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Abstract: This systematic review represents one of the first attempts to compare the efficacy of
the full suite of management interventions developed to control (prevent or remove) microplastics
(MPs) in freshwater bodies, both man-made and natural. The review also traces the evolution of
research on the topic in relation to the timing of key policy and regulatory events and investigates
whether interventions are being applied within regions and freshwater bodies that represent concerns
in terms of MP pollution. The review incorporated bibliometric analysis and meta-analysis of
124 original research articles published on the topic between 2012 and April 2023. To supplement
the key findings, data were extracted from 129 review articles on the major knowledge gaps and
recommendations. The number of articles on the topic increased with each year, coinciding with a
range of global policy commitments to sustainability and mitigating plastic pollution. The majority
of the studies focused on MPs in general, rather than any particular particle shape or polymer type,
and were conducted at wastewater/sludge treatment plants. Upstream interventions accounted
for the majority of studies reviewed (91.1%). A smaller proportion (4.8%) of studies involved
reduction in production and physical removal at the point of production (1.6%); treatment-related
objectives such as removal through filtration and separation and the combination of these with
other technologies in hybrid systems were dominant. Of the physical, chemical and biological
methods/technologies (and combinations thereof) employed, physical types (particularly membrane
filtration) were most common. The majority of the studies within the wastewater/sludge, stormwater
and in situ water/sediment categories exhibited removal efficacies >90%. Although new interventions
are constantly being developed under laboratory conditions, their scalability and suitability across
different settings are uncertain. Downstream interventions lack sustainability without effective
upstream interventions. Though in situ methods are technically achievable, they may not be feasible
in resource-limited settings.

Keywords: microplastics; freshwater; treatment efficacy; intervention; mitigation

1. Introduction

Microplastics (MPs) are emerging environmental pollutants that are ubiquitous in
aquatic environments (freshwater and marine). MP pollution has raised much concern glob-
ally and consequently spurred voluminous studies on the prevalence, characterization, fate,
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impacts and removal of MPs [1–3]. The phenomenon of MP pollution in aquatic environ-
ments reflects a much bigger challenge, namely, the global plastic waste burden, which was
placed at 275 million tons (Mt) in 2010, of which 31.9 Mt were estimated to be mismanaged
plastics that enter the environment [4]. In 2015, Jambeck et al. [4] approximated 8% (8 Mt)
of the total plastics used globally to eventually enter the ocean via rivers, surface run-offs
and other means. Furthermore, in 2017, Geyer et al. [5] approximated 12,000 Mt of plastics
to have escaped from the waste management cycle and entered landfills or the environment
directly over the last 50 years. After macroplastic debris enters the aquatic environment, it
can undergo biological (degradation by microorganisms), mechanical (erosion, abrasion)
and chemical (photo-oxidation, hydrolysis) modifications [6]. These modifications collec-
tively lead to the weathering and the fragmentation of macroplastic debris into smaller and
more abundant pieces (5 mm), what we refer to as secondary MPs [7]. In addition to the
formation of MPs from the breaking down of the macroplastics, a large amount of plastics
is manufactured as MPs (microfibers and microbeads), known as primary MPs, and used
in various products, particularly in cosmetic products and textiles, and manufacturing
processes [8,9].

Primary MPs are synthetic polymer particles produced as small-sized beads or pellets
for further processing or addition to goods to act as ‘scrubbers’ in cosmetics and household
cleaners, as industrial abrasives for sandblasting, or to manufacture feedstock pellets [8].
These particles (pellets and beads) are transported into water systems and then into natural
rivers, eventually entering the ocean [9]. Secondary sources of MPs come about as a result
of the unintentional introduction of plastic particles into water bodies from macroplastic
pollution; macroplastics break down into MPs as discussed earlier [6]. Synthetic textiles and
clothing are also significant sources of MPs because laundry physical and chemical abrasion
leads to the production of smaller microfibers [10] which can enter the environment,
particularly waterways (lakes, reservoirs, ponds, rivers, streams, wetlands), through the
inappropriate/untreated release of wastewater [11].

The first comprehensive overview of the state of waste management globally in
the 21st century [12] highlighted that waste management is still a challenge which is
predicted to intensify given that the global quantity of mismanaged plastic waste has
been projected to increase to 155–265 Mt per year in 2060, in comparison to 60–99 Mt in
2015 [13]. In commenting on the global waste management challenge in general, Wilson
and Velis [12:1049] raised an important point: “Effective technologies required to ‘solve’ the
waste problem are largely already available, and have been much written about”. Waste
management decisions may, therefore, need to focus on the implementation and suitability
of waste management strategies, and, in the case of plastics, this needs to incorporate
strategies (technologies/methods) for both (1) better management of the macroplastic
waste that could potentially produce MPs and (2) the control (removal and degradation)
of MPs after they enter water in the built and natural environment. However, this is not
a simple task, given that decisions on the selection of strategies to control MP pollution
are complicated by the fact that MPs are highly variable in terms of type, abundance,
source and fate [3,14–16]. While there is a comprehensive summary of the sources of MPs
to the environment [17], the multiplicity of MP sources has created a host of potential
fates, hazards and remediation options that have been documented within freshwater
bodies [18–20], though not as extensively as in marine environments [3].

Within a catchment, pollutants such as MPs can move across (out of or into) multiple
compartments, accumulate in certain compartments and even return to previous com-
partments. Efforts to manage and enhance the built environment and water resources
through strategies such as stormwater infrastructure and the creation of green infrastruc-
ture further complicate the movement and distribution patterns of MPs within a catchment.
Freshwater bodies that are found to contain MPs include groundwater, freshwater lakes,
rivers, dams [3] and both constructed and temporary wetlands [21]. Microplastics are
most common in urban freshwater sources but have also been found in remote locations
such as high-altitude streams [22]. The factors that could influence their relative concentra-
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tion/distribution (vertical and horizontal) in freshwater bodies include the source inputs,
duration of input and type of material (including size, shape and density), as well as
transport mechanisms which are in turn influenced by hydrodynamic elements such as
turbulence, turbidity and climatic conditions [19,21]. For example, water flow [3] and
rainfall have been shown to influence the input and concentration of MPs in freshwater en-
vironments and bring about seasonal variations in concentrations [3]. Retention of particles
in these riverine environments is also governed by the presence or absence of aquatic and
fringing vegetation, as they may serve to trap particles in the higher reaches if present [23],
which has pointed to the value of ecological infrastructure in managing MPs [24,25].

