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Abstract: With China’s rapid industrialization and urbanization in the process of socio-economic
development, the extensive use of energy has resulted in a large amount of CO2 emissions, which
puts great pressure on China’s carbon emission reduction task. Through multivariate socio-economic
data, this paper proposes an extraction and screening method of multivariate variables based on
land-use types, and the downscaled spatial decomposition of carbon emissions at different scales
was carried out by using the spatial lag model (SLM). This paper makes up for the shortcomings of
previous studies, such as an insufficient modeling scale, simple modeling variables, limited spatio-
temporal span of spatial decomposition, and no consideration of geographical correlation. Based
on the results of the spatial decomposition of carbon emissions, this paper explores the spatial and
temporal dynamics of carbon emissions at different scales. The results showed that SLM is capable of
downscaling the spatialization of carbon emissions with high precision, and the continuity of the
decomposition results at the provincial scale is stronger, while the differences of the decomposition
results at the municipal scale are more obvious within the municipal units. In terms of the spatial
and temporal dynamics of CO2 emissions, carbon emissions at both scales showed a significant
positive correlation. The dominant spatial correlation types are “Low–Low” at the provincial level,
and “Low–Low” and “High–High” at the municipal level. The smaller spatial scope is more helpful
to show the geographic dependence and geographic differences of China’s carbon emissions. The
findings of this paper will help deepen the understanding of the spatial and temporal changes of
carbon emissions in China. They will provide a scientific basis for the formulation of feasible carbon
emission reduction policies.

Keywords: carbon emissions; spatial lag model; spatial autocorrelation; spatiotemporal dynamics

1. Introduction

Since the twentieth century, anthropogenic carbon emissions have accounted for more
than 99 per cent of all carbon emissions [1], and the term “carbon emissions” is used herein
to refer to anthropogenic carbon emissions. According to the United Nations Intergovern-
mental Panel on Climate Change (IPCC), the main cause of global warming is the increase
in the CO2 concentration in the atmosphere, and the main reason for the increase in the
CO2 concentration is fossil energy consumption [2,3]. Carbon emissions are related to the
core interests of each country and have become the focus of international attention [4]. With
the continuous development and progress of China’s economy and society, China’s energy
consumption and carbon emissions have increased dramatically [5,6]. Although China
has not yet been included in the list of the first batch of countries limited to an emission
reduction under the Kyoto Protocol, the changes in China’s carbon emissions have attracted
the attention of various countries. Due to the vastness of China’s territory and the uneven
level of regional economic development, there are large regional differences in carbon
emissions. China’s government has a positive attitude in dealing with carbon emission
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reduction, and only by grasping the spatial and temporal distribution of carbon emissions
can governments formulate policies for different regions [2].

In foreign studies on the spatial decomposition and spatial-temporal dynamics of
carbon emissions, Chevallier et al. decomposed carbon emissions on a globally uniform
grid [7]. However, the modeling scale of the study was the national scale, which is not
fine enough. Some studies have developed carbon emission maps based on nighttime
lighting data [1]. However, nighttime lighting data do not accurately cover anthropogenic
areas [8]. The spatial estimation of carbon emissions using only a single variable, such as
nighttime lighting, is a single variable system, and it is not possible to take multiple factors
into account more comprehensively in order to make a more accurate spatial prediction
of carbon emissions. In the domestic exploration of carbon emissions, some studies have
examined the distribution of CO2 emissions in multiple cities or regions. For example, Wang
et al. estimated CO2 based on nighttime lighting data and obtained the CO2 distribution
of cities in the Yangtze River Delta [9]. However, carbon emissions are sensitive to scale
changes, and the findings of CO2 emission distribution in a specific region are not suitable
to be transferred to another spatial scale [10]. Therefore, large-scale spatial studies of
carbon emissions are still necessary for government policy makers [11]. Even though some
scholars have conducted gridded studies of carbon emissions on a large scale, the models
they use cannot take the spatial linkage of carbon emissions into account [12]. At present,
the modeling regression scales for downscaling the spatialization of carbon emissions in
China are basically carried out at the provincial scale, and no attempt has been made to
carry out spatial decomposition at the more detailed municipal scale [13]. In addition, the
large-scale long-term time-series CO2 distribution has still not been adequately studied in
recent years, and needs to be explored with improved methods and indicators to effectively
understand the spatial and temporal dynamics of socio-environmental problems [14].

