-axis indicate the TRAJ and TRAV, respectively.

BV24-1/BJ2-1 in S1; BV28/BJ2-1, BV5-1/BJ2-7, BV29-1/BJ2-7, and BV29-1/BJ2-1 in S2;
BV7-8/BJ2-1, BV7-2/BJ2-7, BV29-1/BJ2-1, BV29-1/BJ2-1, BV29-1/BJ2-3 in S3; and BV20-
1/BJ2-7, BV5-1/BJ2-1, BV7-7/BJ2-2, and BV9/BJ2-2 in S4 were expressed at a significantly
high rate, respectively (Figure 6). Taken together, there was no common pattern among
each of the four samples and healthy controls.

3.3. TCR Clonotypes of CD8+ T Cells and FOXP3+ T Cells

Next, we investigated the genetic recombination of TRAVs and TRAJs and that of
TRBVs and TRBJs in CD8+ T cells and FOXP3+ T cells, and we have shown the top ten
TCR clonotypes in Tables 3 and 4. The most frequently observed CDR3 of TRA and TRB
in CD8+ T cells in S1 were AGAISNNDMR and ASSVVGSGTDEQF; those of S2 were
VVRARPPLPWSGGGADGLT and ASTPPSSPGYEQY, those of S3 were AFSGGYQKVT and
ASSLAGEGSGTGELF, and those of S4 were VVSAFFSGGSYIPT and ASSSSRDRGNYEQY
(Table 3).
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gene recombination of TRBV with TRBJ was counted. The mean percentage frequencies are shown in
the 3D bar graph. The X-axis and Y-axis indicate the TRBV and TRBJ, respectively. The names of high
repertoires of more than 1% are listed.

In the FOXP3+ T cells of S1 were AMRFKSGYNKLI and ASSPPTSGASYEQY; those
of S2 were ALSSNDYKLS and ASTLDGPGSPLH, those of S3 were GFSSGSARQLT and
ASSFGRYEQY, and those of S4 were AAGRGNNRLA and ASSRTGGGYGYT (Table 4).

3.4. T-Cells in Blood of Patients with T1DM Have Phenotypic Hallmarks

Next, we performed an unbiased analysis of gene expression using Seurat and identi-
fied T-cell clusters in four T1DM patients (Figure S1). Heatmaps of gene expression in each
cluster are shown, with 10 clusters in S1, 11 clusters in S2, 19 clusters in S3, and 11 clusters
in S4 (Figure 7).

The rank of the CDR3 repertoires is shown in Figure S2. In addition, we performed
clustering analyses using Seurat in CD8+ T cells or FOXP3+ T cells (Figures S3 and S4).

CDR3 motifs and clustering were shown in Figure S2. In addition, the motif-based
sequence analysis tool, Multiple Em for Motif Elicitation (MEME), was then used to identify
the consensus amino acids for the grouped CDR3 sequences. The top five CDR3 motifs
of TRA and TRB are shown in Figure S5. We further examined which cluster CD8+ and
Foxp3+ T cells with the top five CDR3 motif sequences detected belonged to (Tables S5–S8).
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Table 3. TCR clonotype of CD8+ T cells.

Clone ID Frequency (%)
TRA TRB

TRAV CDR3 TRAJ TRBV CDR3 TRBJ

S1

1-1 7.9 V27 AGAISNNDMR J43 V9 ASSVVGSGTDEQF J2-1
1-2 7.4 V13-1 AASGSSASKII J3 V6-5 ASSYSGQGSYT J1-2
1-3 4.0 V17 ATDSGGYQKVT J13 V19 ASRLTGAGANVLT J2-6
1-4 3.6 V1-1 AVRDLDGGFKTI J9 V10-3 AISEPEGNTEAF J1-1
1-5 3.4 V14/DV4 AMRRPSGGYNKLI J4 V19 ASNAGYNEQF J2-1
1-6 3.1 V13-1 AASWDNAGNMLT J39 V12-3 ASSDGTGGYEQY J2-7
1-7 2.7 V12-2 AVNPRRGFKTI J9 V27 ASSLGLAGGYEQF J2-1
1-8 2.6 V6 ARASYGGATNKLI J32 V9 ASSVTFERVPGANVLT J2-6
1-9 2.6 V1-1 APDTGRRALT J5 V20-1 SARVVTGSSYEQY J2-7
1-10 2.6 V17 ATDMEEGGSQGNLI J42 V19 ASNAGYNEQF J2-1

