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Abstract: Hearing loss (HL) is a common and multi-complex etiological deficit that can occur at
any age and can be caused by genetic variants, aging, toxic drugs, noise, injury, viral infection, and
other factors. Recently, a high incidence of genetic etiologies in congenital HL has been reported, and
the usefulness of genetic testing has been widely accepted in congenital-onset or early-onset HL. In
contrast, there have been few comprehensive reports on the relationship between late-onset HL and
genetic causes. In this study, we performed next-generation sequencing analysis for 91 HL patients
mainly consisting of late-onset HL patients. As a result, we identified 23 possibly disease-causing
variants from 29 probands, affording a diagnostic rate for this study of 31.9%. The highest diagnostic
rate was observed in the congenital/early-onset group (42.9%), followed by the juvenile/young
adult-onset group (31.7%), and the middle-aged/aged-onset group (21.4%). The diagnostic ratio
decreased with age; however, genetic etiologies were involved to a considerable degree even in
late-onset HL. In particular, the responsible gene variants were found in 19 (55.9%) of 34 patients with
a familial history and progressive HL. Therefore, this phenotype is considered to be a good candidate
for genetic evaluation based on this diagnostic panel.

Keywords: non-syndromic hearing loss; next-generation sequencing; progressive hearing loss;
diagnostic ratio; genetic hearing loss

1. Introduction

Hearing loss (HL) is an etiologically heterogeneous disorder brought about by many
causes such as genetic variants, aging, toxic drugs, noise, injury, and viral infections. HL is
one of the most common deficits at birth, affecting approximately 1–2 in 1000 newborns [1].
Genetic factors are the most common cause for congenital- or early-onset HL, accounting
for at least 60% of congenital sensorineural HL cases [1]. Among these genetic HL cases,
the major form of inheritance is autosomal recessive, which is observed in about 75–80%
of patients with non-syndromic sensorineural HL [2]. Several studies have focused on
congenital- or early-onset HL patients for whom it is possible to achieve higher diagnostic
yield [3–7]. In addition, some studies have focused on congenital- or early-onset severe-to-
profound HL, for which it is generally possible to obtain a high genetic diagnostic rate [4–7].
In terms of the disease-causing mechanism, congenital severe-to-profound HL is well
explained by genetic factors as pathogenic variants that occurred in the genes essential for
the development of hearing function, leading to congenital severe-to-profound HL.

In contrast, the etiologies of late-onset and mild-to-moderate HL remain unclear.
Unlike congenital- or early-onset HL, late-onset HL has been considered to result from a
variety of factors including genetic and environmental factors. Late-onset HL occurs once
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hearing function has developed normally, with genetic or environmental factors damaging
the maintenance of the hearing function, leading to the onset of HL. It was previously
thought that the involvement of genetic factors is limited in late-onset HL. However, recent
studies have indicated that a certain proportion of HL that presents after juvenile-onset HL
or young adult-onset HL is also due to genetic causes [8–11].

Therefore, clarifying the genetic etiology, even in late-onset HL, has become more im-
portant than ever due to the clinical benefits in providing accurate diagnosis, prediction of
HL severity, estimation of associated symptoms, appropriate treatment options, prevention
of HL, and better genetic counseling [12]. Here, we report a consecutive prospective study
based on target resequencing analysis for HL patients who visited our hospital between
March 2007 and September 2022. Our study cohort mainly consists of juvenile- or young
adult-onset mild-to-moderate HL patients. We believe our study results will be useful in
furthering our understanding of the genetic background of HL patients in real practical
clinical settings without any patient selection. In addition, our results are expected to shed
some light on the etiology of juvenile- or young adult-onset mild-to-moderate HL.

2. Materials and Methods
2.1. Subjects

Ninety-four patients with HL who visited Kagoshima University hospital between
March 2007 and September 2022 were enrolled in this study. We excluded three cases with
other etiologies, so that 91 patients with HL and 106 relatives eventually participated in this
study. Our university hospital is a tertiary referral hospital, and a wide range of patients in
terms of age, particularly late-onset and post-lingual HL patients, are referred to our hospi-
tal for examination. In contrast, congenital- or early-onset HL patients identified as part of
a newborn hearing screening program usually visit another medical center. Thus, our study
cohort mainly consists of late-onset and post-lingual HL patients. This study was conducted
with the approval of the ethics committees of Kagoshima University Graduate School of
Medical and Dental Sciences and Shinshu University School of Medicine (Approval num-
ber: 718). Written informed consent was obtained from all patients (or from their next of
kin, caretaker, or legal guardian in the cases of minors or children), and all procedures were
performed in accordance with the Declaration of Helsinki Ethical Principles.

