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Abstract: As one of the primary nodes in the flow of micro-plastics (MPs) in the environment, it
is critical to examine and assess the Sewage Treatment, occurrence, and removal of MPs in waste
treatment plant (WWTP). This research explored the shape, size, and composition of MPs at various
stages of the WWTP process in the south of the city of Hefei, China, in dry and rainy weather
conditions, as well as the removal effectiveness of MPs in a three-stage process. The collected MPs
were quantitatively and qualitatively examined using an Osmosis electron microscope and micro-
FTIR. The pollution risk of MPs in WWTP was assessed using the EU classification, labelling and
packaging (CLP) standard and the pollution load index (PLI). The findings revealed that the average
abundance of fibrous MPs was greatest in WWTP sewage and sludge, 49.3% and 39.7% in dry weather,
and 50.1% and 43.2% in rainy weather, respectively. The average distribution of MPs in the 0–500 µm
range was highest in WWTP wastewater and sludge, 64.9% and 60.4% in dry weather and 67.9% and
69.0% in rainy weather, respectively. Finally, the overall removal rate was 87.7% and 83.5%. At the
same time, it has been demonstrated that MPs with varied compositions are strongly tied to human
activities, and environmental conditions (such as rainy weather) also influence their source. In both
dry and wet weather, the amount of polymers and the risk score were linked to the pollution risk of
MPs in WWTP. In wet weather, the MPS pollution index was more variable. The pollution indices of
MPs in row water and tail water were 2.40 and 2.46, respectively, which were heavily contaminated,
and 1.0 and 1.2, which were moderately polluted. MPs in dewatered sludge had severely polluted
indexes of 3.5 and 3.4, respectively. As a result, there is still MPs efflux or buildup in sludge during
and after the WWTP process, which presents an ecological contamination concern.

Keywords: microplastics; wastewater treatment plant; dry and rainy weather; occurrence characteristic;
pollution risk evaluation

1. Introduction

Plastic is an organic polymer material that is extensively utilized in insulation, met-
al substitution, packaging, clothing, and other applications. By 2020, China’s annual
production of plastic products had reached 76.032 million tonnes, with 74.1 million tonnes
of garbage, 30% of which was recycled, 32% disposed of in landfills, 31% burned, and
roughly 7% lost. In Europe, the total quantity of recycled plastics is 4.6 million tonnes per
year, with a 35% recycling rate [1,2]. Microplastics, MPs are a new category of pollutant
described as plastic particles with a particle size of less than 5 mm [3]. Primary plastics
and secondary plastics are the major sources: primary plastics are mostly formed by
grinding particles and plastic beads included in industrial raw materials and cosmetics,
as well as the loss of synthetic fibers in clothing caused by washing, etc. [4,5]. Secondary
plastics are primarily created by photocatalysis, weathering, embrittlement, and cracking

Water 2023, 15, 686. https://doi.org/10.3390/w15040686 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15040686
https://doi.org/10.3390/w15040686
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w15040686
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15040686?type=check_update&version=1


Water 2023, 15, 686 2 of 19

of large abandoned plastics in the presence of light, water, and wind, which leads to the
development of smaller microplastic particles [6,7].

Early MP research primarily focused on the distribution and movement of marine,
lake, and river MPs, as well as the source, abundance, and biological toxicity of MPs. It
has been documented that plastics distributed in the ocean are more readily broken down
into microplastics by photocatalysis and water flow, and that tidal movement can reflow
microplastics deposited in the ocean back into the freshwater environment [8]. MPs in
the environment have been discovered to operate as a carrier for microorganisms such as
pathogens [9], adsorbing organic substances (antibiotics, phthalate, Polycyclic aro-matic
hydrocarbon, etc.), and heavy metals [10–13]. Microorganisms can colonise the surface
of MPs and create biofilms, transferring a range of bacteria, including dangerous ones,
to new environments [14]. Its potential ecotoxicity can be transmitted through the food
chain [15–17], is easily acquired by zooplankton and higher animals such as humans, and
accumulates in organisms, disrupting the flow of energy within organisms and posing a
growth threat [18], even causing biological death [19], with the potential for irreversible risk.
Furthermore, MPs has been found in human blood and faeces, as well as in the maternal
placenta [20–23]. The primary sources of MPs in the body include daily consumption of
table salt, bottled water, tap water, and seafood [24–26], whereas air-exposed microplastics
may also be absorbed by inhaling airflow [27,28]. With the potential for ecotoxicity and
far-reaching effects on the natural environment and human health, identifying pollution
sources is critical for evaluating the pollution risks of MPs and establishing mitigation
solutions. As a consequence, the Sewage Treatment monitoring of the whole MPs process
was employed as a pilot study to determine the contamination risk.