A major consideration when selecting interventions for the prevention and removal
of MPs is the impacts that one seeks to mitigate. The nature of these impacts will dic-
tate whether an established or bespoke intervention or combination of interventions is
needed [26,27]. These impacts include reduced environmental quality [3,18,25] and nega-
tive impacts on aquatic organisms. A review of these impacts on organisms is beyond the
scope of the current review but it is worth mentioning that they can be direct in the form
of gut blockage [28,29] or indirect by vectoring other sorbed pollutants such as organic
contaminants, heavy metals and microbial pathogens [30–32] that threaten the lives of
biota [33–35]. In terms of their impacts on water and sediment quality, inherent plastic
monomers and additive compounds that aid plastic function can be leached out over
time [34]. In light of the above, the suite of MP pollution control interventions employed
in any catchment compartment should ideally accommodate for the variety of impacts
these plastic particles could have within the compartment(s) under consideration and the
downstream water bodies.

Making decisions on the suitability of MP pollution control interventions for fresh-
water systems requires careful consideration of the location where they are to be applied
and, more specifically, the catchment features. On this note, the definition of a catchment
in the Anthropocene now accommodates the built environment as part of catchments,
particularly in urban areas where stormwater runoff from buildings and roads [36], and
other infrastructure such as wastewater treatment plants (WWTPs) [37,38] and ponds and
reservoirs [39,40], can all receive and release MPs into natural water bodies, particularly
freshwater systems such as rivers [41,42]. This threat has spurred increased implemen-
tation/commitment to policies, treaties and/or regulations focused on controlling MP
pollution globally [43–45]. This increased interest in controlling MP pollution, together
with the multiplicity, complexity and variability of the factors that contribute to the preva-
lence and fate of MPs in aquatic environments in general, has led to diversification in the
types of interventions (e.g., source control) and associated technologies/methods (e.g.,
membrane filtration) used.

Traditionally, environmental management interventions include pollution control
measures (which include implementing regulations and technologies to reduce or elimi-
nate harmful emissions and pollutants into the air, water and soil), habitat conservation
and restoration (protecting and restoring natural habitats to preserve biodiversity and
ecosystem functions), sustainable resource management (i.e., promoting the sustainable
and responsible use of natural resources to ensure their long-term availability and encour-
aging responsible consumption and waste management) and environmental education
and awareness [3,46]. Solutions for MP pollution include interventions that prevent the
release of plastics to the environment during their life cycle and physical methods of
recovering or removing MPs from the natural environment (e.g., using pumps, mesh
nets and other capturing devices) [3]. Strategies to recover or remove MPs have been
extensively reviewed [38,47–50] but focus largely on those associated with wastewater
treatment [11,51–54] or on specific types of interventions such as bioremediation [55]. Re-
views on interventions to prevent the release of plastics to the environment focus largely
on policies and regulations [43–45] or source control [25] and rarely focus specifically on
freshwater. Reviews that do focus on MP removal in freshwater environments e.g., [56,57]
either do not compare the relative efficacy of the variety of prevention and removal inter-
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ventions that have been applied, or focus exclusively on chemical, biological and physical
methods. The systematic review on management interventions for the control of MP pollu-
tion in freshwater bodies undertaken here, therefore, represents one of the first attempts to
compare the efficacy of the full suite of interventions that have been developed to control
(prevent or remove) MPs in freshwater bodies, both man-made and natural, based on the
contemporary understanding of what constitutes a catchment. The review addresses the
following research questions:

• What are the temporal, geographic and thematic trends in research on the application
of interventions to prevent or remove MPs in freshwater bodies?

• How do these research trends relate to the policy and regulatory evolution of mi-
croplastic pollution control?

• What types of MPs and which catchment compartments represent research priorities?
• What types of interventions and combinations thereof are being prioritized (i.e., what

are the comparative levels of uptake of different interventions), and where?
• What are the comparative levels of efficacy of the different interventions, and which

combinations appear to be most effective?

We believe that the comparative approach adopted in this review can aid management
decisions on MP pollution control in freshwater bodies, particularly in terms of the selection
of fit-for-purpose and efficacious intervention types and appropriate methods/technologies.
The knowledge gaps identified and recommendations made will help move research on
MP pollution into a solution-oriented paradigm.

2. Methodology

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA, 2020)
guidelines were followed to document the literature review [58]. The PRISMA method
provides a comprehensive set of guidelines for conducting systematic reviews [59,60],
which were applied as shown in the PRISMA flow chart (Figure 1). The results of the
identification, screening and inclusion process are described below.
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2.1. Search Strategy, Eligibility & Inclusion

A search strategy was devised to cover the three main topics: MPs, freshwater and
management/mitigation. The full search strategy, which included multiple search strings
and five databases, is presented in Appendix A. Google Scholar, Web of Science Core Collec-
tion (Clarivate Analytics, London, UK) and Scopus (Elsevier, Amsterdam, The Netherlands)
were searched on 27 April 2023. Dissertations & Theses Global and Environmental Science,
both on the ProQuest platform, were searched on 28 April 2023. All searches except for
Google Scholar were limited to the period 2012 to April 2023. For studies to meet the
inclusion criteria, they had to be peer-reviewed, original research articles or book chapters
or dissertations published in English from 2012 to April 2023, and, most importantly, had
to report on the application of an intervention to control MP pollution in a freshwater
body/system/habitat. Studies were excluded if they reported on MPs in the marine en-
vironment, nanoplastics or macroplastics, or if they represented conference proceedings
or review articles. Studies were imported into Rayyan [61] and assessed for eligibility by
two independent reviewers. Any conflict based on the inclusion and exclusion criteria
was marked and resolved by discussion with the entire research team. The initial search
identified peer-reviewed articles on the control, mitigation, prevention and management of
MP pollution in freshwater systems and identified 3244 articles after de-duplication. Of
these 3244 articles, 911 were deemed suitable for a full-text review after title and abstract
screening. Of these 911 articles, only 124 were found to involve the application of an
intervention to control MP pollution in a freshwater system and subsequent assessment of
efficacy—our primary criterion for inclusion after full-text screening.