S2

2-1 18.1 V12-1 VVRARPPLPWSGGGADGLT J45 V7-2 ASTPPSSPGYEQY J2-7
2-2 10.3 V12-3 VPGGSASKII J3 V20-1 SARGRPAGEQF J2-1
2-3 9.1 V6 ALKGYSGGYQKVT J13 V28 ASSFSDRVNQPQH J1-5
2-4 8.1 V17 ATEGDSNYQLI J33 V7-3 ASSSGTGDSLH J1-6
2-5 5.6 V12-3 AMSDYGGATNKLI J32 V5-1 ASSPGRDRGSYEQY J2-7
2-6 5.2 V21 AVSPLSSGSARQLT J22 V7-2 ASSLVSGPTYEQY J2-7
2-7 4.8 V9-2 AFDGGGATNKLI J32 V4-2 ASSPGLGQPQH J1-5
2-8 4.4 V5 AESSGTGKLI J37 V24-1 ATSDPAGGRADTQY J2-3
2-9 4.3 V12-1 VVNPRGSTLGRLY J18 V10-2 ASSAGQGEAF J1-1
2-10 3.5 V14/DV4 AMQIDSWGKLQ J24 V29-1 SVEDPHMDTQY J2-3

S3

3-1 5.6 V38-1 AFSGGYQKVT J13 V7-9 ASSLAGEGSGTGELF J2-2
3-2 3.4 V2 AVEDLLNSGYSTLT J11 V6-2 ASSLRDSSYEQY J2-7
3-3 3.3 V21 AQGAYKLS J20 V7-6 ASSPREAYEQY J2-7
3-4 2.7 V14/DV4 AMREGGSGYSTLT J11 V2 ASSDRRGSSTDTQY J2-3
3-5 2.5 V27 GLN J41 V20-1 SALRSGELF J2-2
3-6 2.4 V12-3 AMSGNQFY J49 V28 ASRRFTGTDTQY J2-3
3-7 2.3 V12-3 AMTAGTYKYI J40 V29-1 SADSSVGFHNEQF J2-1
3-8 2.3 V14/DV4 AMREYGNQFY J49 V5-4 ASSRGQQPSYEQY J2-7
3-9 2.2 V12-2 AVNNQAGTALI J15 V4-3 ASSQDLGANTEAF J1-1
3-10 2.1 V38-2/DV8 AYRSRGDMR J43 V27 ASSFLAGATGELF J2-2

S4

4-1 9.3 V10 VVSAFFSGGSYIPT J6 V5-1 ASSSSRDRGNYEQY J2-7
4-2 5.5 V21 AVKGGSEKLV J57 V7-8 ASSLVGLESYNEQF J2-1
4-3 3.7 V12-1 AVNLNTGFQKLV J8 V2 ASRGYSYEQY J2-7
4-4 3.1 V12-3 AMVRAGGYNKLI J4 V6-6 ASRSERESPISNEQF J2-1
4-5 3.1 V5 AALSGGSYIPT J6 V4-3 ASSQGLREGLGEQY J2-7
4-6 3.1 V14/DV4 AMRNKSWGKFQ J24 V3-1 ASSQEIVRTSGENTGELF J2-2
4-7 3.0 V6 ALGHSSASKII J3 V20-1 SARDRDSSSYEQY J2-7
4-8 2.9 V21 AVASNFGNEKLT J48 V29-1 SVAAGAQTQY J2-5
4-9 2.3 V2 AVEERIMGTYKYI J40 V20-1 SARGVAANPYEQY J2-7
4-10 2.3 V12-1 VVPYNTDKLI J34 V5-6 ASKPPGGSIYEQY J2-7