In order to realize an effective understanding and control of China’s domestic carbon
emissions, and to realize a detailed quantification of carbon emissions in time and space,
this paper carries out the downscaling spatial decomposition of carbon emissions based
on multivariate spatial statistics, applying SLM at the provincial and municipal scales in
China, and investigates its spatial-temporal distribution law at the two scales. This helps
to grasp the distribution characteristics and regional differences of carbon emissions in
China, and provides a reference for the formulation of reasonable regional carbon emission
reduction policies. The research flow chart is shown in Figure 1.
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2. Data and Methods
2.1. Study Area

China is a vast country, but due to natural, historical, and social factors, the level of
economic development within the region is not balanced, and CO2 emissions are significant
and unevenly distributed [13]. In this study, mainland China was taken as the study area,
and Hong Kong, Macao, Taiwan, and Tibet were not included due to the lack of statistical
data. Multiscale spatial and temporal dynamics were analyzed at the 1 km pixel scale
for the administrative levels of provinces and cities. The term “city” here refers to the
administrative prefecture-level city, not the built-up city, which is the same as below.

2.2. Data Sources and Pre-Processing

Land-use data (land-use) and vegetation index data (NDVI) were obtained from the
Land Processing Distributed Active Archive Center (LP DAAC) (https://lpdaac.usgs.
gov/products/ (accessed on 3 October 2022)). The agency operates as a partnership
between the U.S. Geological Survey (USGS) and the National Aeronautics and Space
Administration (NASA). Land Cover Type MCD12Q1 Version 6.1 data were improved
by making a variety of calibration changes, including changes to the scanning angle
(RVS) method and correcting for crosstalk in the TerraMODIS infrared band. The specific
categorization of this dataset can be found in the summary of Zhang et al. [15].

Population data were selected from Oak Ridge National Laboratory (ORNL) LandScan
Global data (https://landscan.ornl.gov/ (accessed on 16 March 2023)). LandScan Global
uses an innovative approach to population modeling that combines geospatial science,
remote sensing technology, and machine learning algorithms. LandScan Global captures
the full range of potential spaces for people to move around in during the day and night,
not just residential locations.

Nighttime lighting data (NPP-VIIRS) were derived from NOAA/NGDC (https://
payneinstitute.mines.edu/eog/nighttime-lights/ (accessed on 11 June 2022)). The NOAA/
NGDC observing team utilized nighttime data acquired by the Visible Infrared Radiometer
(VIIRS) aboard the National Polar Cooperation Satellite (Suomi-NPP) to obtain the first
version of a composite image dataset of average monthly radiation. The annual VNL
V1 version excludes data on the effects of stray light [16], but does not filter out effects
from auroras, fires, fishing boat lights, and other ephemeral light sources. A new annual
VIIRS nighttime light time series, VNL V2, was generated from monthly cloud-free mean
radiation data [17]. The VNL V2 version of the file discards high emissivity and low
emissivity anomalies and filters out most fires. Therefore, the annual VNL V2 version of
the file was used in this paper as remote sensing data for nighttime lighting.

GDP data were obtained from China Economic and Social Development Statistics
Database—Yearbook Navigator (https://data.cnki.net/home (accessed on 1 April 2023)).
The database integrates various types of statistical information, applies knowledge graphs,
models, and other artificial intelligence techniques to upgrade it, and completes the struc-
tured and indexed organization of data. Administrative boundaries data were obtained
from the National Center for Basic Geographic Information (http://www.ngcc.cn/ (ac-
cessed on 6 April 2022)).

Provincial energy consumption data [18–21] and municipal carbon emissions data [22–25]
were obtained from China Carbon Accounting Databases (CEADs) (https://www.ceads.
net/ (accessed on 10 November 2022)). CEADs is committed to building a cross-checkable
multiscale carbon emission accounting methodology system, compiling a carbon account-
ing inventory covering China and other developing economies, and building a refined
carbon accounting data platform.

For the processing of the night light data, the average radiation value originating
from the unoccupied area closest to the dense human settlements—the average radiation
value within Lake Taihu—was selected as a low threshold to remove the noise in this

https://lpdaac.usgs.gov/products/
https://lpdaac.usgs.gov/products/
https://landscan.ornl.gov/
https://payneinstitute.mines.edu/eog/nighttime-lights/
https://payneinstitute.mines.edu/eog/nighttime-lights/
https://data.cnki.net/home
http://www.ngcc.cn/
https://www.ceads.net/
https://www.ceads.net/
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paper [13,26]. In the removal step, a binary raster file for the intermediate step was first
generated according to Equation (1).{

DN(n,i) = 0, when DN(n,i) < DN(n,t)
DN(n,i) = 1, other else

(1)

where DN(n,i) represents the i-th raster in year n and DN(n,t) represents the threshold in
year n.

Afterwards, the binary raster was multiplied with the original raster to obtain the
NPP-VIIRS data with low-value noise removed. In order to standardize the scale of all
variable data, NPP-VIIRS, land-use data, NDVI, and population data were resampled with
an image size of 1 km2 in this paper. In addition, NDVI data required null removal and
scale reduction.