The primary point at which MPs reach the natural environment from the urban water
system is sewage treatment [29,30]. Sherri et al. examined 90 samples from 17 phases of
the US sewage treatment process and discovered that up to 4 million MPs particles are still
discharged into the natural environment per day following regular sewage treatment [31].
Xu et al. evaluated 11 sewage treatment plants in Changzhou, China, and discovered
that the average concentration of MPs in the influent and effluent was 196.00 ± 11.89 n/L
and 9.04 ± 1.12 n/L, respectively. The average removal rate of MPs was over 90%, with
the highest percentage being 97.15% [32]. Zhang et al. assessed an MPs removal rate of
93.7% in the entering and departing water of the Turkish Sewage Treatment [33]. How-
ever, most of the MPs removed by the sewage treatment process are transferred and
stored in sludge, and Esther et al., in their study of the WWTP in Vancouver, Canada,
found that 1.76 ± 0.31 × 1012 MPs accumulate in the sewage treatment each year, of which,
(1.28 ± 0.54) × 1012 MPs settled into the primary sludge, (0.36 ± 0.22) × 1012 MPs into
the secondary sludge, and (0.03 ± 0.01) × 1012 MPs were released into the natural envi-
ronment [34]. Furthermore, Kay et al. reported that MPs abundance in river basins may
increase with atmospheric deposition or agricultural soil infiltration in a study of MPs
hosted upstream and downstream in six Sewage Treatment of distinct river basins [35].
Plastic film, microfibers, and inappropriately disposed of waste plastics used in agriculture
and industry, on the other hand, degrade into fine plastic particles by a sequence of syner-
gistic photocatalysis and physicochemical degradation processes [6,7,36]. These particles
are extensively spread in the urban surface environment and in atmospheric flotsam, and
may enter the sewage network when rainfall washes them away [37], which may then be
transported to the Sewage Treatment, resulting in an increased treatment load [12,38,39].
The load of MPs, a frequent Persistent organic pollutant in WWTP such as Polycyclic
aromatic hydrocarbon, would grow with increased rainfall [40], which would spread the
degree of environmental contamination to some extent.

There is currently limited research on the evaluation of MPs pollution risk in urban
WWTPs in Hefei City. This paper investigated the form, size, and composition features of
MPs in each typical process step of a WWTP under two weather conditions, dry and rain,
as well as the removal effectiveness of MPs in the three-stage treatment stage. The pollution
risk of MPs in WWTP is analysed using the EU classification, labelling and packaging
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(CLP) standard and the PLI Pollution load index model. This report serves as a reference
for future MPs reductions in China’s inland cities’ WWTP.

2. Materials and Experimental Methods
2.1. Sample Sites

In this study, samples of sewage and sludge were collected from Hefei, China’s
Sewage Treatment in the city’s southern region. The WWTP is equipped with an (An-
aerobic-AnoxicOxic process, A2O) with a daily capacity of 100,000 tonnes. The purified
sewage is disposed of in the 15li River. Due to the fact that water quality and quantity
indicators of the Sewage Treatment may vary depending on the weather, samples were
obtained in July 2022 under dry (marked D) and rainy (marked R) conditions. Figure 1 and
Table 1 showcases grid intakes (Row water, labeled D1 and R1), grid outlets (labeled D2
and R2), aeration grit chamber outlets (labeled D3 and R3), oxidation ditch outlets (labeled
D4 and R4), in the secondary clarifier (D5 and R5), the outlet of the secondary clarifier (D6
and R6), the outlet of the denitrification deep bed filter (Tail water, D7 and R7). The sludge
samples are dewatered sludge from the sludge pumping station (D8 and R8).
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2.2. Sample Methods

The quantitative collection of MPs at the Sewage Treatment sample point is performed
using a peristaltic pump with a custom stainless steel hopper connected to the pump’s
intake (20 mm inner diameter of the inlet) and a mesh (5 mm mesh aperture) covering the
funnel mouth. Place the pump input pipe with a custom hopper 30 cm below the surface
of the sewage for collecting samples, and store the sewage from the pump outlet pipe (10 L
of sewage from each sample point) in 15 L stainless steel drums. For sludge samples, the
dewatered sludge from the sludge pumping station (75–79% water content) was collected by
wrapping 1 Kg samples of sludge in aluminium foil paper and placing them on a conveyor
belt. Collect 1 Kg of sludge samples from three distinct points on the conveyor belt, combine
the samples, and store them in a 5 L stainless steel drum. In addition, the Sewage Treatment
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flow varies in real-time, and the temporal disparities between certain samples generate
a data flow, resulting in variations in MPs’ features(Table 2). Therefore, samples were
collected at each sampling station at three separate times during the day (08:30–11:30,
13:30–16:30, 18:30–21:30), with Sewage Treatment flow sufficient for peak phases. After
transferring the sample to the container and rinsing the collector with deionized water,
the next collection activity may begin. The edges of the container’s top lid are covered
with aluminium foil before being returned to the laboratory. For testing and analysis, the
container is placed in a refrigerated environment at 4 ◦C.

Table 1. WWTP process section layout design and description.

Sample Points
D (Dry Weather),

R (Rainy Weather)
Layout Design Description

Raw water or
Grille Front (D1, R1) Initial wastewater from WWTP. Sewage samples are collected at the grate.

After grille (D2, R2) The first physical interception processing. Sewage samples are collected behind the grate.
After sedimentation

Tank (D3, R3)
Gravity deposition of high-density contaminated impurities separates low density suspended
matter to the next process. The sewage samples were collected after sand-settling.