CDR3, complementarity-determining region 3; TRA, T-cell receptor alpha; TRAJ, TRA joining; TRAV, TRA variable; TRB, T-cell receptor beta; TRBJ, TRB variable; TRBV, TRB variable.
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Table 4. TCR clonotype of FOXP3+ T cells.

Clone ID Frequency (%)
TRA TRB

TRAV CDR3 TRAJ TRBV CDR3 TRBJ

S1

1-1 6.7 V12-3 AMRFKSGYNKLI J4 V18 ASSPPTSGASYEQY J2-7
1-2 6.3 V12-2 AVNIRDSSYKLI J12 V20-1 SARSRLAVSGELF J2-2
1-3 6.0 V12-3 AMSDSGGGADGLT J45 V3-1 ASSQRGGTQY J2-3
1-4 5.9 V12-1 VGLTNAGKST J27 V11-2 ASSLGTQTTNEKLF J1-4
1-5 5.6 V2 AVEGGSGNTGKLI J37 V2 ASSEEGNTEAF J1-1
1-6 4.6 V9-2 ATTRYSGAGSYQLT J28 V28 ASTGTTSINEQY J2-7
1-7 4.1 V16 ARNFGNEKLT J48 V12-3 ASSSRGGDNQPQH J1-5
1-8 3.2 V25 GRSGSARQLT J22 V30 AWNRQGANTGELF J2-2
1-9 3.1 V13-1 AAPTIGRSKLT J56 V7-3 ASSPLSSGANVLT J2-6
1-10 3.0 V4 LVAFDTGRRALT J5 V23-1 ASSPPKFELLRAV J2-7

S2

2-1 17.2 V9-2 ALSSNDYKLS J20 V12-3 ASTLDGPGSPLH J1-6
2-2 9.3 V9-2 ALSGRNTGGFKTI J9 V2 ASSRTKTDTQY J2-3
2-3 7.2 V35 AGPYSGAGSYQLT J28 V28 ASSPSSGRASYEQY J2-7
2-4 5.4 V41 AVNAGNMLT J39 V7-9 ASSSLDRGNIQY J2-4
2-5 4.5 V13-1 AASRPQGRRC*RTH J45 V7-9 ASRLDATNEKLF J1-4
2-6 4.3 V38-2/DV8 AYRSYGAGNMLT J39 V28 ASSQQGRQETQY J2-5
2-7 3.5 V12-1 VVRLNTGGFKTI J9 V20-1 SARVGSTEKLF J1-4
2-8 2.9 V41 AVSSTPARQLT J22 V6-6 ASSYSGSGSRRWHEQY J2-7
2-9 2.8 V38-2/DV8 APLGAGSYQLT J28 V20-1 SASLMAVSYEQY J2-7
2-10 2.5 V12-1 VVNKQTGANNLF J36 V28 ASRRRGGGTGELF J2-2

S3

3-1 3.2 V21 GFSSGSARQLT J22 V7-2 ASSFGRYEQY J2-7
3-2 2.6 V22 AANTPLV J29 V12-3 ASSLLVDTQY J2-3
3-3 2.5 V21 AVTTGKST J27 V20-1 SGQGTDTQY J2-3
3-4 2.1 V12-1 VVNMGGGFKTI J9 V20-1 SASGGPGYNEQF J2-1
3-5 2.1 V13-1 AAGPMDSSYKLI J12 V6-1 ASRLALTYNEQF J2-1
3-6 1.9 V13-1 AARGTSYGKLT J52 V20-1 SARDPSSGLYNEQF J2-1
3-7 1.7 V21 AVRDDYKLS J20 V20-1 SAGPGLAGVYEQF J2-1
3-8 1.6 V6 ALEDTGRRALT J5 V25-1 ASTAPLGGLKQY J2-3
3-9 1.5 V21 AVYTSGSARQLT J22 V6-5 ASSQGGGNTIY J1-3
3-10 1.5 V9-2 ALISSGSARQLT J22 V10-2 ASSESRGSSNQPQH J1-5