2.3. Pre-Processing of GDP

NPP-VIIRS has been shown to have better performance in GDP downscaling than
DMSP/OLS data [27,28]. However, some scholars have found that NTLs on different
land-use types are not comparable and cannot be simply used to fit GDP, and choosing a
single indicator is likely to cause problems such as poor fitting accuracy [29]. Therefore, in
this paper, NPP-VIIRS was used for three indicators under different land-use types, and
the calculation process is shown in Equation (2) [30].

DN j =
n

∑
i

NTL

Land Area
(
YLj

)
= Pj × LandYL,

8

∑
j=1

Pj = 100% (2)

Land Area
(

NLj
)
= Pj × LandNL,

8

∑
j=1

Pj = 100%

where DNj denotes the sum of NTL lights of n pixels on land class j, Land Area (YLj) and
Land Area (NLj) are the lighted and unlighted areas on land class j, LandYL and LandNL
denote the lighted and unlighted areas in the city’s administrative boundaries, and Pj
denotes the weight of the area occupied by land class j in the city. The sum of the weights
is 100% (valid land classes).

After that, this paper carried out multiple linear stepwise regression based on the
statistical indicators, and the regression model is shown in Equation (3). After the multi-
variate stepwise regression, the R2 reached 0.9, which proved that the application of the
multivariate stepwise regression model to the NPP-VIIRS index based on land category
could better spatially decompose the GDP. Based on the model fitting results, this paper
spatially decomposed GDP on a raster scale, and obtained the gridded GDP 1 km × 1 km
data for each year from 2012 to 2021. See Supplementary Materials Figure S1 for gridded
GDP for 2012 and 2021 as an example.

Y = β1X1 + β2X2 + · · ·+ βiXi (3)

where Y is the dependent variable, that is, the regression value (fitting value) of GDP; Xi
(i = 1, 2, . . ., n) is the independent variable; and βi is the regression coefficient of Xi.

2.4. Spatialization of Carbon Emissions
2.4.1. Carbon Emission Statistics and Screening of Variables

In this paper, carbon emission statistics for 30 provincial-level administrative re-
gions were calculated with reference to the calculation process of IPCC and CEADs. Two
components make up the emission statistics: energy-related emissions due to fossil fuel
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combustion (CEenergy-related,j), and process-related emissions due to industrial production
(CEprocess-related,j) [25]. The calculation process is described in Equation (4). The process of
calculating CEenergy-related,j based on mass balance theory is described in Equation (5) [23,24],
and the steps for calculating CEprocess-related,j are described in Equation (6) [18,19,22]:

CEj = CEenergy−related,j + CEprocess−related,j (4)

CEenergy−related = 44 ÷ 12 × ∑
i

∑
j

CEij

= 44 ÷ 12 × ∑
i

∑
j

ADij × NCVi × CCi × Oij
(5)

where ADij is the fossil fuel consumption of fossil fuel I in sector j. NCVi, CCi, and Oij
represent the emission factors of the fuels burned in sector j, respectively, and can be further
divided into three components: the net calorific value of the fuel NCVi, which is formed
per physical unit of fossil fuel i burned; the carbon content CCi, which is produced per unit
of calorific value of fossil fuel i burned; and the fossil fuel oxidation rate Oij. Specific values
are given in the collation of Shan et al. [20,25].

CEprocess−related,j = ADt,j × EFt,j (6)

where ADt,j and EFt,j are industrial production activity data and emission factors respec-
tively, where EFt,j value is 0.4985 [25].

In terms of the selection of the independent variables for carbon emissions, there are
numerous factors that influence carbon emissions. The spatialization of downscaling of
carbon emissions needs to take into account as many factors as possible, taking into account
the availability of data and the need for easy quantification and spatialization [31,32].
Since the socio-economic data on different land-use types are not comparable, choosing
a single indicator to fit the dependent variable is likely to cause problems such as lower
fitting accuracy [29]. Therefore, this paper considered the following multiple independent
variables for the spatial decomposition of carbon emissions.

Nighttime lighting data have the advantages of wide coverage, long time span, and
large area for simultaneous acquisition of ground information [33]. They can reveal the
intensity of economic and human activities and have become one of the most important
geographic information data [34,35]. A correlation between nighttime lighting data and
carbon emissions has been demonstrated and can be used to measure carbon emissions [33].
Most of the previous studies were measured using DMSP-OLS nighttime lighting data,
which stopped being updated after 2013 [36]. The NPP-VIIRS nighttime light data not only
fill the data gap after 2013, but also have higher spatial resolution and are more suitable for
near-term studies.

Vegetation, as a major CO2 absorber, is also strongly correlated with carbon emissions.
Remote sensing has become increasingly important in the study of surface vegetation
cover over the past few decades as an important means of assessing changes in vegetation
cover [37]. Based on the differences in the response of vegetation to the spectral features
of different bands, the vegetation index indicating the surface vegetation can be obtained
through the calculation of different bands [38]. NDVI is very sensitive to the growth
potential of green vegetation and can be used for regional vegetation cover studies.