2.2. Clinical Evaluations

Clinical information was obtained retrospectively from medical records. Hearing
thresholds were evaluated using pure-tone audiometry (PTA) and classified by pure-tone
average over 500, 1000, 2000, and 4000 Hz. For infants or young children, conditioned
orientation response audiometry and/or auditory brainstem response were performed.
The severity of HL was classified into mild (20–40 dB HL), moderate (41–70 dB HL),
severe (71–95 dB HL), and profound (>95 dB HL). The audiometric configurations were
categorized into low-frequency, mid-frequency (U-shaped), high-frequency (gently sloping-
type and steeply sloping-type), flat-type, and deaf, as reported previously [13]. With regard
to age at onset, all patients were divided into 3 groups by age; the congenital/early-onset
group (under 6 years old), the juvenile/young adult-onset group (6–39 years old), and the
middle-aged/aged-onset group (over 39 years old).

2.3. Target Resequencing Analysis

DNA samples extracted from peripheral blood or saliva samples were used in this
study. Next-generation DNA sequencing was performed for the 63 target genes [14] re-
ported to be causative for non-syndromic hearing loss (Hereditary Hearing loss Homepage;
http://hereditaryhearingloss.org/ accessed on 29 March 2024). We also analyzed 36 previ-
ously reported genes for syndromic HL if the patients presented with associated symptoms,
as described previously [15]. The detailed protocols and DNA sequencing have been de-
scribed elsewhere [14]. In brief, amplicon libraries were prepared using the Ion AmpliSeq
Custom Panel, with the Ion AmpliSeq Library Kit 2.0 (ThermoFisher Scientific, Waltham,
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MA, USA) according to the manufacturer’s instructions. After amplicon library prepa-
ration, next-generation sequencing was performed with an Ion Proton or S5 sequencer
(ThermoFisher Scientific) according to the manufacturer’s protocol. The sequence data
were mapped against the reference human genome sequence (build GRCh37/hg19) with
the Torrent Mapping Alignment Program (TMAP). The DNA variants were detected with
the Torrent Variant Caller plug-in software (ThermoFisher Scientific).

After variant detection, annotation of identified variants was performed with AN-
NOVAR software [16]. The missense, nonsense, insertion, deletion, and splicing variants
were selected from among the identified variants. Copy number variation analysis was
also performed for all patients by using read depth data according to the copy number
variation detection methods described in our previous report [17]. Variants were further
selected as less than 1% of several control population databases including the 1000 genome
database [18], the Genome Aggregation Database [19], the 1200 Japanese exome data in
Human genetic variation database [20], the 38,000 Japanese genome variation database [21],
and the 333 in-house Japanese normal hearing controls.

The pathogenicity of identified variants was analyzed in accordance with the Ameri-
can College of Medical Genetics (ACMG) standards and guidelines [22] with the ClinGen
hearing loss clinical domain working group expert specification [23]. Variants were defined
as candidate variants if the following criteria were fulfilled; (1) for the variants previ-
ously reported as “pathogenic” or “likely pathogenic” without any contradictory evidence,
(2) novel variants classified as “pathogenic” or “likely pathogenic”, (3) variants of “un-
certain significance” (VUS) identified as the only candidate after the filtering procedure
without any candidate variants among the other 62 genes.

We performed Sanger sequencing analysis to validate the identified variants and
confirm family segregations according to the manufacturer’s instructions. All PCR and
sequencing primers were designed using the web version Primer 3 plus software [24].

3. Results
3.1. Patient Background and Identified Variants

The age at onset for this study cohort ranged from 0 to 64 years. In this study, we
divided patients into three age groups (congenital/early-onset group, juvenile/young
adult-onset group and middle-aged/aged-onset group). In general, HL onset under 6 years
old is called “pre-lingual onset HL”, and this significantly affects language acquisition.
We therefore categorized these patients into one group. It is difficult to differentiate the
late-onset HL and presbycusis, so, we divided the other patients by the age of HL onset
between 6 and 39 y.o. and over 39 y.o. The former group is thought to consist of late-onset
HL patients without presbycusis cases, and the latter group is considered to consist of HL
patients including presbycusis patients. The number of patients in each age group was as
follows: 14 cases (15.4%) in the congenital/early-onset (onset at under 6 years old) group,
63 cases (69.2%) in the juvenile/young adult-onset (onset at 6–39 years old) group, and
14 cases (15.4%) in the middle-aged/aged-onset (onset at over 39 years old) group (Table 1).
One of the unique characteristics of our study cohort was that 84.6% of the patients had
late-onset HL.