After oxidation
Ditch (D4, R4)

(Anaerobic-Anoxic-Aerobic) to maintain the flow of mixed sewage and activated sludge, initial
removal of suspended substances. Sewage samples are collected behind the oxidation ditch.

Inside the secondary
sedimentation tank (D5, R5)

The flow velocity and amount of water affect the cross-section of rainwater, and the suspended
matter rises. Sewage samples are collected in the secondary sedimentation tank.

After secondary
settling tank (D6, R6)

The mud and water are separated and the suspended impurities form flocculates and sink
together. Sewage samples are collected after the secondary sedimentation tank is selected.

Tail water or After
filtration tank (D7, R7) WWTP outflow tail water. Sewage samples are collected after the denitrification filter.

Dehydrated
sludge (D8, R8)

After being dehydrated by an enrichment centrifuge. Sludge samples are collected on the
conveyor belt.

Table 2. Removal rate of MPs by tertiary treatment in WWTP.

Treatment Phase Arrange MPs Abundance (n/L) Removal
Efficiency (%)

Total Removal
Rate of MPs (%)

Primary processing D1 to D3,
R1 to R3

101.9 ± 17.6 to 51.0 ± 7.3,
108.7 ± 20.1 to 81.2 ± 10.8

62.9%,
70.4%

87.7% (D),
83.5% (R)

Secondary treatment D4 to D6,
R4 to R6

71.9 ± 15.3 to 44.2 ± 5.5,
87.4 ± 21.3 to 53.6 ± 7.4

55.6%,
57.5%

Tertiary or Advanced
treatment

D6 to D7,
R6 to R7

44.2 ± 5.5 to 18.2 ± 3.6,
53.6 ± 7.4 to 26.3 ± 5.1

44.9%,
34.6%

2.3. Experimental Scheme
2.3.1. MPs Separation and Extraction

In the Pretreatment Experiment (Figure 2), 1 L of sewage and 10 g of dry sludge were
collected to assess the properties of MPs in various WWTP process structures. Coarse
filtration was primarily performed on sewage samples utilizing stacked layers of stainless
steel screens with pore sizes of 4 mesh (5 mm), 18 mesh (1 mm), 600 mesh (25 µm), and
1000 mesh (15 µm) (m1). The deionized water is then transferred to a sand core filter (JOAN
LAB, 0.8 µm, 1000 mL, Huzhou, China) for filtration (m2). The coarse filtering screen
is rinsed three times in deionized water. Following filtering, the filter membrane (PTFE,
LONGJIN, aperture 5 µm, diam 50 mm, Nantong, China) was placed in a beaker containing
75 mL of Fenton reagent, exposed to a digestion reaction (m3), and permitted to stand for
12 h [41]. The residue left on the screen is still impinged on by a pressured water bottle
carrying deionized water, which is subsequently filtered (m2) and the filter membrane is
also immersed in the digesting solution (m3). To guarantee that the material is transmitted,
the digested mixture is filtered (m4) and the Beaker is rinsed frequently with deionized
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water after digestion. To initiate density separation [42], the digestion mixture is filtered
through a membrane and combined (m5) with 300 mL of a flotation solution (saturated
NaCl solution, likewise filtered by a filter). Beakers containing plastic microparticulate
membranes were then put on a Magnetic stirrer (HUXI, HMS-203D, Shanghai, China) to
expedite material removal from the membrane and shaken at 65 ◦C and 500 rpm for 24 h
(m6). After density flotation, the supernatant was filtered (m7) and the residue in the Beaker
was put back into the floatation solution for a second floatation (m6 and m7). This process
was done three times. After three cycles of density separation, the three filter films are
maintained in glass petri dishes, with the petri dishes coated in aluminium foil to prevent
plastic particles from dispersing. For the treatment of the sludge sample, the sludge was
positioned flat in a glass Petri dish, and then the Petri dish was placed in an oven where
the sludge was dried at 105 ◦C for 24 h. The ensuing digestion procedures are identical to
those for wastewater treatment, except that the mass of the sludge sample and the ratio of
the input of the digestion solution are 1 g:30–50 mL (the dose of the digestion solution is
determined by the removal rate of the digested material).
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2.3.2. Observation and Identification of Microplastics

Using an Osmosis electron microscope (AO-HK830-5870,Shenzhen, China), the mor-
phological properties of putative MPs on a filter membrane were studied. Materials
comprising plastic particles were dispersed over highly reflective glass in conjunction
with micro-FTIR (Thermo Fisher Scientific Nicolet iN10, Waltham, MA, USA) in the re-
gion of 4000–400 cm−1 with a spectral resolution of 4 cm−1; An average of 64 scans were
recorded [43]. KnowItAl soft-ware (BIORAD Inc., Hercules, CA, USA) was employed. The
acquired spectra were compared with those from the Knowitall FTIR library (Bio-Rad Inc.)
and the national standard of the People’s Republic of China (GB/T 40146-2021, China) to
define the polymer type of MP [44,45] based on the distinctive functional groups and peak
trend rate. To explore the surface properties of MPs that can adsorb organic pollutants
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such as polycyclic aromatic hydrocarbon, a scanning electron microscope (SEM, Hitachi
S4801-IM, Japan) was used.