As the urban population gathers, environmental problems related to air pollution
and energy consumption will emerge [39]. The impact of population distribution on CO2
emissions in China is significant [40]. Unlike population density measurements such as
WorldPop, LandScan data are census data measured based on GIS and a density difference
model. The model takes into account all urban economic activity [41]. The LandScan
population database estimates economic activity per square kilometer in the form of raster
element values. This overcomes biases in the measurement of urban demographics and
provides a more accurate and scientific picture of the spatial distribution of the popula-
tion [42].
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Considering the above reasons, this paper was based on NPP-VIIRS and NDVI data for
extraction and statistics on different land classes for a more complete and comprehensive
variable screening. Since population data and GDP are not directly measured but are
quadratic fitted values, splitting them may affect the accuracy of their data and therefore
these two types of data were not split. Next, all variables were factor analyzed to examine
the main components of the variables. Then, based on the results of the factor analysis, the
variables were subjected to recombination extraction and correlation analysis as a way to
carry out the initial screening of the independent variables. After obtaining the preliminary
screening variables, this paper carried out in-depth screening of independent variables
based on causality method, random forest analysis, stepwise regression, Lasso regression,
ridge regression, elastic network screening, and optimal subset screening method.

2.4.2. Spatial Regression of Carbon Emissions

In spatial distribution, the dependent variable on a certain geographic unit is not only
related to the socio-economic data, but is also affected by the dependent variables of its
neighboring geographic units; therefore, this paper adopted the spatial regression analysis
model to explore the spatial dynamics of carbon emissions in China. Spatial lag modeling
(SLM) is used to represent spatial correlation and can reflect the impact of neighboring
regions on the target region. Therefore, this paper selected SLM for spatial regression to
calculate the fitted carbon emission values for each grid, based on the grid layer storing the
carbon emissions and the screened independent variables. The model equation is shown in
Equation (7):

y = ρWy + β1x1 + β2x2 + · · ·+ βixi + ε (7)

where Wy is the spatial weight matrix; ρ denotes the regression coefficient of Wy; x1 to
xi denote the values of the independent variables influencing factors; β1 to βi denote the
regression coefficients of the respective variables; and ε is the random error.

In this paper, the negative grid value in the fitting result was set to a value of 0, which
is closest to the negative value among the possible values [12], so that the preliminary
carbon emission fitting grid layer could be obtained. After that, this paper adopted the
correction method of making the sum of the fitted values of the administrative units
consistent with the real value of carbon emissions, so that the error only occurred within
each administrative unit [12], and the specific adjustment process is shown in Equation (8):

CCct = SCnt × (NCct ÷ NCnt) (8)

where CC is the final adjusted value of carbon emissions, SC is the real value of carbon
emissions, NC is the preliminary estimated value, c is each image element, n is each
administrative unit under a certain scale, and t is each year.

2.4.3. Study of the Dynamics of Spatial and Temporal Patterns

The coefficient of variation (CV) can reflect the degree of agglomeration or dispersion
of a parameter to a certain extent. Therefore, this paper adopted the CV to calculate and
explore the spatial distribution of carbon emissions at different scales in China, and the
calculation is shown in Equation (9):

CV =

√
1
n∑n

i=1

(
Yi − Y

)2 ÷ Y (9)

where CV represents the coefficient of variation, the value of which corresponds to the
degree of agglomeration of the samples within a certain range and is positively correlated
with the intensity of agglomeration; Yi represents the value of carbon emissions within area
I; n represents the number of administrative units; and Y is the average carbon emissions.
According to the existing research results, if the coefficient of variation CV is greater than
0.2, the variation between observations is significant [43].
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When exploring changes in carbon emissions in different provinces and cities, it is
necessary to determine whether a given unit is spatially autocorrelated within the study
area [44]. Global Moran’s I reveals similarities between the attribute values of connected
or neighboring geographic units as a basis for assessing the spatial distribution across the
study area [45]. Therefore, in this paper, global Moran’s I was utilized to measure and
assess the overall autocorrelation of carbon emissions at various scales, as calculated in
Equation (10).

I =
n∑n

i=1 ∑n
j=1 wij(xi − x)

(
xj − xi

)
∑n

i=1 ∑n
j=1 wij∑n

i=1(xi − x)2 (10)

where I denotes the global Moran’s I index; n is the total number of administrative districts
at a given scale; i and j are two different administrative districts at the same scale; wij is the
spatial weighting matrix; xi and xj are the simulated CO2 emissions of provinces i and j,
respectively; and x is the average emission of the entire study area.

Local spatial autocorrelation analysis can determine to what extent the overall auto-
correlation masks the uncertainty of the local distribution [46]. LISA can assess the degree
of spatial correlation between the eigenvalues of a regional unit and the environment in
which it is located [12,47]. Therefore, in this paper, Moran scatterplot and LISA data were
combined to study the spatial aggregation and regional instability of carbon emissions at
various scales. The local Moran’s I index in LISA is calculated as shown in Equation (11):

Ii = zi∑j wijzj (11)

where Ii denotes the local Moran’s I index, zi and zj are normalized to the sample values of
regions i and j, and wij refers to the spatial weights, where ∑j wij = 1.