There are 90 cases with sensorineural HL and one case with mixed HL, with 90 cases
showing bilateral HL and one case presenting with unilateral HL. As for the severity,
moderate HL was the most common, being observed in 41 cases (45.1%), followed by
32 cases with mild HL (35.2%). As for the audiometric configuration, flat-type HL was
the most common, being observed in 32 cases (35.2%), followed by 21 cases with steeply
sloping-type HL (23.1%), 20 cases with gently sloping-type HL (22.0%), 7 cases with U-
shaped-type HL (7.7%), 5 cases with low-frequency type (5.5%), 3 cases diagnosed as deaf
(3.3%), and 3 cases with different types of HL in the left and right ears (Table 1).
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Table 1. Patients’ characteristics in this study.

Number %

Sex female 56 61.5
male 35 38.5

Age at onset under 6 y.o. 14 15.4
6–39 y.o. 63 69.2

over 39 y.o. 14 15.4
Family history of HL yes 47 51.6

no 44 48.4
Severity of HL normal 4 4.4

mild 32 35.2
moderate 41 45.1

severe 11 12.1
profound 3 3.3

Audiometric
configuration flat 32 35.2

steeply sloping 21 23.1
gently sloping 20 22.0

U-shaped 7 7.7
low-freq. ascending 5 5.5

deaf 3 3.3
different type on each side 3 3.3

Based on the results of the next-generation sequencing analysis, we diagnosed 29 probands
among the 91 participants, with the diagnostic rate for this study cohort being 31.9%
(Figure 1). The diagnostic rate was highest in the congenital/early-onset group (42.9%),
followed by the juvenile/young adult-onset group (31.7%), and the middle-aged/aged-
onset group (21.4%) (Figure 1).
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Figure 1. The diagnostic rates for each onset age group.

We identified 23 disease-causing candidate variants, with the most prevalent respon-
sible genes identified in this study being a mitochondrial m.3243A>G variant and the
TMC1 gene, which were observed in 3 cases each, followed by 2 cases with GJB2, CDH23,
SLC26A4, STRC, MYO7A, ACTG1, and EYA4 gene variants, respectively, and 1 case each
with KCNQ4, MYO6, TECTA, USH2A, COCH, COL11A1, EYA1, NOG, and GRXCR1 variants
(Table 2). Among the 23 identified variants, 21 variants had been reported previously, and
2 variants were novel.
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Table 2. Summary of the clinical characteristics and responsible gene variants identified in this study.

Family
# Relationship Onset

Age Age Inheritance Gender Severity of
HL

Audiometric
Configuration Gene RefSeq ID Base Change AA Change References

1 proband 40 56 AD F Profound Deaf ACTG1 NM_001614 c.[791C>T];[=] p.[P264L];[=] Zhu et al., 2003 [25]
2 proband 12 60 AD M Moderate Gently sloping ACTG1 NM_001614 c.[952A>G;977A>G];[=] p.[T318A;K326R];[=] This study

daughter 12 25 AD F Mild Gently sloping ACTG1 NM_001614 c.[952A>G;977A>G];[=] p.[T318A;K326R];[=] This study

3 proband 6 33 Sporadic F Moderate Flat CDH23 NM_022124 c.[4762C>T];[8866C>A] p.[R1588W];[R2956S]
Miyagawa et al.,
2012 [26], Usami
et al., 2022 [27]

4 proband 15 35 Sporadic F Mild Steeply sloping CDH23 NM_022124 c.[4853C>T];[4853C>T] p.[T1618M];[T1618M] Usami et al., 2022 [27]

5 proband 12 31 AD M Mild Steeply sloping COCH NM_004086 c.[1096G>A];[=] p.[V366M];[=] Usami & Nishio
2022 [9]

6 proband 15 41 AD M Moderate Gently sloping COL11A1 NM_001854 c.[3482dupC];[=] p.[G1162Wfs*6];[=] This study
mother 50 65 AD F Moderate Flat COL11A1 NM_001854 c.[3482dupC];[=] p.[G1162Wfs*6];[=] This study