In addition to the systematic literature review, we extracted data on the major rec-
ommendations and knowledge gaps on controlling MP pollution in freshwater bodies
from a selection of review articles. From the original search of 3244 articles used for the
systematic review, 794 review articles were screened, yielding 129 articles that were deemed
suitable for inclusion after a full-text screening based on the fact that they contained specific
recommendations and identified knowledge gaps related to controlling MP pollution in
freshwater bodies or aquatic habitats in general.

2.2. Data Extraction & Management

The abstracts for all records identified via the initial search (n = 3244) were retrieved
and imported into Rayyan [61] for screening. The 3244 records were then screened (two
independent reviewers per article) using the title and abstract, and separated into three
categories: ‘include’, ‘exclude’ and ‘maybe’. The ‘maybe’ category served as the holding
folder for review articles, which were subjected to a separate data extraction and analysis
process (described below) by two independent reviewers per article, separate from the
124 original research articles ultimately included in the systematic review. The full text of
all articles identified for inclusion was obtained, and the text was critiqued for eligibility
by two independent reviewers per article as shown in the PRISMA flow diagram. Any
conflicts were identified by Rayyan. All identified conflicts were resolved by discussion
between the reviewers. If a resolution could not be obtained, then the article was assessed
and discussed by the entire research team.

Using a modified data extraction spreadsheet created in Excel (see Supplementary
File S1), two independent reviewers extracted data on the following for each of the
124 articles included in the systematic review: full citation, article country of origin, MP
types, type(s) of intervention, objective(s) of intervention, method/technology employed,
location/habitat/environment in which the intervention was applied and efficacy (based
on percentage removal/reduction). If multiple interventions were reported in a single
article, then data were extracted for each type of intervention separately. Additionally,
recommendations and knowledge gaps on the subject were extracted from 129 review
articles into an Excel spreadsheet and used for the supplemental analysis.

Using a modified data extraction spreadsheet created in Excel (see Supplementary File S1),
two independent reviewers extracted data on the following for each of the 124 articles
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included in the systematic review: full citation, article country of origin, MP types,
type(s) of intervention, objective(s) of intervention, method/technology employed, lo-
cation/habitat/environment in which the intervention was applied and efficacy (based
on percentage removal/reduction). If multiple interventions were reported in a single
article, then data were extracted for each type of intervention separately. Additionally,
recommendations and knowledge gaps on the subject were extracted from 129 review
articles into an Excel spreadsheet and used for the supplemental analysis.

It should be noted that this review process was subjected to multistage quality checks.
As mentioned above, during the screening and full-text review phases, a minimum of
two authors were assigned to each record. In cases where both authors yielded different
results/outcomes, a third author examined the record and served as an arbitrator. Authors’
profiles and disciplinary focus differed, resulting in a multidisciplinary group of reviewers,
which ensured the reduction of bias.

2.3. Data Analysis

Data on MPs type and the number, type, objective, methods/technologies and effi-
cacy(ies) of the interventions were coded based on predefined categories to generate a
comparative matrix (Supplementary File S1). These data were disaggregated into the main
thematic areas by crosstabulations (SPSS, Version 27). Publication dates were analyzed.
The citation and keyword network analyses were generated in VOSViewer version 1.6.19, a
tool for blending and visualizing bibliometric networks based on citation and journal data
extracted from a robust body of scientific literature [62]. Recommendations and knowl-
edge gaps extracted from the review articles were arranged thematically and scored for
frequency (i.e., how many articles they appeared in). Using the frequencies, each theme
was then ranked to identify the most frequent recommendations and knowledge gaps, and
the top five for each category were selected for discussion.

3. Results & Discussion

The results of almost all the analyses described in this section were based on the
database compiled for the study (Supplementary File S1), which contains data on the year
in which the article was published; country where the intervention(s) was/were applied;
the MP type(s) targeted (e.g., microbeads/pellets/nurdles); whether single or multiple
interventions were applied; what type(s) of intervention(s) was/were applied (e.g., source
control measures or wastewater/sludge treatment); what the objective of the intervention
was (e.g., reduction in production or degradation); the method/technology (e.g., filtration or
flocculation) employed; the location (habitat/environment/setting) where the intervention
was applied (e.g., river/stream); and, finally, the normalized percentage efficacy of the
intervention to allow for comparisons (given that the same method of quantification was
used before and after application of each intervention). The database represents what we
believe could be the beginnings of a decision-making tool for practitioners, managers and
researchers to compare strategies for MP control in freshwater systems and access relevant
literature on these strategies.

3.1. Scope of Publications on MP Interventions in Freshwater Systems

Our initial search yielded a total of 3244 articles but only 124 papers [3,4,63–183] were
ultimately selected for review based on the exclusion criteria. The initial search yield (based
on title and abstract) is reflective of the overwhelming number of publications on MPs over
the last decade [2,184], but the marked difference between the number of papers in the initial
search yield and the final number of papers selected for review is possibly a consequence
of an over-emphasis on MPs in the marine environment. For example, Blettler et al.’s [185]
analysis of journal databases for publications over an unspecified duration until May 2018
showed 440 (~87%) marine MP studies that fulfilled their search criteria in comparison
to only 64 (~13%) in freshwater habitats. When the authors expressed these numbers in
terms of publication rate, they showed that publication rates of studies of plastics in the
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marine and freshwater environments were 41 and 7 papers per year, respectively. The
underrepresentation of studies on the application of interventions for the management,
prevention and mitigation of MP pollution in freshwater environments in the literature is
of particular concern; for instance, in the present study, only 3.24% of the studies that met
the initial search criteria (Figure 1) focused on the application of an intervention to manage,
prevent or remove MPs in freshwater bodies.