3. Results and Discussion
3.1. Screening of Carbon Emission Variables

In this paper, based on the rotated principal component analysis table that can be
seen in Supplementary Materials Table S1, the land classes that contributed more to the
principal components were merged into the following five: L1—forestland, L2—grassland,
L3—farmland, L4—urban, and L5—water (Supplementary Materials Table S2). The NPP-
VIIRS and NDVI were counted based on the merged land classes. Then, they were com-
bined with four summation indicators: Sum-NPP-VIIRS, Sum-NDVI, Sum-GDP, and SUM-
population for the correlation analysis (Supplementary Materials Table S3). Among them,
the VIFs of SUM-NPP-VIIRS and NPP-VIIRS-13 reached approximately 30, and it was nec-
essary to make a trade-off between these two variables. Considering that SUM-NPP-VIIRS
contains more comprehensive data information compared to NPP-VIIRS-13, SUM-NPP-
VIIRS of the two was selected to be retained as a candidate independent variable.

In the screening of multivariate independent variables, it is necessary to follow the
causality network method first: independent variables can be included in the independent
variable system only when there is a theoretical logical correlation between independent
variables and the dependent variables. As shown in Table 1, the screening results of the
optimal subset method all have a logical causal relationship with anthropogenic carbon
emissions, so this paper chose the results of the optimal subset method: SUM-GDP, SUM-
NDVI, SUM-NPP-VIIRS, NDVI-L1, NDVI-L3, NDVI-L4, NPP-VIIRS-L1, and NPP-VIIRS-L2.
These eight variables were used as independent variables that eventually entered the spatial
regression model of carbon emissions.
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Table 1. Screening variable results for multiple methods.

Variant Random
Forest

Stepwise
Regression Lasso Ridge Elastic Net Optimal

Subset

SUM-GDP
√ √ √ √

SUM-POPULATION
√

SUM-NDVI
√ √ √

SUM-NPP-VIIRS
√ √ √ √ √ √

NDVI-L1
√ √ √ √

NDVI-L2
√ √

NDVI-L3
√ √ √

NDVI-L4
√ √ √ √

NDVI-L5
√ √

NPP-VIIRS-L1
√ √ √ √

NPP-VIIRS-L2
√ √ √ √

NPP-VIIRS-L3
√ √ √

NPP-VIIRS-L5
√ √ √

NDVI-L1 indicates the sum of NDVI over the L1 land class, and the same for the rest of the variables; “
√

” indicates
that the variable was filtered in the results of the method.

3.2. Spatial Regression of Carbon Emissions

The results of the spatial analysis of the SLM of carbon emissions are shown in Table 2.
The provincial model fit goodness of fit R2 all reached above 0.633, while the municipal
level was approximately 0.990. These data confirm the higher fit of the model for carbon
emissions. The reason that the R2 of the regression at the municipal level was higher than
that at the provincial level is that the area with the same value of the preliminary allocation
of carbon emission grid value at the provincial level was larger, resulting in a weaker
difference in spatial pattern than that at the municipal level. The regression coefficient of the
spatially lagged variable W_carbon reveals the inherent correlation, and the reason for the
difference in W_carbon at the two scales is the same as for the R2 value. It can be seen that
the values of W_carbon in the provincial regressions are all greater than or equal to 0.740,
and the W_carbon in the municipal regressions is even greater than or equal to 0.980, which
further verifies the reasonableness of the use of the spatial lag model to study the spatial
and temporal distribution pattern of carbon emissions in China from 2012 to 2021. The
regression results for 2021, for example, are shown in Supplementary Materials Table S4.
From this, it can be seen that the p-values of the modeling are all equal to 0, which passes
the test of significance level.

Table 2. SLM-based carbon emission regression parameters by year.

Year R2-a W_Carbon-a R2-b W_Carbon-b

2012 0.637 0.742 0.990 0.988
2013 0.640 0.743 0.991 0.988
2014 0.639 0.743 0.991 0.988
2015 0.638 0.743 0.991 0.987
2016 0.639 0.743 0.990 0.987
2017 0.637 0.742 0.990 0.986
2018 0.636 0.741 0.988 0.985
2019 0.634 0.741 0.988 0.984
2020 0.633 0.740 - -
2021 0.634 0.740 - -

a: Provincial data, b: Municipal data.