7 proband 27 27 AD M Normal Flat EYA1 NM_172058 c.[1081C>T];[=] p.[R361X];[=] Spruijt et al., 2006 [28]
mother 2~3 57 AD F Profound Deaf EYA1 NM_172058 c.[1081C>T];[=] p.[R361X];[=] Spruijt et al., 2006 [28]

8 proband 10 38 AD F Severe Flat EYA4 1 copy loss Shinagawa et al.,
2020 [29]

mother 26 66 AD F Severe Flat EYA4 1 copy loss Shinagawa et al.,
2020 [29]

9 proband 6 35 AD F Moderate Flat EYA4 1 copy loss Shinagawa et al.,
2020 [29]

10 proband 0 0 Sporadic F Severe Flat GJB2 NM_004004 c.[176_191del];[235del] p.[G59Afs*18];[L79Cfs*3] Abe et al., 2000 [30],
Fuse et al., 1999 [31]

11 proband 7 8 Sporadic F Moderate Gently sloping GJB2 NM_004004 c.[235del];[235del] p.[L79Cfs*3];[L79Cfs*3] Fuse et al., 1999 [31]
12 proband 3 41 Sporadic M Severe Flat GRXCR1 NM_001080476 c.[439C>T];[784C>T] p.[R147C];[R262X] Mori et al., 2015 [32]

13 proband 12 33 AD F Moderate U-shaped KCNQ4 NM_004700 c.[909C>G];[=] p.[F303L];[=] Usami & Nishio
2022 [9]

father 50 66 AD M Moderate Steeply sloping KCNQ4 NM_004700 c.[909C>G];[=] p.[F303L];[=] Usami & Nishio
2022 [9]

14 proband 30 33 Maternal F Moderate Flat MT-TL1 m.3243A>G Goto et al., 1990 [33]
daughter Unaware 13 Maternal F Normal Flat MT-TL1 m.3243A>G Goto et al., 1990 [33]

15 proband 22 32 Maternal F Moderate Flat MT-TL1 m.3243A>G Goto et al., 1990 [33]
16 proband 18 40 Maternal M Profound Deaf MT-TL1 m.3243A>G Goto et al., 1990 [33]

mother Unaware 65 Maternal F Moderate Gently sloping MT-TL1 m.3243A>G Goto et al., 1990 [33]

17 proband 13 13 AD M Mild U-shaped MYO6 NM_004999 c.[2545C>T];[=] p.[R849X];[=] Sanggaard et al.,
2008 [34]

brother 9 9 AD M Mild Flat MYO6 NM_004999 c.[2545C>T];[=] p.[R849X];[=] Sanggaard et al.,
2008 [34]

18 proband 45 68 AD M Moderate Steeply sloping MYO7A NM_000260 c.[4118G>A];[=] p.[R1373Q];[=] Usami & Nishio
2022 [9]

19 proband 45 57 AR F Moderate Flat MYO7A NM_000260 c.[359G>A];[874C>T] p.[R120H];[R292W]
Oza et al., 2018 [23],

Nykamp et al.,
2017 [35]
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Table 2. Cont.

Family
# Relationship Onset

Age Age Inheritance Gender Severity of
HL

Audiometric
Configuration Gene RefSeq ID Base Change AA Change References

20 proband 6 46 AD F Moderate Low-freq.
ascending NOG NM_005450 c.[645C>A];[=] p.[C215X];[=] Usami et al., 2012 [36]

21 proband 3 70 AR F Severe Steeply sloping SLC26A4 NM_000441 c.[107_116delinsTCGCT
TT]; [1315G>A]

p.[H36_R39delinsLAPF];
[G439R]

Usami & Nishio
2022 [9], Suzuki et al.,

2017 [37]

22 proband 3 65 Sporadic F Profound Deaf SLC26A4 NM_000441 c.[918+1G>A];[2162C>T] p.[spl.];[T721M]
Van Hauwe et al.,

1998 [38], Usami et al.,
1999 [39]

23 proband 6 7 Sporadic M Moderate Flat STRC 2 copy loss Yokota et al.,
2019 [40]

24 proband 5 16 Sporadic F Moderate Flat STRC 2 copy loss Yokota et al.,
2019 [40]

25 proband 8 25 AD M Mild U-shaped TECTA NM_005422 c.[5597C>T];[=] p.[T1866M];[=] Sagong et al.,
2010 [41]

daughter NHS 4 AD F Mild Flat TECTA NM_005422 c.[5597C>T];[=] p.[T1866M];[=] Sagong et al.,
2010 [41]

son NHS 7 AD M Moderate U-shaped TECTA NM_005422 c.[5597C>T];[=] p.[T1866M];[=] Sagong et al.,
2010 [41]