2.3.3. Quantitative Methods for Microplastics

For the characterization and quantification of MPs, reference is made to Pivokonsky
et al. technique’s of quantitative analysis of MPs by sampling 25% of the circular sector
of each filter [46]. The five-point sampling approach was employed for MPs average
abundance statistics. First, the central sample point is positioned at the midway of the
diagonal on the high reflection glass (24 mm × 50 mm), and four points on the diagonal
are determined as sampling sites. The region of interest (ROI) is selected by modifying the
facula based on the mode of reflection. The area of the high-reflection glass lens comprises
five squares: upper left (U1), upper right (U2), middle (C3), bottom left (D4) and lower
right (D5); each quadrat is the same distance from the lens’s centre (Tables 3 and 4) [47].
Then, the material on the lenses was infrared scanned individually based on 5 squares
selected by a micro-FTIR (Thermo Fisher Scientific Nicolet iN10) surface scan, and the
morphological traits and chemical composition of MPs were identified. After that, utilizing
Formula (1), the total number of Nm of MPs per litre of sewage or per gram of sludge
collected throughout a single WWTP procedure is determined.

Nm =
∑5

i=0 ∗Ni ∗ Sm

5S f
(1)

In Formula (1), Ni is the number of MPs on each quadrate (n/L), Sm is the contact
area of impurities on a single high reflector, and Sm ≈ 9.26 cm2. Sf is the area of a single
quadrate, and Sf = 0.84 cm2. The length of a quadrate side is 12.5 mm, and its breadth is
6.72 mm.

2.3.4. Experimental Quality Control

All containers and devices for collecting and storing MPs are composed of stainless
steel or quartz glass. Clean the container several times with deionized water before
sample and keep it sealed. Furthermore, using a pure cotton lab coat and nitrile gloves
while sampling and experimenting is necessary to eliminate the shedding of fibers from
textiles and clothing, which increases the exceptional amount of MPs. All of the containers
are sealed with aluminum foil because, during the oxidation and exothermic digesting
processes, plastic particles with increasing water vapour may be adsorbed on the foil,
requiring immediate attention to avoid loss. MPs samples were collected in a confined
clean room for microscopic and infrared spectroscopy examination.

2.3.5. Data Analysis

For data preprocessing and analysis, Microsoft Excel 2019 was used, SPSS 26.0 (IBM
Co., Ltd., Armonk, NY, USA) for data correlation analysis, and Origin 2018 (OriginLab,
Farmington, ME, USA) and Microsoft Visio 2016 for data analysis and charting. The
abundance of MPs particles in this sewage treatment is expressed as the mean standard
error. The MPs abundances of the Sewage Treatment samples collected during the three time
periods were measured at a single process stage, and the average of the MPs abundances
of the samples collected during the three time periods was taken as the range of final
considerations for MPs in a single process stage. Furthermore, the data examined the
MPS removal effectiveness of WWTP stages 1, 2, and 3, as well as the whole process from
raw water to tail water. The findings demonstrate that: Removal Efficiency (%) is the
removal efficiency of three stages, Total removal rate of MPs (%) is the total removal rate
for the whole process stage. Sections 2.4 and 3.4, Tables 5 and 6 analyse the ecological
risk coefficient and the assessment of pollution load contained in the MPs to evaluate the
pollution risk of the MPs in the WWTP. Moreover, all data were examined for normality
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(Shapiro-Wilk test) and variance homogeneity (Levene test). The statistical significance
threshold was established at p < 0.05.

2.4. Potential Ecological Risk Assessment of MPs

In order to restrict the spread of MPs pollution, it is necessary to quantify the potential
ecological danger posed by MPs pollution. In this paper, the potential ecological risk of
MPs in WWTP is evaluated using the MPS pollution load index (PLI) model, which was
initially developed to evaluate the level of water pollution in estuaries; it is now expanded
to calculate the value-at-risk of MPs [48]. The following is the formula:

CFi = Ci/Coi (2)

In Formula (2), CFi is defined as the ratio of MPs abundance (Ci) at each sampling
point to MPs minimum abundance (Coi) at each sampling point.

PLIi =
√

CFi (3)

PLIzone =
n
√

PLI1 × PLI2 × . . . × PLIn (4)

In Formula (3) and (4), PLIi represents the pollution load index of MPs for a single
sample, whereas PLIzone represents the pollution load index of MPs for WWTP.

H = ∑ Pn × Sn (5)

In Formula (5), H is the MPs potential ecological risk index, the proportion of each
MPs polymer type at each sampling site for the Pn, and Sn is the hazard score for the sample
point MPs polymer [49] (Tables 5 and 6).

Table 3. MPs fixed-point quantification (WWTP in dry weather, Sewage (n/L), Sludge (n/10 g)).