Taking the provincial scale fitting map in 2021 as an example (Figure 2), it can be found
that the disconnection of carbon emission values between administrative units no longer
exists, and the distribution of differences between grids is more accurate. The original
carbon emission values based on administrative divisions could not consistently reflect the
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progressive pattern of carbon emission changes on smaller scales after being fed back to the
map. The adjusted spatial distribution of carbon emissions on a downscaled scale makes
up for this shortcoming. It can be seen from the fitted map that the general distribution
pattern of carbon emissions in China is increasing from the west to the east.
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3.3. Study of the Dynamics of Spatial and Temporal Patterns
3.3.1. Provincial Scale

According to the calculation of the coefficient of variation (Figure 3a), the carbon emis-
sion levels of the 30 provinces in China were significantly different. In the global Moran’s
I calculations, the Moran’s I for the years 2012 through 2021 passed the 0.05 significance
test, and all the global Moran’s I values were greater than 0.2. From Figure 3, the overall
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distribution of carbon emissions can be inferred from the evolutionary pattern: China’s
carbon emissions show positive geographical concentration characteristics, and the degree
of aggregation slowly fluctuates to improve.
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Figure 3. Provincial (a) and municipal (b) scales of CV and Moran’s I.

The Moran scatter plot can reflect the carbon emission value of a unit relative to
the surrounding units; from the first quadrant to the fourth quadrant they represent the
“High–High”, “Low–High”, “Low–Low” and “High–Low” types, respectively. Taking the
Moran scatterplot of provinces in 2012 and 2021 as an example (Figure 4), most of the
provinces belonged to the “High–High” and “Low–Low” types, and there was a positive
autocorrelation between provincial carbon emissions and provincial carbon emissions.
Most of the provinces fell into the “High–High” and “Low–Low” categories, and there was
a positive spatial autocorrelation of provincial carbon emissions. The number of provinces
with the “Low–Low” type in the third quadrant was more than that of the “High–High”
type in the first quadrant, which indicates that the number of low-value agglomerated
units was higher, which is also an important part of the spatial positive autocorrelation of
provincial carbon emissions. This is also an important part of the positive autocorrelation
of provincial carbon emission space. The Moran scatterplot for the complete years is shown
in Supplementary Materials Figure S2.

According to the LISA agglomeration map in Figure 5 (years with the same LISA
agglomeration map as the previous year are not shown due to space limitations), the spatial
relationship distribution of carbon emissions at the provincial level in China is mainly a
positively correlated agglomeration. The central inland, northeastern, and southeastern
coastal regions of China were the most widely distributed non-significant regions. Except
for the insignificant areas, the agglomeration types in each province were mainly of “High–
High” and “Low–Low” types, and the number of “Low–Low” types was the largest. The
“High–Low” type was only distributed during 2017–2021, while the “Low–High” type
was never distributed. The “ Low–Low “ type was mainly found in the southwestern and
northwestern provinces.

The “High–High” type was mainly located in Jiangsu Province and Zhejiang Province,
and after 2013, Zhejiang Province started to become a “High–High” type province due to its
prominent manufacturing industry, with a wide range of textile, chemical, pharmaceutical,
mechanical, and electronic industries. The textile, chemical, pharmaceutical, machinery,
and electronics industries are widely developed, and these industries are among the
main reasons for the increase in carbon emissions. Jiangsu Province is the second largest
industrial province in China, leading the country in machinery, metallurgy, chemicals, and
pharmaceuticals. Jiangsu and Zhejiang are not only the most populous provinces in China,
they also have a strong industrial base. Due to the development of secondary industries
and the rapid growth of energy extraction and production, these two provinces have been
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in a state of high energy consumption, which has led to a continuous increase in carbon
emissions, and thus to the formation of a “High–High” type of agglomeration.
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The “High–Low” type was mainly distributed in the Ningxia Hui Autonomous Region
from 2017 to 2021. Ningxia is located in the western region and has the key responsibility
of rational energy utilization. In recent years, Ningxia has prioritized a range of high-
consumption chemical industries, such as coal refining, which has led to an increase in
its average annual carbon emissions. However, the task of reducing carbon emissions is
challenging because of the small size of its economy, its lack of growth momentum, and
the fact that it relies heavily on transfer funds from the state. In addition, the Ningxia
Hui Autonomous Region is also China’s major coal production and power generation
base, making it difficult to reform its energy and industry layout. In the 13th Five-Year
Plan, Ningxia successfully developed and operated a series of high-energy-consumption
industries, and has also been responsible for relocating some of these industries, as well
as transporting thermal power generation. The implementation of these key projects is
the main reason why the energy consumption and carbon emissions per unit of GDP in
the region have risen rather than fallen. On the other hand, Ningxia’s economic system
is dominated by the secondary industry, especially the heavy manufacturing industry,
while the share of the tertiary industry and high-tech industry is relatively small. With the
construction of numerous coal processing plants and thermal power plants, its demand for
renewable energy sources such as wind and solar energy has diminished, making it unable
to carry out strong efforts to optimize its energy structure. These are the reasons why the
Ningxia Hui Autonomous Region’s carbon emissions remain high and are significantly
higher than those of neighboring provinces.
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Further analysis of Figure 5 reveals that the type of Zhejiang has changed from a
lack of clustering in 2012 to a “High–High” clustering distribution between 2013 and 2021.
There was no “High–Low” category of provinces in the 2012–2016 period, but the Ningxia
Hui Autonomous Region showed a “High–Low” agglomeration after 2017. The change
in the “Low–Low” type is mainly reflected in two phases, one of which was in 2012–2016,
when Ningxia no longer showed the “Low–Low“ type of agglomeration in the following
years, and the other is that Yunnan showed the “Low–Low” type of agglomeration mainly
in 2014–2019, while the remaining years were insignificant. The second is that the period
in which Yunnan showed a “low–low” type of agglomeration was mainly concentrated in
2014–2019, with the remaining years being insignificant. Overall, the distribution patterns
of carbon emissions in each year from 2012 to 2021 were relatively similar, with the only
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shifts occurring in Zhejiang, Ningxia, and Yunnan, and the spatial structure categories of
provincial carbon emissions remained relatively stable.