26 proband 22 22 AD F Mild Steeply sloping TMC1 NM_138691 c.[1627G>A];[=] p.[D543N];[=] Moteki et al.,
2016 [42]

mother 20s 48 AD F Profound Deaf TMC1 NM_138691 c.[1627G>A];[=] p.[D543N];[=] Moteki et al.,
2016 [42]

grandfather 40s 77 AD M Profound Deaf TMC1 NM_138691 c.[1627G>A];[=] p.[D543N];[=] Moteki et al.,
2016 [42]

aunt 30s 46 AD F Severe Steeply sloping TMC1 NM_138691 c.[1627G>A];[=] p.[D543N];[=] Moteki et al.,
2016 [42]

27 proband 18 21 AD M Mild Gently sloping TMC1 NM_138691 c.[1627G>A];[=] p.[D543N];[=] Moteki et al.,
2016 [42]

father 20s 48 AD M Severe Gently sloping TMC1 NM_138691 c.[1627G>A];[=] p.[D543N];[=] Moteki et al.,
2016 [42]

28 proband 14 16 AD F Moderate Steeply sloping TMC1 NM_138691 c.[1627G>A];[=] p.[D543N];[=] Moteki et al.,
2016 [42]

father 14 45 AD M Profound Deaf TMC1 NM_138691 c.[1627G>A];[=] p.[D543N];[=] Moteki et al.,
2016 [42]

29 proband 3 16 Sporadic F Moderate Flat USH2A NM_206933 c.[5329C>T];[11389+3A
>T] p.[R1777W];[spl.]

Nakanishi et al.,
2011 [43], Soens et al.,

2017 [44]

NHS: newborn hearing screening, AD: autosomal dominant, AR: autosomal recessive, M: male, F: female, spl.: splicing.
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3.2. Clinical Characteristics of Patients with Each Gene Variant

HL associated with the GJB2, SLC26A4, STRC, TECTA, USH2A, NOG, and GRXCR1
genes was observed in patients with HL onset in the first decade. In contrast, all patients
with TMC1, m.3243A>G, ACTG1, KCNQ4, COCH, COL11A1, EYA1, and MYO7A variants
showed HL onset after the second decade. One case with an ACTG1 variant and two cases
with MYO7A variants became aware of their HL at over 40 years of age (Table 2).

Patients with EYA1 variants showed mild hearing loss only in the high-frequency
region, and these cases were categorized as normal hearing. HL associated with the MYO6,
TECTA, and COCH genes was identified in patients with mild hearing loss. Patients with
STRC, MYO7A, KCNQ4, USH2, COL11A1, and NOG gene variants showed moderate HL.
In terms of audiometric configurations, STRC, EYA4, TECTA, MYO6, USH2, GRXCR1,
EYA1, and KCNQ4 gene variants were observed in patients with flat- or U-shaped-type HL.
In contrast, patients with TMC1, SLC26A4, COCH, ACTG1, and COL11A1 gene variants
presented high-frequency impaired hearing loss, such as steeply sloping or gently sloping
audiogram patterns (Table 2).

3.3. The Relationship between Diagnostic Rate and Phenotype

With regard to the diagnostic ratio for each HL severity, the profound HL group
showed the highest ratio; i.e., we could identify the responsible gene variants for all three
cases (100%), followed by the moderate HL (36.6%), severe HL (36.4%), normal (25.0%),
and mild HL (18.8%) groups (Figure 2A). In terms of the diagnostic rate for each type of
HL, the deaf-type showed the highest diagnostic ratio (100%), followed by U-shaped HL
(42.9%), flat-type HL (37.5%), steeply sloping-type HL (28.6%), gently sloping-type HL
(20.0%), and low-frequency ascending-type HL (20.0%) (Figure 2B). We could not identify
any candidate variants for the patients with different types of HL on the right and left side.
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In addition to the severity of HL and type of HL, family history and progression of
HL also affected the diagnostic ratio. There were 47 patients who have relatives with HL,
and 44 patients did not have any affected family members. Among the 47 patients with
a family history of HL, 34 patients had progressive HL. Similarly, among the 44 patients
without a family history, 24 cases had progressive HL (Figure 3). The diagnostic rate was
55.9% for the 34 patients with a family history and progressive HL, which was significantly
higher than that for the other groups (p < 0.01, Chi-square test) (Figure 3). Interestingly,
most of the responsible genes identified in patients with a family history and progressive
HL were autosomal dominant inheritance or maternal inheritance genes, demonstrating
the importance of these genes in the patients included in this category.
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Figure 3. The diagnostic rate and responsible genes identified for each category of family history and
progression of HL.