Process
Segment D1 D2 D3 D4 D5 D6 D7 D8

Scanning
points

(U1, U2, C3,
D4, D5)

125 93 62 137 104 78 34 260

Shape (Formula (1))
Fiber 5.9 1.7 1.9 4.3 1.7 2.0 0.9 5.6
Chip 2.8 1.3 1.2 1.1 1.3 0.9 0.3 3.9
Sheet 1.6 1.4 0.5 1.0 0.9 0.5 0.1 2.5

Particle 0.9 0.1 0.2 0.5 0.2 0 0 1.5
Size (Formula (1))

0–100 µm 2.8 1.8 1.4 3.0 1.4 1.1 0.7 4.9
100–500 µm 4.1 1.0 0.8 2.4 1.6 1.8 0.5 2.3
500–1000 µm 2.0 1.2 1.3 1.1 0.5 0.4 0.1 3.0

1000–2500 µm 1.7 0.6 0.3 0.4 0.7 0.1 0 1.7
2500–5000 µm 0.6 0 0 0.1 0.1 0 0 1.5

Actual MPs
abundance,
Formula (1)

101.9 ± 17.6 61.1 ± 9.3 51.0 ± 7.3 71.9 ± 15.3 68.1 ± 13.6 44.2 ± 5.5 18.2 ± 3.6 184.8 ± 28.6
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Table 4. MPs fixed-point quantification (WWTP in rainy weather, Sewage (n/L), Sludge (n/ 10 g)).

Process
Segment R1 R2 R3 R4 R5 R6 R7 R8

Scanning
points,

(U1, U2, C3,
D4, D5)

85 93 82 113 131 57 55 277

Shape, (Formula (1))
Fiber 5.0 2.3 1.9 2.3 3.8 2.8 1.7 5.5
Chip 2.8 1.6 1.2 0.1 1.0 0.9 0.1 3.0
Sheet 1.8 2.0 0.5 1.0 1.0 0.7 0.2 2.5

Particle 1.1 0.3 0.2 0 0.5 0 0 1.5
Size, (Formula (1))

0–100 µm 1.7 2.1 1.9 1.9 3.3 1.5 1.0 3.3
100–500 µm 4.0 1.8 1.3 1.4 3.7 1.8 0.8 5.2
500–1000 µm 1.3 1.4 0.6 2.4 1.4 0.5 0.1 2.1

1000–2500 µm 1.7 0.5 0.3 0.5 0.3 0.6 0 0.9
2500–5000 µm 1.1 0.4 0 0.1 0.1 0 0 1.1

Actual MPs
abundance,
Formula (1)

108.7 ± 20.1 77.9 ± 11 81.2 ± 10.8 87.4 ± 21.3 117.3 ± 22.4 53.6 ± 7.4 26.3 ± 5.1 178.4 ± 34.3

Table 5. Risk evaluation of MPs in WWTP (1).

Type of Polymer PE PP PS PET

Hazard score
(Highest level); Sn

11 1 4 30

Process Segment D R D R D R D R
Pn (%) 11.30 15.89 6.88 12.33 9.83 8.60 10.81 8.60

H, (Formula (5)) 1.24 1.75 0.07 0.12 0.39 0.34 3.24 2.58
Potential ecplogical

risk level of MPs I I I I I I I I

PLIi (Formula (2) and (3)) 2.40 2.62 1.88 2.30 1.93 2.72 1.63 1.95

Table 6. Risk evaluation of MPs in WWTP (2).

Type of Polymer PU PA PF PVC

Hazard score
(Highest level); Sn

871 50 1450 30

Process Segment D R D R D R D R
Pn (%) 5.65 6.54 24.32 21.68 17.94 14.95 13.27 11.40

H, (Formula (5)) 49.22 56.98 352.70 314.39 1324.40 1104.15 663.52 570.20
Potential ecplogical

risk level of MPs II II III III III III III III

PLIi (Formula (2) and (3)) 1.00 1.51 1.04 1.00 1.73 2.39 1.97 2.42

PLIzone (Formula (4)) PLIzone (Dry weather) value is 1.63 (moderately pollution),
PLIzone (Rainy weather) value is 2.03 (highly pollution)

3. Results and Discussion
3.1. Distribution and Reduction of MPS in WWTP

In this investigation, 14 wastewater samples were collected from different typical
WWTP stages (D1 to D8, R1 to R8) under dry (D) and rainy (R) weather conditions, together
with two samples of dewatered sludge. These samples are used to illustrate the distribution
and fluctuation of MPs following Sewage Treatment treatment at different phases of the
procedure. Following are the abundance values of MPs at the WWTP under dry and rainy
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circumstances. The abundance of MPs at D1 to D8 was 101.9 ± 17.6, 61.1 ± 9.3, 51.0 ± 7.3,
71.9 ± 15.3, 68.1 ± 13.6, 44.2 ± 5.5, 18.2 ± 3.6 n/L, 184.8 ± 28.6 n/10 g. The abundance
of MPs was 108.7 ± 20.1, 77.9 ± 11.0, 81.2 ± 10.8, 87.4 ± 21.3, 117.3 ± 22.4, 53.6 ± 7.4,
26.3 ± 5.1 n/L, 178.4 ± 34.3 n/10 gat the R1 to R8 sampling sites, respectively (Tables 3 and 4).