3.3.2. Municipal Scale

The provincial spatial decomposition data were spatially counted in terms of prefecture-
level cities to obtain the municipal carbon emission data from 2012 to 2021, and then the
spatial and temporal patterns at the prefecture-level city scale were studied. According to
the change in the coefficient of variation (Figure 3b), it can be found that the differentiated
development of carbon emissions at the municipal level was heading in a different direc-
tion from the provincial level, and did not show a clear trend of growth or decrease. The
CV was in a fluctuating state in the period and always stayed around 1.000. The global
Moran’s I fluctuated from 0.634 in 2012 to 0.684 in 2021, which indicates that the spatial
autocorrelation of carbon emissions of each city gradually increased.

Further analysis of Figure 3b shows that the CV and global Moran’s I did not follow
the same trend, and sometimes their trends were clearly opposite. For example, during
the period from 2012 to 2016, the CV decreased but the global Moran’s I increased. This
indicates that during this period, although the differences in carbon emissions among
Chinese cities were gradually decreasing, the trend of their spatial aggregation continued
to intensify. The implementation of the “Development of the West” and “Rise of Central
China” policies, coupled with changes in the industrial layout of the eastern region, have
led to the relocation of some high-carbon emitting industries to the central and western
regions. This has led to a massive expansion of local cities in the central and western regions,
and has also led to a significant increase in carbon emissions. Nevertheless, according to the
carbon emission distribution map, the east is still the focus of China’s social and economic
development, and is a region with high carbon emissions. And during the period from
2017 to 2021, the CV and the global Moran’s I index showed a more synchronized pattern
of fluctuation development, transitioning from the former pattern to a smoothing period,
indicating that the regional distribution of China’s carbon emissions at the prefecture-level
city scale has reached a more stable state.

Although it is not easy to find out the trend of the proportion of cities in the “high–
high” and “low–low” categories over time by using only the data of the above-mentioned
years, the dotted line graphs obtained from the data of the complete years show that the
proportions of the cities in the “high–high” category and the “low–low” category have
shown a more obvious fluctuating downward and fluctuating upward trend, respectively
(Figure 6).

Combined with the LISA agglomeration map, this phenomenon is not due to the
transformation of some of the “High–High” cities into “Low–Low” cities, because the
“High–High” and “Low–Low” cities are still located in the underdeveloped western region
and the developed eastern region, respectively. “High–High” and “Low–Low” cities are
still distributed in the underdeveloped western region and the developed eastern region,
respectively. Therefore, the increase and decrease in the number of “High–High” and
“Low-Low” cities is only due to the enhancement or weakening of localized agglomeration
effects, and is not related to location. The decrease in the number of “High–High” cities in
the east indicates that the regions with concentrated CO2 emissions have decreased, that is,
the changes in industrial structure in some developed regions in the east have contributed
to the reduction in carbon emissions. Similarly, the increased agglomeration effect in the
western region is due to a shift in the agglomeration characteristics of some cities from
insignificant to “Low–Low”. This can also explain the weakening of carbon emissions
in the western region. Both of these changes are evidence of the good results of China’s
vigorous implementation of energy-saving and emission-reduction policies.
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Figure 6. Percentage of different types of cities.