All studies included in the systematic review [3,4,63–183] were published in 2016 or
later, with an increase in the number of studies published each year, except in 2023. We
believe that the ‘false’ decline in 2023 is simply a consequence of the analysis only including
articles published up until April 2023. Therefore, while the set of articles analyzed for
this paper represents a focused sample of research published on MPs, it can be inferred
from this sample that the number of papers being published on MPs is continuously
growing. In terms of the chosen timeline, 33.1% of publications used in this systematic
review were generated in the year 2022. This is reflective of publication trends in the
literature on MPs in general [2], where research on MP pollution is seen to have gained
momentum after the publication of the global Paris Agreement (UNFCCC, 2015) and the
listing of MPs as one of the top 10 environmental issues in 2014 (Figure 2). Even though
our analysis begins in 2016, there may have been several factors promoting research on
MP removal/degradation in freshwater systems before this timeframe. For example, the
significant rise in publications may have been spurred by the global commitment to the
Sustainable Development Goals (SDGs) in 2015. This thrust may have been sustained by
subsequent events such as the G7 signing of the Ocean Plastic Charter in 2018 and China’s
release of a document strengthening plastic pollution control by its National Development
and Reform Commission and Ministry of Energy in 2020.
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microplastic pollution control.

To truly appreciate this increased momentum, one has to only consider that our
analysis showed the number of publications on the control of MPs in freshwater bodies to
increase by 1700% between 2016 and 2020 and by 127.8% between 2020 and 2022. Similarly,
Al et al. [2], in their bibliometric analysis of emerging trends in research on MP pollution in
the post-Paris Agreement and post-COVID-19 pandemic world, showed that the number
of articles in 2020 increased by 1770.0% relative to 2015. Based on the trends they observed,
Ali et al. [2] predicted a much higher number by the end of 2021. The trends we see here
in terms of the increase in the number of studies on management interventions for MP
pollution control in freshwater bodies are also very likely due to the increased generation
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and access to published research on MPs, as evidenced by an analysis by Sorensen and
Jovanović [184] which showed that the number of MP publications increased by 2323.1%
in 2019 relative to 2009. Furthermore, their analysis showed that 2019 was the year with
the highest total number of citations (42,000 citations), followed by 2018 (25,000 citations)
and 2017 (13,000 citations). However, in comparison, freshwater interventions for MP
control remains under-researched across most of the world when compared to research
on marine systems. This may change in the foreseeable future, given the endorsement
of the first-ever legally binding UNEP resolution to end plastic pollution in 2022 and the
continuous improvement in detection methods [186].

The minimum number of co-occurrences between the keywords was set at five, which
produced a total of 53 keywords (Figure 3). In Figure 3, the larger the ‘dot ‘underneath
the keyword, the more often the keyword occurs, and, based on this, the top keywords
include microplastics, pollution, particles, fate, removal and identification. There are four
clusters of keywords indicated in red, green, blue and yellow. The blue cluster reveals
themes of pollution, particles and identification, with a focus on fibers, debris, WWTPs
and sewage sludge. The red cluster includes MPs, marine environment and sediments
with a variety of other terms like degradation and biodegradation coagulation, polymers,
drinking water, polyethylene and polystyrene. The green cluster represents not only fate
and wastewater-related keywords but also the natural environment with terms like fish
and river. A small yellow cluster includes the removal and activated-sludge process. This
cluster analysis reflects the importance of the types of data extracted from the 124 selected
articles: The blue cluster highlighted the need to discriminate among the types of particles
targeted across different studies; the red cluster highlighted the need to extract data on
the methods/technologies used; the blue and green clusters highlighted the importance of
looking at the application of interventions upstream (e.g., wastewater/sludge treatment
plants (upstream) and downstream (e.g., rivers); the yellow cluster highlighted the impor-
tance of interventions focused on the removal of MPs (Figure 3). Numerous articles have
pointed towards the importance of considering the type(s) of MP targeted, the source of
the MPs and the method/technology used for their removal/degradation/reduction when
designing MP control interventions for freshwater systems [49,170,187].

The article with the highest number of citations was Carr [71], with 1043 citations
(Figure 4). This paper discussed MPs in wastewater treatment plants. Other articles with
200 or more citations include Auta [65,66] discussing microbial MP degradation, as well as
Edo [81], Conley [75] and Lv [119] discussing WWTPs. These results highlight the emphasis
placed on interventions focused on the removal of MPs from wastewater (i.e., upstream
interventions) globally, a trend evidenced by the large number of articles on wastewater
treatment in this study (74.2%) and the voluminous number of articles on the removal of
MPs from wastewater/sludge reviewed elsewhere [37,38,51].

The publications reviewed in this paper reflect studies on the application of interven-
tions to control MP pollution in freshwater bodies from across the globe; however, the
majority of articles originate in the People’s Republic of China, the United States of America
and Australia (Supplementary File S1). Likewise, articles with the highest citations were
also from the People’s Republic of China and the United States of America, each with two
distinct authors contributing to the metric (Supplementary File S1). The possible reasons
for this geographical bias are discussed in Section 3.3, where we examine the geographic
patterns in terms of the application of interventions for the control of MPs in freshwater
bodies. However, it should be mentioned that these two nations host several premier aca-
demic institutions that have been driving the research agenda on environmental pollution
for many years. Moreover, they have been actively involved in developing and lobbying
for improved policies and regulations for MP pollution, specifically along the MP pollution
control timeline shown in Figure 2.
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3.2. Location of Studies

A country-level classification shows that 36.3% of the publications were conducted
in China, while USA (8%), Germany and UK (5.7%), Australia and Thailand (4%), India
(3.2%) and Canada, Denmark, Iran, Malaysia, Spain and Sweden (2.4%) comprised the
main geographic focus. Further analysis revealed that the research foci varied across
these main countries (Table 1): China, Germany and the UK produced publications across
several categories of interventions while countries such as the USA and India focused on
wastewater/ sludge, bioremediation and stormwater treatment interventions (Table 1).
Evidently, publications on wastewater/sludge treatments were the dominant research focus
in terms of intervention type, with China contributing 29.8% of the articles in this category.