Figure 3 depicts the overall distribution of MPs in the typical WWTP process phases,
in which rainy conditions fluctuate significantly. The wastewater at R4 (4. After oxidation
Ditch) and R5 (5. Inside the secondary sedimentation tank) was somewhat more turbid
than that at D4 and D5, and the quantity of MPs at R5 increased by 19.8% as compared
to D5. This is mostly attributable to the overflowing of sewage in the sewers, the rise
in the treatment load on process equipment, and the increase in flow disruption when
precipitation enters the Sewage Treatment. The impact of reflux in R4 was diminished, the
settling time in R5 was shortened, and the performance of the activated sludge system was
diminished [50]. These variables contribute to the difference between R5 and D5 MPs.
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MPs abundance significantly decreased in the first stage of the WWTP, C1 to C3 (1. Row
water, 2. After grille, 3. After sedimentation Tank), at rates of 33.3% and 25.0%, respectively
(Figure 3). The interception of the grid and the role of flocculation and sedimentation in
the grit chamber, which effectively precipitated suspended and colloidal material with a
size of less than 100 µm in the grit chamber, were potential causes for the decline [51–53].
Table 2 demonstrates that the rates of primary removal were 62.9% and 70.4%, respectively.
Nonetheless, the MP’s D4 and R4 effluent abundances increased by 51.7% and 35.2%,
respectively. Refluxing of the aeration tube in the aerobic portion modifies the structure
of MPs, making it simpler for large plastics to be degraded by anaerobic processes, while
breaking down into smaller plastic particles [54,55]. Compared to the D4 and R4 stages, the
D5–D6 and R5–R6 (5. Inside the secondary sedimentation tank to 6. After the secondary
settling tank) stages were partially settled by MPs. The removal rates of subsequent
therapy were 55.6% and 57.5%, respectively. Tertiary treatment of filter sedimentation and
disinfection only decreased contamination of treated water and chemical contamination
indicators [56], with little influence on changes in MPs abundance. In three stages, the
removal rates were 44.9% and 34.6%, respectively. The overall removal rates for raw water
and discharge water were 87.7% and 83.5%, respectively. In addition, the MPs present in
the sludge under both weather conditions were 184.8 ± 28.6 n/10 g, 178.4 ± 34.3 n/10 g.
Compared to 79 sludge samples taken from 28 Chinese Sewage Treatment Facilities, the
estimated average quantity of MPs in Sewage Treatment Sludge was 22.7 ± 12.1 n/g. MPs
abundance significantly decreased in the first stage of the WWTP, C1 to C3 (1. Row water,
2. After grille, 3. After sedimentation Tank), at rates of 33.3% and 25.0%, respectively
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(Figure 3). The interception of the grid and the role of flocculation and sedimentation in
the grit chamber, which effectively precipitated suspended and colloidal material with
a size of less than 100 µm in the grit chamber, were potential causes for the decline.
Table 2 demonstrates that the rates of primary removal were 62.9% and 70.4%, respectively.
Nonetheless, the MP’s D4 and R4 effluent abundances increased by 51.7% and 35.2%,
respectively. Refluxing of the aeration tube in the aerobic portion modifies the structure
of MPs, making it simpler for large plastics to be degraded by anaerobic processes, while
breaking down into smaller plastic particles [54,55]. Compared to the D4 and R4 stages,
the D5–D6 and R5–R6(5. Inside the secondary sedimentation tank to 6. After the secondary
settling tank) stages were partially settled by MPs. The removal rates of subsequent
therapy were 55.6% and 57.5%, respectively. Tertiary treatment of filter sedimentation and
disinfection only decreased contamination of treated water and chemical contamination
indicators [56], with little influence on changes in MPs abundance. In the three stages, the
removal rates were 44.9% and 34.6%, respectively. The overall removal rates for raw water
and discharge water were 87.7% and 83.5%, respectively. In addition, the MPs present in
the sludge under both weather conditions were 184.8 ± 28.6 n/10 g, 178.4 ± 34.3 n/10 g.
Compared to 79 sludge samples taken from 28 Chinese Sewage Treatment facilities, the
estimated average quantity of MPs in Sewage Treatment sludge was 22.7 ± 12.1 n/g.