S4

4-1 4.4 V13-1 AAGRGNNRLA J7 V12-3 ASSRTGGGYGYT J1-2
4-2 4.3 V10 VVRIAAISNTGKLI J37 V24-1 ATSDHTQGRQGYT J1-2
4-3 3.8 V12-2 AVNGENFNKFY J21 V12-3 ASSLAGTGVGYT J1-2
4-4 3.8 V2 AVEDRRQSGAGSYQLT J28 V28 ASSFGFSNTEAF J1-1
4-5 3.8 V13-1 AASMNNQGGKLI J23 V3-1 ASSQVRTGAYSNQPQH J1-5
4-6 3.7 V13-1 AASHGGSQGNLI J42 V9 ASSVEVSGSYNEQF J2-1
4-7 3.4 V21 AGYNNDMR J43 V4-1 ASSQGQGNYGYT J1-2
4-8 3.1 V1-1 ADRMDSNYQLI J33 V20-1 SASPGQGADTQY J2-3
4-9 2.9 V12-2 AVRTKGGYQKVT J13 V20-1 SPRGGGTEAF J1-1
4-10 2.8 V13-1 AASHGGSQGNLI J42 V27 ASSYGVGGSIQY J2-4

CDR3, complementarity-determining region 3; TRA, T-cell receptor alpha; TRAJ, TRA joining; TRAV, TRA variable; TRB, T-cell receptor beta; TRBJ, TRB variable; TRBV, TRB variable.
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1 
 

 

Figure 7. Seurat analyses of PBMCs. The Seurat plug-in in SeqGeq was used to cluster all PBMC data
from patients with T1DM and project the clusters onto UMAP. A heatmap displaying expressed genes
within the identified clusters, UMAP, and clusters is shown. (A,B) Heatmap, UMAP, and cluster
name of S1 are shown. (C,D) Heatmap, UMAP, and cluster name of S2 are shown. (E,F) Heatmap,
UMAP, and cluster name of S3 are shown. (G,H) Heatmap, UMAP, and cluster name S4 are shown.

For further analysis, we investigated the upregulated gene expression in CD8+ or
FOXP3+ T cells of four samples compared to that in healthy subjects (S0). The legalism of
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all gene expressions compared to S0 is shown in the heatmaps (Figure S3). The upregulated
gene expressions in CD8+ T cells of S1 were PRF1, GZMH, ITGB2, NKG7, and SELPLG;
those of S2 were GZMH, ITGB2, PRF1, NKG7, and GNLY; those of S3 were ITGB2, GZMH,
SELL, PRF1, and SELPLG; and those of S4 were GZMH, CTSW, PRF1, ITGB2, and CX3CR1,
respectively. Conversely, the downregulated gene expressions in CD8+ T cells of S1 and S2
were CD7, CD4, CD5, CD27, and CD69, and those of S3 and S4 were CD7, CD4, CD5, CD27,
and TRAC, respectively. The upregulated gene expressions in FOXP3+ T cells of S1 were
HLA-DMA, IL4R, LIF, TNFRSF4, IL31, HLA-DMA, IL4R, TRIB2, LIF, and TNFRSF4; those
of S3 were HLA-DMA, IL4R, TNFRSF4, LIF, and PRDM1, and those of S4 were HLA-DMA,
IL4R, TRIB2, LIF, and TNFRSF4, respectively. The downregulated gene expressions in
FOXP3+ cells of S1 were CD4, CD7, CD5, HLA-A, and IL32, while those of S2, S3, and S4
were CD4, CD7, CD5, HLA-A, and CD27 (Figure 8) and clustering was shown in Figure S4.
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Figure 8. Upregulated and downregulated gene expression in CD8+ T cells and FOXP3+ T cells.
The top 10 upregulated and downregulated genes of CD8+ T cells and FOXP3+ T cells in patients
with T1DM compared to those in healthy subjects are shown. Gene expression was generated on
a logarithmic scale. (A–D) Top 10 upregulated and downregulated genes of CD8+ T cells in S1-4.
(E–H) Top 10 upregulated and downregulated genes of FOXP3+ T cells in S1-S4.
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4. Discussion