However, more important in this systematic review is habitat/environment/setting
in which these interventions were applied, as this will help shed light on the catchment
compartments that are being prioritized and the degree to which interventions are being
applied in real-world settings. Of the 18 potential habitat/environment/setting types
used to extract the data (see Supplementary File S1), nine were represented in the articles
reviewed here (Figure 5). As expected, a large proportion of the studies were conducted at
treatment plants (36.3%). However, it was interesting to note that the majority of the studies
(44.4%) were conducted ex situ, under laboratory conditions, aiming to develop or refine
interventions. These two locations were followed by constructed/natural wetlands in terms
of frequency, with a handful of studies (8.8%) taking place in real-world settings such as
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stormwater drainage, roads/streets/highways and households/homes [86]. Importantly,
none of the studies reviewed were applied at the catchment scale and there were no studies
on other freshwater catchment compartments known to be impacted by MPs, such as lakes
and dams, that met the search criteria. Even though this suggests that future research
should aim to close these gaps in terms of under-researched catchment compartments,
they may also point to the fact that the freshwater systems that are currently the foci of
research in the field (e.g., rivers/streams, stormwater systems and WWTPs), represent the
major threats/priorities. The results also suggest that new methods are constantly being
developed and refined under laboratory conditions before they are implemented (at scale)
in situ [112]. However, many of these lab-based studies use manufactured MPs [99,171,176]
and appear to ignore weathering/aging effects and diversity in MPs (shape and polymer
types) that exist in natural settings [132]. This can result in the development of interventions
that are not fit-for-purpose (i.e., not scalable and/or inefficient in situ).
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Table 1. Intervention types researched by top-producing countries (n = 124) [3,4,63–183].

Country * 1 2 3 4 5

China 3.2 29.8 2.4 - 0.8
USA - 5.7 - 2.4 -

Germany 0.8 4 - 0.8 -
UK 0.8 4 .8 - -

Australia - 4 - - -
Thailand - 4 - - -

India - 2.4 0.8 - -
1 = Source Control; 2 = Wastewater/Sludge treatment; 3 = Bioremediation; 4 = Stormwater treatment; 5 = In-situ
sediment/water treatment; * Only showing results for the main countries contributing to research highlighted in
the systematic review.
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3.3. Types of MP

Of the 124 studies reviewed, the majority (89.5%) focused on interventions targeting
MPs in general rather than any particle shape (fibers, films, foams and fragments) or
polymer type (polyethylene, polypropylene, polystyrene, polyamide, polyester and acrylic).
There was a small proportion of studies that focused on microbead and microfiber removal
(~4.8% each). Fibers are the most dominant group of MPs, especially in urban landscapes
and originate from the washing of clothes/textiles [180,188]. Microbeads have also been
identified as a major threat to many aquatic environments, given their widespread use
in cosmetics and personal care products [8,189]. These MP prevalence patterns do not
appear to be reflected in the literature on interventions to control MP pollution, though. For
example, there was a very limited focus on interventions designed to capture microfibers
using laundry technologies [120] and microbeads [127] specifically. Targeted interventions
such as these do not seem to be the norm since the size, ubiquity and indiscriminate release
of MPs into freshwater environments would make such an approach unnecessary and/or
ineffective in most instances [190].

3.4. Type and Application of Interventions for Freshwater Systems

Based on the logic of process principles, by reducing the loss of plastics to the envi-
ronment, the input of MPs into freshwater environments could be subsequently reduced.
Solutions that focus on the prevention of plastics release to the environment during their
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life cycle can be termed ‘upstream solutions’, while ‘downstream solutions’ refer to the
physical methods of recovering or removing MPs from the natural (freshwater) environ-
ment (e.g., using pumps, mesh nets and other capturing devices) [3]. Our review revealed a
suite of upstream and downstream solutions (termed ‘interventions’ henceforth) that could
be discriminated at the highest level in terms of ‘intervention type’ using the following
typology (Supplementary File S1):

(1) Source control—measures to prevent MPs from coming into contact with (stormwater)
runoff in natural and/or built environments; this includes clean technologies—any
technology-based process, product or service that reduces/prevents MP inputs into
the environment [74];

(2) Wastewater/sludge treatment—physical water treatment, biological water treatment,
chemical treatment, and sludge treatment aimed at removing MPs and other pollu-
tants [113];

(3) Bioremediation—use of either naturally occurring or deliberately introduced mi-
croorganisms or other forms of life to consume and break down MPs, to clean up a
chronically or episodically polluted site [77];

(4) Stormwater treatment—the installation of structural controls primarily designed
to remove MPs from stormwater runoff before this water is released into natural
freshwater bodies [86];

(5) In situ water/sediment treatment—the physical removal of MPs from water or sedi-
ment in a natural freshwater body [99].

It was clear that the majority of the studies reviewed (95.2%) involved a singular
intervention type, with only 4.8% of the studies involving a combination of interven-
tions. Upstream interventions, namely wastewater/sludge, source control and stormwater
interventions (collectively 91.1%) appear to be the dominant approaches adopted, with
downstream interventions (bioremediation and in situ water/sediment interventions) ac-
counting for a total of 12 studies reviewed. Wong et al. [3], in their review of the prevalence,
fates, impacts and sustainable solutions to MPs in freshwater and terrestrial environments,
observed that downstream solutions lack sustainability without effective upstream solu-
tions. Though physical (e.g., mesh nets, pumps and other capturing devices) [100] and
microbe-based [142] methods of recovering or removing MPs from freshwater bodies are
technically achievable, they are often not logistically feasible due to the large number of
MPs that are constantly entering these environments. Given that these methods require the
installation of infrastructure or the introduction of foreign organisms, they also have the
potential to disrupt local ecosystems.