4. Discussion

In this study, we analyzed 91 HL patients and identified 23 possibly disease-causing
variants in 29 cases (31.9%). The diagnostic rate was the highest in the congenital/early-
onset group (42.9%), followed by the juvenile/young adult-onset group (31.7%), and the
middle-aged/aged-onset group (21.4%). A negative correlation was also observed between
the age of onset (or awareness) and diagnostic yield in previous papers [8–11,45]. These
findings emphasize that a genetic etiology is involved to a considerable degree even in
patients with late-onset HL.

Previous etiological studies have shown that responsible genes such as GJB2 and
SLC26A4 are most frequently identified [4,6]. This result reflects the composition of the
study cohort with a particular focus on congenital- or pre-lingual-onset severe-to-profound
HL. In this study, most of the participants suffered late-onset mild-to-moderate HL, and
we are able to shed some light onto the genetic etiology of late-onset HL patients. The
most prevalent responsible genes identified in this study were a mitochondrial m.3243A>G
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variant and the TMC1 gene, which were observed in three cases each, followed by two cases
with GJB2, CDH23, SLC26A4, STRC, MYO7A, ACTG1, and EYA4 gene variants, respectively.
The responsible genes identified in this study cohort were consistent with those in our
previous report. Usami et al. reported that the frequent responsible genes for juvenile-onset
HL were KCNQ4, Mitochondria m.3243A>G variant and m.1555A>G variant, CHD23,
MYO6, MYO7A, ACTG1, POU4F3, and WFS1 [9]. One of the major reasons for the large
number of late-onset HL patients in this study is that genetic testing for HL has been
covered by the social health insurance system in Japan since 2012. Thus, patients from
a wide range of age groups and various levels of HL severity can consult specialists for
genetic evaluation.

With regard to the relationship between the severity of HL and the diagnostic ratio,
a positive correlation was observed. This result was consistent with that of a previous
report [9]. In terms of the type of HL, the diagnostic rate was higher for U-shaped HL,
flat-type HL, and deaf-type HL than for the other types, including high-frequency steeply
sloping-type or gently sloping-type. It might be difficult to distinguish genetic HL from
environmental HL in patients with high-frequency-associated HL. Age-related HL and
cisplatin-induced HL generally lead to high-frequency HL. Thus, the high-frequency HL
group will consist of patients other than those with genetic HL, including those with
etiologies such as age, noise, and drugs as well as other environmental factors. Previously,
the specific phenotype of a ski-slope audiogram patten, which is one type of high-frequency-
associated HL, was also reported to result in a lower diagnostic rate [46]. In addition, both
genetic and environmental factors may affect such HL. CDH23 variants cause a wide
range of phenotypes, from non-syndromic hearing loss (DFNB12) to syndromic hearing
loss and Usher syndrome type ID (USH1D). In addition, several studies proposed that
CDH23 variants might modify the susceptibility to HL caused by the environmental factors
such as age-related changes or noise exposure [47–52]. Thus, CDH23 variants that are
observed at high frequencies in the normal hearing control population may affect late-onset
high-frequency HL in combination with environmental factors.

Interestingly, family history and progressive HL appear to be good markers for a
higher diagnostic ratio. In this study, a higher diagnostic ratio was achieved in 19 (55.9%) of
34 patients with both a family history and progressive HL, even though most of these cases
had late-onset mild-to-moderate HL. Among these 19 cases, 13 cases were diagnosed with
autosomal dominant inheritance gene-associated HL, and 3 cases were diagnosed with
maternal inheritance. In general, autosomal dominant non-syndromic HL is considered to
be associated with post-lingual-onset, progressive HL [12], and our results were consistent
with this hypothesis.

While useful findings were obtained, this study is limited by the small number of
patients accumulated from the single institute. Further studies with a larger number of
patients will be required to clarify the characteristics of each type of genetic HL.

5. Conclusions

In conclusion, we showed the utility of genetic testing even in the cases with late-onset
HL. In particular, patients with late-onset mild-to-moderate HL with a family history and
progressive HL appear to be good candidates for genetic testing. Our data will be useful in
furthering our understanding of the genetic background of late-onset mild-to-moderate HL.
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