We used adapter ligation-mediated PCR, a bias-free PCR technique, for TCR repertoire
analysis using NGS. This method uses a single set of primers to avoid PCR bias due
to primer competition. This method is, therefore, suitable for accurately estimating the
abundance of each TCR gene in a wide variety of samples. In the present study, we
comprehensively investigated the TRA and TRB repertoires from four patients with T1DM
at the clonal level and evaluated a large amount of sequence data. This is the first study to
reveal the TRA and TRB repertoires of patients with T1DM using BD Rapsody. Moreover,
this integrated analysis makes it easy to detect the preferential use of specific TRVs and
TRJs, which may be useful in studying immune responses by antigen-specific T-cells.

There are several single-cell sequencing platforms that have been widely used around
the world in recent years. BD Rhapsody, which was used in this study, uses microwells and
magnetic beads to isolate cells and perform bead-based 3′ RNA-Seq, thus realizing highly
accurate sample preparation with low doublets and cross-contamination rates. Compared
to the widely used 10× Genomics, the library cost is lower, and cell viability demand does
not need to be as high as 50%, cell loading can be up to 40,000 cells, and the frequency of
doublets is lower [17]. Therefore, information on a large number of cells can be obtained.

The expression levels of TRAV17, a variable gene known to be enriched in a population
of CD1b-restricted T-cells [18,19], and TRAV21 in patients with T1DM were higher than
those in healthy Japanese subjects investigated in a previous study [20]. Conversely, the
expression levels of TRAJ in patients with T1DM were not different from those of healthy
subjects. The majority of TRBV in the healthy Japanese subjects was TRBV 29-1, whereas,
in the patients with T1DM, there was no clear majority compared to the healthy subjects.
The Shannon indices of TRA and TRB in healthy subjects in the previous report were
both approximately 7, which were clearly smaller than those of the patients with T1DM
observed in this study. Moreover, we surveyed the diversity index of CD8+ and FOXP3+ T
cells, and the Shannon index of the cells in the patients with T1DM was lower than those
of healthy subjects [21,22]. TCR variability of Tregs has been proposed to be beneficial in
the maintenance of self-tolerance [6]; therefore, the findings in this study indicate that the
reduced TCR diversity in Tregs of patients with T1DM in this study may indicate reduced
immune tolerance in patients with T1DM.

Upregulated genes in CD8+ T cells of T1DM patients included cytotoxicity-associated
genes, such as PRF1, GZMH, ITGB2, NKG7, CTSW, and CST7, whereas the expression of
CD4, CD7, CD5, HLA-A, CD27, and IL-32 was downregulated. Cytotoxic CD8+ T cells
are considered to be the primary mediators of β-cell injury, based on the predominance
of CD8 T-cells in pancreatic islet infiltration [23,24], as well as numerous studies using
animal models of T1DM caused by β-cell injury by CD8 T-cells [25,26]. In addition, several
human studies have reported an expanded pool of memory T-cells in the peripheral blood
of patients with type 1 diabetes [27] and resistance of effector T-cells to Treg suppression,
and our results are consistent with these previous reports [28].