In terms of the ultimate objective(s) of the interventions, a very small proportion of
the studies involved reduction in MP production and physical removal at the point of
production [120]; far more emphasis seems to be placed on treatment-related objectives
such as removal through filtration and separation, capture and attachment and a combina-
tion of these technologies in hybrid systems (Table 2). However, it should be noted that
interventions that involve the actual degradation of MPs appear to be uncommon (only
8.1% of the studies investigated). Interventions that involved the use of biodegradation
were limited [126,159]. Similarly, research on bioplastics was limited [163], pointing to the
technical challenges associated with this type of research: the rate at which bioplastics de-
grade is affected by different environmental conditions such as temperature, moisture, pH,
oxygen content and, importantly, the availability of microorganisms [191]. The aquatic envi-
ronment appears to be less suited than the terrestrial one for the degradation of bioplastics
due to the lower availability of diverse microorganisms that enable higher biodegradability
as compared to other environments such as soil [3].
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Table 2. Description of ultimate objective(s) of the interventions/studies investigated (n = 124)
[3,4,63–183].

Intervention Objective % of the Articles Reviewed

Reduction in production 4.8
Removal–Filtration & Separation 21.6

Removal–Capture & Surface attachment 16.1
Removal–hybrid 48.4

Degradation 8.1
Physical removal at production 1.6

The high frequency of removal through the use of a combination of technologies (60;
labeled ‘Removal–hybrid’ in Table 2) is a consequence of the fact that studies dealing with
WWTPs constituted the majority (74.2%) of the articles reviewed here. This sampling
bias, which was unavoidable as it reflects the literature on the subject over the last decade
(evidenced by multiple reviews) [38,192], influenced other trends that emerged in our data
analysis which are discussed later in this paper. This is largely because WWTPs are viewed
as perhaps the most important source control points within catchments since they represent
the solution in cases where they are efficient but quickly turn into problems when they
experience failures and/or are based on inefficient technologies/methods [193].

Our analysis revealed that a wide range of techniques/methods are being employed/
explored for controlling MP pollution in freshwater bodies (Table 3). A brief description of
the technologies that were identified in the systematic review is given below. However, it
should be noted that this list is not exhaustive and some of these technologies are evolving
very rapidly, with a single method/technology sometimes displaying multiple design,
application and combination variations, so we have also highlighted articles that offer a
more detailed technical description of these technologies.

Table 3. Description of technologies adopted for MP control in freshwater systems (n = 124)
[3,4,63–183].

MP Control Descriptions Citation/s % of
Articles Reviewed

Filtration membrane Using different types of membrane filters
to remove MPs during water treatment. [50,123,147] 36.3

Constructed/natural wetland

Using natural or engineered (constructed)
wetland systems to capture and remove

MPs from wastewater and non-point
source pollution. These include various
designs of constructed wetlands, with a

variety of materials and plants.

[70,74,132,156,181,182] 15.3

Coagulation/electrocoagulation

Using different types of coagulants such
as polyacrylamide (PAM) and alum, or

electrical charge to allow MPs in water to
form an agglomeration. The coagulation

is followed by flocculation and then
settling (sedimentation) of the particles,

after which they are physically removed.

[26,63,82,104,109,127] 15.3
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Table 3. Cont.

MP Control Descriptions Citation/s % of
Articles Reviewed

Flocculation and
sedimentation

Using flocculation of MPs,
followed by their

sedimentation, and then
physical removal of the
particles during water

treatment. Various types of
chemical coagulants and/or
electrocoagulation have been
used to speed up the natural

flocculation and
sedimentation process.

[109,111,128] 15.3

Adsorption

Utilizing different types of
sorbents (e.g., activated
carbon, biochar, zeolites,

sponges) or electrical charges
to facilitate sorption of MPs

onto these particles, followed
by their sedimentation and

physical removal.

[48,172] 6.5

Magnetization

Utilizing magnetisms (e.g., via
binding with nano-Fe3O4
particles) to magnetize the

hydrophobic surface of MPs,
followed by their separation

and removal under the
influence of a magnetic field.

[141,148] 2.4

Micromachines

Utilizing novel approaches
like microscale particles with

magnetic properties, e.g.,
magnetic field, to create a

continuous motion to facilitate
transportation and then

separation/removal of MPs in
aquatic environments [48].

Micromachines can also
include utilizing a bubble

barrier device to collect [175]
and surface-functionalize

microbubbles to accumulate
and remove MPs in aquatic

systems [176].

[48,175,176] 0.8

Superhydrophobic materials

Using various chemicals, with
superhydrophobic surfaces, to

functionalize MP surfaces
which results in a change in
the surface chemistry of the
particle, facilitating removal

(e.g., via sorption, flocculation
and sedimentation).

[63] and references therein 1.6

Microorganism
aggregation

Using microorganisms (e.g.,
micro-algae and bacterial

films) to facilitate aggregation
(via biofilm formation) of MPs
in aquatic/treatment systems,
which increases the density

and promotes sedimentation
of particles for ultimate

physical removal.

[63,76,77] 4.0
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Table 3. Cont.

MP Control Descriptions Citation/s % of
Articles Reviewed

Photocatalytic

Using light irradiation to
excite photocatalysts, a pair of

electrons and holes are
produced in the redox

reaction, and then this process
degrades MPs into smaller

inorganic molecules, such as
carbon dioxide and water.

[47] 0.8

Microorganism
degradation

Using microorganisms (e.g.,
bacteria) to physically

degrade MPs as natural
and/or engineered

remediation of MPs in
aquatic systems.

[48] and references
therein [65,66] 10.5

Thermal
degradation

Using various thermal
processes, often hydrothermal
hydrolysis combined with the

use of various chemical
treatments (e.g., Thermal

Fenton Reaction), to remove
MPs in water bodies

or WWTPs.

[72,93] 4.0

Oxidation ditch

Exposing MPs to an oxidizing
environment enriched with

bacteria (e.g., during activated
sludge system in WWTPs)
increases their oxidation,
which will increase their

hydrophilicity. The increased
hydrophilicity of MPs assists
with their removal via froth
flotation in the presence of

cationic and
anionic surfactants.