From the Moran scatterplot of each city shown in Figure 4b, it can be seen that the
slope in 2021 has a more prominent increase than that in 2019, which indicates that the
spatial autocorrelation of carbon emissions in each prefecture-level city in China is gradually
increasing [12]. The complete Moran scatterplot of each year can be found in Supplementary
Materials Figure S3. Due to the space limitation, typical years with relatively prominent
changes in the municipal LISA scatterplot were selected for analysis (Figure 7). It can be
seen that the “High–High” cities in all the years are mainly concentrated in the Bohai Rim
and the Yangtze River Delta; the “Low–Low” cities are mainly distributed in the central
and western regions and Heilongjiang; the “Low–Low” cities are mainly distributed in
the central and western regions and Heilongjiang; and the “Low–Low” cities are mainly
distributed in the central and western regions and Heilongjiang. The “Low–Low” cities are
mainly located in the central and western regions and Heilongjiang; the only “Low–High”
city is Xuancheng, which has not formed a large agglomeration area. As a whole, the high
carbon emission areas in North China and the Yangtze River Delta are the most prominent,
and the western part of China is the main concentration area of “Low–Low” cities, and the
spatial distribution range of such low carbon emissions is also decreasing.
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4. Conclusions

This paper developed a method of multivariate variable extraction based on geo-
graphical categories and joint screening of multiple variables, and calculated the currently
missing 1 km spatial distribution data of China’s carbon emissions from 2012 to 2021 by
using SLM, which is capable of reflecting spatial linkages. This not only spatially filled
in geographical areas not covered by previous studies, but also explored the spatial de-
composition of carbon emissions on a large municipal scale that has not been conducted
by previous researchers. The carbon emission regression parameters R2 and W_carbon
both reflect the suitability of the land-class-based variable screening method and SLM.
Especially at the municipal scale, the R2 reached approximately 0.99. This confirmed the
excellent fitting ability of the method for carbon emissions. In other words, it can well
establish the relationship between the dependent variable and the respective variables, and
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is a reliable method for spatial decomposition of carbon emissions, which greatly improves
the accuracy of spatial decomposition of carbon emissions.

In the analysis of the spatial and temporal dynamics of carbon emissions, carbon
emissions at the two scales showed different characteristics of changes in terms of spatial
autocorrelation, which demonstrates the obvious influence of scale on regional disparities in
carbon emissions. At smaller study scales, the discrete nature of China’s carbon emissions
data is more pronounced and more likely to exhibit stronger spatial aggregation effects.
In contrast, smaller spatial scales are more useful in showing the spatial dependence of
territorial carbon emissions and their differentiated characteristics across space.

The spatial and temporal dynamics of carbon emissions could be projected for the
period up to 2021. As can be seen from Figure 3a, provincial CVs and global Moran’s I
showed positive geographic concentration characteristics, with a slowly fluctuating increase
in the degree of aggregation, and did not show a significant downward trend. Combined
with the distribution of LISA agglomeration types in Figure 5, it can be seen that future
positive agglomerations will still be distributed in the eastern high-carbon emission zone
and the western low-carbon emission zone, and the agglomeration effect is becoming more
and more significant. Considering China’s current carbon emission reduction policy, the
significance of this agglomeration effect may be brought about more by the “low–low”
type in the western region in the future. As can be seen from Figure 3b, the differentiated
development direction of carbon emissions at the municipal level is different from that at
the provincial level, and does not show a clear trend of growth or decline, and it can be
presumed that the future distribution of municipal carbon emissions will remain stable in
this way.

5. Limitations and Perspectives

Although this paper adopted a variety of research methods and obtained a series of
characteristics of carbon emission distribution in China. However, there are still areas that
need to be optimized and improved, and many difficult issues still need to be studied
in depth.

Due to the constraints of data collection, this paper was unable to comprehensively
understand the carbon emission statistics of Tibet Autonomous Region, Hong Kong, Macao,
Taiwan, and some cities at the municipal scale. In the future exploration process, collecting
data related to carbon emissions from more regions and distributing carbon emission data
to each region at a fine scale is an optimized direction for the spatial decomposition study
of China’s carbon emissions in the future.

Although the SLM chosen in this paper was based on previous research and deter-
mined after weighing the effects, the time and spatial scopes of the previous research were
not exactly the same as this paper. After the practice of this paper, the regression effect
of SLM was confirmed to be excellent. However, how to find a more appropriate model
according to the characteristics of China’s socio-economic spatial differences will become
the main theoretical path to explore the spatial decomposition of China’s carbon emissions
in the future.
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//www.mdpi.com/article/10.3390/atmos15050538/s1, Figure S1: Fitted value of our 1-km GDP
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Moran scatterplot of carbon emissions at municipal scale; Table S1: Table of rotated component
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Table S3: Correlation analysis of initially screened independent variables; Table S4: Parameter table
of provincial SLM regression coefficients for 2021.
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Glossary

Term Definition

SLM
An important model in spatial econometrics to
characterize spatial correlation and spatial dependence.

downscaled spatial decomposition
Allocating carbon emissions to smaller scale units allows
carbon emissions data to be distributed at finer scales.

carbon emission
The value of cumulative carbon dioxide emitted into the air,
which in this paper refers specifically to carbon emissions
caused by human activities.

fitting or regression
The process of model fit between dependent and
independent variables.

image or raster
A basic unit of data storage in GIS, the size of which is
expressed in terms of the length of a side.
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