3.2. Source and Variation of MPs in Different Polymer Types in WWTP

The aggregate proportion of various MPs types in wastewater and sludge samples
at typical WWTP stages in dry and rainy weather conditions was determined using
micro-FTIR analysis (Tables 5 and 6). The plastics examined included PE (Polyethy-
lene), PP (Polypropylene), PA (Polyamid), PVC (Polyvinylchloride), PS (Polystyrene),
PET (PolyethyleneTerephthalate), PU (Polyurethane), PF (phenol-formaldehyde resin),
which are the primary types of polymers that can be detected in the ordinary phases of a
WWTP process in both rainy and dry weather, non-plastic is the impurity that interferes
with the membrane and a non-plastic polymer. Figure 4 demonstrates that the average
composition of the three plastic polymers PA, PF, and PE is greater than that of other
polymers. In dry weather, the proportion of PA polymer was 24.32% and in rainy weather,
it was 21.68%, followed by PF at 17.94% and PE at 11.30% and 15.89%. In the initial stage of
physical treatment, the fine nylon fiber’s PA interception effectiveness is limited. However,
during the oxidation ditch and secondary sedimentation phases, enrichment is observed.
This might be the secondary treatment (4. Oxidation ditch) stage because of the fluidity of
the activated sludge, which results in the capture of the majority of polymers, including
PA, at this point [51]. PE, PS and PA are frequent textile materials that are frequently
derived from laundry. At the same time, the source of PE and PS can be used in personal
care products as abrasive particles and in cosmetics as an absorbent. Most likely, PF and
PU sources come from the wide use of electrical insulation and rubberized fabric. This is
because an electrical processing factory is close to the WWTP. PVC and PET can be used in
plastic greenhouses on agricultural land and come from various suppliers. The films are
naturally aged and photocatalytic, resulting in debris and films that are washed away by
rainfall, which will be dispersed in the plastic surface environment and transported to the
municipal WWTP [57,58]. Based on how plastic polymer parts are spread out in the typical
phases of the WWTP process, residential sewage is the main source of MPs. Rainfall is an
outside factor that contributes to the spread of MPs.

3.3. Shape, Distribution and Size of MPs in Sewage Plants

Figures 5 and 6 illustrate the shape and size properties of MPs in sewage and sludge
at various WWPT processes. The MPs was separated into four categories: fiber, chip,
sheet, and particle. The dimensions are separated into five categories (Figure 7): 0–100,
100–500, 500–1000, 1000–2500, 2500–5000 µm. Figures 8 and 9 show that fibrous MPs in
sewage and sludge are most numerous at each typical WWTP process stage, with 49.3%
and 39.7% of sewage and sludge abundances in dry weather, respectively, and 50.1% and
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43.2% of sewage and sludge abundances in rainy weather, respectively. Following that are
particle, fragment, and film shapes. It can be established that the abundance of MPs in
various forms is proportional to the source and composition of sewage, as well as the rate
of change in sewage volume and pollutant content. Fibrous MPs have been discovered in
sewage and sludge, primarily from washing-worn fabric fibres and synthetic fibres floating
in the air [59–61]. Fragments with a particle size of smaller than 5 mm are more likely
to have originated from plastic products as a result of environmental elements such as
light, thermal oxidation, and physical friction during use or disposal [62]. The artificial
generation of abrasives in industrial production and the consumption of personal care
products and cosmetics containing significant quantities of plastic bead particles are the
origins of the particle shape [4,63]. Figure 10 reveals that the source of the film is due in
part to the usage of plastic bags by residents and in part to the extensive use of plastic
greenhouses on agricultural land in the upper Sewage Treatment Basin. Direct sunlight
and extreme precipitation, such as snow, and hail, expedited the deterioration of plastic
green-houses, leaving shattered film residue on the soil and agricultural products [64].

Figures 8 and 9 demonstrate that MPs in the 0–500 µm size range had the greatest aver-
age distribution in WWTP, with sewage and sludge abundances of 64.9% and 60.4% in dry
weather and 67.9% and 69.0% in rainy weather, respectively. The second is 500–1000 µm, or
more than 1000 µm of plastic. The results revealed that the sludge was tightly concentrated
with MPs fragments and fibers [65], with a microparticle-sized plastics content below
1000 µm ranging from 88.3–91.2%. During mud cake processing, MPs are fragmented into
smaller plastic particles, thereby boosting MPs’ abundance [66]. MPs with high density and
large size may have been trapped by sedimentation in the region of 2500–5000 µm (1. Row
water to 5. Inside the secondary sedimentation tank) and (6. After secondary settling tank).
However, the fraction of MPs with a size of 0–500 µm expanded from 24.8% to 42.6%,
most probably as a result of the aeration and activated sludge treatment process (4. After
oxidation Ditch), which breaks down large plastics into smaller plastic particles [55,67].
The proportion of MPs with particle sizes ranging from 500–1000 µm remained steady,
ranging between 11.2% and 18.8%. It demonstrates that larger particle-size MPs can be
efficiently eliminated during the first and second treatment phases, but smaller MPs can be
removed slower.