[90,100] 8.9

Sedimentation

Removal of MPs from aquatic
systems (including WWTPs)

via vertical sinking (often
combined with coagulation

and flocculation) and
deposition onto the bottom,
which can be followed by

physical removal.

[26,48,63] 6.5

Mechanical manual removal

Mechanical/manual removal
of MPs via flotation,

sedimentation and filtration,
using various filtration

techniques such as screening,
sand/membrane filtration and

reverse osmosis.

[26,48] 4.0

Agglomeration

Natural and/or enhanced
(using chemical and/or
electrical coagulation)

aggregation of MPs into a
large mass. The agglomerated
particles are larger and thus
sink and accumulate on the

bottom, after which they can
be physically removed.

[88,89,139] 1.6
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Table 3. Cont.

MP Control Descriptions Citation/s % of
Articles Reviewed

Sand filtration
column

Using a sand filtration system
that traps MPs between sand
grains is often enhanced with

the addition of various
filtration aids such as biochar.

[26] and references
therein [92] 1.6

Laundry technology

Using various technologies in
washing machines (e.g.,

filtration system or removable
fiber attracting innovations as
part of the wash) for source

control of MPs.

[79,120,121] 0.8

Based on the descriptions given above, our analysis revealed physical methods to
be the most widely used, including membrane filtration, separation via phyto-capture,
grit/primary sedimentation, density separation, coagulation and flocculation and combi-
nations thereof. This finding is supported by other recent reviews [194] and is largely a
consequence of the dominance of wastewater/sludge treatment-related studies in the
dataset, as discussed earlier. Membrane filtration, for example, is the most frequent
technology/method employed in wastewater/sludge treatment but is almost always
used in combination with other methods (as evidenced by other reviews [52,195]), most
frequently coagulation/electrocoagulation, the combination of flocculation and sedimenta-
tion and oxidation ditch. The employment of other technologies traditionally associated
with wastewater/sludge treatment, such as adsorption, magnetization, superhydrophobic,
thermal degradation, and agglomeration, appears to be less frequent (all between 1.6–5.6%).
Technologies/methods that involved microorganisms either for aggregation or degradation
of MPs (14.5% in total) and the use of constructed/natural wetlands (15.3%) for separation
were less frequent than traditional physical methods/technologies. However, it should be
noted that both microorganisms and wetlands were observed to be applied in isolation or
integrated into wastewater/sludge treatment plants. More rudimentary (combination of
sand filtration and sedimentation, and sedimentation in isolation) and highly technological
(micromachines) methods/techniques were recorded, but these were less frequently used
(all ≤ 6.5%).

3.5. Levels of Efficacy across Interventions

When efficacy was assessed within each category, we noted that the majority of the
studies within the wastewater/sludge, stormwater and in situ water/sediment interven-
tions all exhibited reported efficacies of >90% (Table 4). Furthermore, though a significant
proportion of studies in the wastewater/sludge category (19.8%) exhibited efficacies of
76–90%, efficacies for this intervention type were spread across the lower, middle and upper
ranges. This can be attributed to variations in the number of treatment steps, type and
operating conditions of treatment technologies and, possibly, differences in the age and/or
quality of facilities within and across different studies. Similarly, efficacies for studies within
the bioremediation category were spread across the lower and upper ranges; the majority
(30%) of these studies exhibited efficacies <25%. In this case, differences in the efficacy
of any biological solution can be expected given that changes in climatic/environmental
conditions acting on aquatic environments cannot be controlled/accommodated for and
most often influence the performance/physiology of the organisms used.
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Table 4. Comparison of MP prevention/removal efficacy rates (%) across intervention types
[3,4,63–183].

Type of Intervention <25% 26–50% 51–75% 76–90% >90%
Effective:
Rate Not
Disclosed

Source control (n = 14) - - 14.3 21.4 14.3 50.0
Wastewater/sludge
treatment (n = 91) 4.4 1.1 12.1 19.8 41.8 20.9

Bioremediation (n = 10) 30.0 10.0 - 20 10.0 30.0
Stormwater treatment

(n = 7) - - 14.3 14.3 42.6 28.6

In situ water/sediment
treatment (n = 2) 50.0 - - - 50.0 -

Total (n = 124) 7.4 1.6 11.3 19.4 36.3 25.1

Efficacies for studies in the source control category were spread across the upper three
ranges (51–75, 76–90 and >90%) but the design of these studies often did not require the
quantification of efficacy, which may explain why efficacy was not reported in 50% of the
studies of this type. Other intervention categories included a significant number of studies
where the intervention was reported to be effective, but the efficacy rate was not reported
(20.9–50%); in total, 25.1% of the 124 studies reviewed did not report efficacy. Importantly,
when data for all intervention types were pooled for analysis, 55.7% of the studies reviewed
exhibited efficacies >76%, of which 36.3% exhibited efficacies >90% (Table 4).

When we compare the level of efficacy of different interventions in terms of their main
objective, it was evident that the removal of MPs using hybrid systems, which refer to
wastewater/sludge treatment plants, was the most effective, with 50.8% of the studies
in this category displaying efficacy rates of >90% and 16.9% of studies reporting rates
of between 75–90% (Table 5). Other reviews [192,196] have also concluded that during
the wastewater/sludge treatment process, most of the MPs are removed. Systems that
employed a grease-skimming method during the preliminary treatment process seemed to
have a large proportion of MPs removed from the treatment process, while filtration and
membrane technologies seemed to be the most effective during the final stages of treat-
ment [192]. While other reviews have shown that high efficacy rates for wastewater [51,196]
and sludge [197] treatment plants are common, it should be said that very few of these treat-
ment plants remove MPs with 100% efficacy, which implies that treatment plants are also a
significant secondary source of MPs [194]. WWTPs have for some time now been recog-
nized as perhaps one of the most significant sources of MP pollution globally [193,198,199].
Closer analysis of the wastewater-related studies suggests that the high levels of efficacy can
be attributed to significant advances in membrane technologies such as ultrafiltration (UF),
microfiltration, reverse osmosis and membrane bioreactors over the last decade [50,147] and
the adoption of other treatment technologies/methods such as the combination of a porous
membrane with a biological process [49,200]. These supplemental/alternate wastewater
treatment options have been born of necessity. One of the major drawbacks of membrane
filtration is the fouling phenomenon which is the result of the adsorption of particles on
the membrane surface. This fouling leads to reduced membrane filtration performance and
consequently higher energy costs, operation time and maintenance [201]. Also, the efficacy
of WWTPs is based on the systematic and accurate detection of MPs to keep track of how
effectively the treatment process is in removing MP particles [192]; in this regard, during
the screening of articles for our review, we encountered a large number of studies on MP
detection methods/technologies.
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Table 5. Comparison of MP prevention/removal efficacy rates across intervention objectives (in %)
[3,4,63–183].