Upregulated genes in FOXP3+ T cells in T1DM patients included IL4R. Interleukin
4 (IL-4) has been reported to be involved in several signaling pathways in the regulation
of Treg cell development and function [29–33]. IL-4 is a cytokine that defines the type 2
immune response, while IL-4 receptor alpha (IL-4 Rα) suppresses Treg cell function during
type 2 disease [34,35]. Recent reports have shown that enhanced IL-4Rα signaling by gain-
of-function mutations [32,35] or chronic type 2 inflammation [36] drastically reduces the
number of Foxp3+ Treg cells, impairs the suppressive function of Treg cells, and promotes
their reprogramming to T helper 2 (Th2)-like or T helper 17 (Th17)-like cells. This receptor
is further thought to play a role in suppressing Treg cell function. Although no difference
in the frequency of Tregs in peripheral blood isolated from T1D patients has been reported,
defects in the phenotype and suppressive capacity of Tregs have been reported [37–41].
In this study, we used single-cell sequencing for the first time in the world to reveal that
IL4R expression is upregulated in the Tregs of patients with type 1 diabetes. As previously
reported, this result suggests that the function of Tregs in T1DM is impaired. In addition,
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TNFRSF4 was upregulated in FOXP3+ T cells in patients with T1DM. TNFRSF4 is one of
the most highly expressed genes in Tregs [42,43]. In addition, TNFRSF4 is one of the most
highly expressed genes in tumor-invasive Tregs compared to those in healthy tissues [44,45].
While there have been no reports on the expression of TNFRSF4 in relation to Tregs in
patients with type 1 diabetes, this has been reported to be significantly increased in patients
with relapsed acute myeloid leukemia compared to healthy donors [46]. TNFRSF4 mediates
TRAF2 and TRAF5 to activate the NF-κB pathway of TNFRSF4, and the PI3K/PKB and
NFAT pathways have also been identified [47,48]. The most important function of TNFRSF4
is to promote T-cell division, proliferation, survival, and cytokine production by activating
the aforementioned pathways. In this study, we found that the expression of TNFRSF4
was upregulated in T1DM regulatory T-cells, suggesting that these cells may have some
immune abnormalities.

The strength of this study is that it is the first to use the BD Rhapsody system, a state-
of-the-art technology for single-cell sequencing of TCR repatriation and gene expression
in peripheral blood T-cells from patients with T1DM. However, this study has several
limitations. First, we analyzed CD8- and FOXP3+ T cells as cells with more than one read,
and Tregs as FOXP3+ T cells could also be activated T-cells and not Tregs; it would have
been more accurate if we sorted each positive cell by cell sorter and performed the same
analysis. Second, peripheral blood of healthy subjects was used as a control, but this data
was obtained by another research group and was not analyzed simultaneously in this study.
Therefore, we should prepare our own samples for future studies. Third, the subjects in
this study have had diabetes for many years and may not have autoreactive T-cells in
the peripheral blood collected. On the other hand, Tregs have been reported to suppress
GAD-responsive T-cells in patients with type 1 diabetes who have had the disease for more
than 5 years [49]. Therefore, it has been reported that Tregs suppress GAD-reactive T-cells
in patients with type 1 diabetes mellitus more than 5 years after onset, and it is possible that
some immune abnormalities may still be present in PBMCs over time. Finally, we randomly
selected patients who visited an outpatient clinic within a limited time. Therefore, we did
not match background factors such as age, gender, duration of disease, and diabetes type,
which are limitations of this study.

5. Conclusions

In conclusion, in this study, we used the latest technology, BD Rhapsody, to analyze
the pairing of α and β chains that constitute the TCR of PBMCs from patients with type
1 diabetes at the single-cell level. In this study, we identified genes that are upregulated
in T-cells as well as TRB repairs. scRNA-seq has greatly improved our understanding of
heterogeneity in various biological processes and has led to significant breakthroughs in
the fields of immunology, oncology, and developmental biology.
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