3.4. Contamination Risk Evaluation of MPs in WWTP

Sewage and sludge from WWTP are processed in various ways and still include MPs
at each step. The lower MPs, along with the tail water and sludge from the dewatering
pump house, will be dumped into the river’s natural flow and could be used as fertilizer
for farming and urban greening. These approaches, on the one hand, augment the pol-
lutant load index of MPs at WWTP. On the other hand, MP migratory behaviour in the
natural environment may provide an acute or chronic risk to the ecology, either directly
or indirectly [68–70]. Firstly, when dividing the risk series of MPs in WWTP and its asso-
ciated toxicity, the characteristics of MPs in each typical process stage are evaluated, and
the European classification, labelling, and packaging (CLP) standard is referred to. The
risk series is then divided into four grades, and the pollution load is divided into three
types. The model was based on the risk index (H), and the danger levels varied from (I)
(<10 slightly toxic) through (II) (10–100 moderately toxic), (III) (100–1000 highly toxic), and
(IV) (>1000 very highly toxic). Each level is given an approximate risk rating, with each
danger level (I–IV) rising tenfold. It was picked ten times because it differentiates between
various degrees of toxicity risk. It is also a unique categorization criterion used in GHS
to differentiate between acute and chronic risk categories in the aquatic environment [49].
Secondly, the three categories of pollution loads were determined using the pollution coeffi-
cients of the MPs pollution load index (PLIi) in a single sample and the MPs pollution load
index (PLIzone) in the total research area: (<1 slightly pollution, 1–2 moderately pollution,
>2 highly pollution). The pollution risk of MPs was eventually determined by combining it
with the MPs risk index in WWTP [71].
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Under both rainy and dry weather circumstances, the pollution index of MPs in Row
water is 2.40 and 2.46, respectively, according to formula (5), indicating that the WWTP is
significantly polluted. The tail water pollution index ranged from 1.0 to 1.2, suggesting
considerable contamination. It demonstrates that the current procedure influences the
expulsion of MPs. However, MPs in dehydrated sludge had a pollution index of 3.5 under
dry weather circumstances and 3.4 under rainy weather conditions, indicating that they
were highly polluting. The damage caused by sludge seems more substantial than that
generated by sewage release. It is recommended that this substance be incinerated, since it
is not suited for agricultural or urban greening fertilizer. Meanwhile, Tables 5 and 6 demon-
strate that in dry and rainy conditions, the risk levels of PE, PP, PS PET polymer are (I), PU
and PA are (II), and PVC and PF polymer are (III). The abundance of MPs 18.2 ± 3.6 n/L
at sample point D7 was employed to calculate the Coi for this investigation [47]. The PLIi
values of PP, PU, PVC, PS, PET, PA and PF in the typical process stages of WWTP are
in the range of (1–2 moderately pollution) in dry weather (D1–D8), while PE polymers
are in the (>2 highly pollution) range. The PLIi values for PET, PA, and PF were in the
(1–2 moderately pollution) range under rainy circumstances (R1–R8), whereas those for
PE, PP, PU, PVC, and PS were in the (>2 highly pollution) range. Ultimately, the PLIzone
Index of the total MPs in the WWTP was determined using the formula (4). In dry weather
(D1–D8), the PLIzone value was 1.63, which was moderately polluted. In comparison, the
PLIzone value is 2.03, which is extremely polluted. Collectively, the percentage of different
kinds of polymers and their hazard ratings were strongly connected with the pollution risk
of MPs in the WWTP; the MPS Pollution Index was more volatile in rainy weather. The
primary source of its effects is probably sewage sources, with non-point source migration
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of pollution sources, including plastics, into the WWTP owing to rainfall, exacerbating the
pollution risk of MPs in the WWTP [72].

4. Conclusions

In this paper, MPs abundances in sewage diminished most dramatically following
primary and secondary treatment utilizing the WWTP, with average removal ratios of
59.3% and 64.0% during dry and rainy weather, respectively. However, sedimentation and
disinfection from the three-stage treatment lessened the pollutant and Chemical Pollution
Index further, and the MPs elimination effectiveness was only 44.9% and 34.6%, respectively.
87.7% and 83.5% of all MPs were terminated. Sewage and sludge from WWTPs had the
most incredible average abundance of fibrous MPs, 49.3% and 39.7% in dry weather and
50.1% and 43.2% in rainy weather, respectively. With 64.9% and 60.4% in dry weather
and 67.9% and 69.0% in rainy weather, respectively, WWTP wastewater and sludge had
the greatest average distribution of MPs in the range of 0–500 µm. It demonstrates that
the form and size of MPs are changing as a result of the WWTP process, and that sludge
accumulation is considerable.

According to a micro-FTIR spectrometer, the predominant constituents of WWTP
MPs include PP, PE, PS, PA, PET, PU, PF and PVC. It has been discovered that the types
of polymers in question are strongly linked to human activities. The primary source of
these polymers is sewage from homes, which can be affected by weather conditions like
rain. Also, the pollution risk of MPs in the WWTP was related to the amount of polymers
and their hazard scores both when it was dry and when it was raining The abundances of
MPs in the WWTP’s Row water were 101.9 ± 17.6 n/L and 108.7 ± 20.1 n/L, respectively.
Extremely high pollution risk indices of 2.40 and 2.46 were calculated using the PLI pollu-
tion load index model. The concentrations of MPs in Tail water were 18.2 ± 3.6 n/L and
26.3 ± 5.1 n/L, with corresponding pollution risk indices of 1.0 and 1.2. The findings indi-
cate that the current WWTP procedure influences the elimination of MPs. The abundances
of MPs in dewatered sludge were 184.8 ± 28.6 n/10 g and 178.4 ± 34.3 n/10 g, and their
pollution indices were 3.5 and 3.4, which were both extremely polluted. Consequently,
there is a potential danger of ecological contamination since there is still an outflow of MPs
from the WWTP process before and after treatment, with the tail water being discharged
into the natural water body or deposited in the sludge, causing the movement of MPs in
the environment. The interception and removal effectiveness of MPs need to be enhanced.
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