Intervention Objective <25% 26–50% 51–75% 76–90% >90%
Effective:
Rate Not
Disclosed

Reduction in production (n = 6) - - 1.7 33.3 1.7 33.3
Removal–Filtration & separation

(n = 26) 7.7 - 26.9 15.4 26.9 23.1

Removal–Capture & surface
attachment (n = 21) 4.8 9.5 4.8 28.6 28.6 23.8

Removal–hybrid (n = 59) 3.4 - 8.5 16.9 50.8 20.3
Degradation (n = 10) 30.0 - - 20.0 10.0 40.0

Physical removal at point of
production (n = 2) - - - - - 100.0

Total (n = 124) 5.6 1.6 11.3 19.4 36.3 24.2

Even though studies on interventions with other objectives, specifically reduction in
production, removal–filtration and separation and removal–capture and surface attachment
and degradation, comprised a far smaller proportion of the studies reviewed, there were a
significant number of reports within these categories where efficacy rates were between
75–90% and even >90% (Table 5). Additionally, 33.3% of the studies that had the objective
of reduction in production reported efficacies of between 76–90%. It was also apparent that
MPs of higher density can be removed effectively by coagulation, flocculation and then
sedimentation (a finding supported by other review articles [22]).

Studies focused on the removal of MPs at the point of production were the exception,
with efficacy rates not being reported for both the studies reviewed. On this note, it was
worrying that 24.2% of the studies investigated (including all categories in the table below)
indicated that the intervention was effective but did not report an efficacy rate; most notable
was the 40% of studies on degradation that did not report levels of efficacy. In terms of the
lowest levels of efficacy, interventions that focused on degradation (30%) appeared to be by
far the least effective.

As mentioned earlier, our review revealed a wide variety of technologies/methods
(n = 18) that have been applied/investigated to control MP pollution of freshwater bodies.
However, the frequency with which these methods/technologies are used independently
and/or in combination with each other varies widely (Table 6), necessitating careful inter-
pretation of their efficacy. For example, 100% of the studies involving the independent use
of CSA–micromachines, CSA–superhydrophobic, CSA–adsorption, agglomeration, sand
filtration column and laundry technologies/methods exhibited efficacies of 100%; however,
all these categories were represented by just 1–4 articles. Similarly, a significant proportion
of the studies that involved the independent use of sedimentation, agglomeration and
thermal degradation reported efficacies of >50% but these categories were represented by
2–3 articles. When we look at the technologies/methods that were used more frequently, ei-
ther independently and/or in combination, the following stand out in terms of significantly
high levels of efficacy: Filtration–membrane was used in a total of 42 studies and 72.4% of
these exhibited efficacies >76%; separation–constructed/natural wetlands was a feature of
16 studies, of which 50.1% exhibited efficacies >76%; CSA–coagulation/electrocoagulation,
CSA–flocculation & sedimentation and microorganism degradation were all featured in
5–9 studies, with 40–66.6% of these exhibiting efficacies >76%. The pros and cons of mem-
brane filtration technologies have already been discussed above but it is worth noting that
an oxidation ditch was used eight times in combination with a filtration membrane, point-
ing to the efficiency of this combination in the hybrid systems used in wastewater/sludge
treatment. Our review also revealed some very novel approaches to microorganism-aided
degradation of MPs [142,145], which is encouraging despite the relatively lower efficacies.
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Table 6. Comparison of MP prevention/removal efficacy rates (%) across intervention meth-
ods/technologies applied independently and/or in combination (n = 124) [3,4,63–183].

Method/Technology <25% 26–50% 51–75% 76–90% >90%
Effective:
Rate Not
Disclosed

1 (n =29) - - 10.3 17.2 51.7 20.7
1,11 (n = 2) - - - - 50.0 50.0
1,13 (n = 4) - - - - 75.0 25.0

1,13,14 (n = 1) - - - - - 100.0
1,13,14,15 (n = 1) - - 100.0 - - -

1,14 (n = 2) - - - 50.0 50.0 -
1,2 (n = 2) - - 100.0 - - -

1,2,4,9,11,14 (n = 1) - - - - - 100.0
1,3,4,13 (n = 1) - - - - 100.0 -

1,4 (n = 3) - - 33.3 - 33.3 33.3
1,4,11,13 (n = 1) - - - 100 - -

1,4,13 (n = 2) - - - 50 50 -
1,4,13,14 (n = 1) - - - 100 - -

1,9,13 (n = 1) - - - - 100 -
2 (n = 16) 12.5 - 18.8 18.8 31.3 18.8

2,3,6 (n = 1) - - - 100 0 0
3 (n = 9) 22.2 - 11.1 22.2 33.3 11.1

3,4 (n = 4) 25 - - 25 50 -
3,4,5,11 (n = 1) - - - - - 100

3,5 (n = 1) - - - 100 - -
3,6(n = 1) - - - 100 - -
4 (n = 5) - - - 60 40 -
5 (n = 3) - - - - 33.3 66.7

5,12 n = 1) - - - - 100 -
6 (n = 2) - - - 50 - 50

6,12 (n = 1) - - - - 100 0
7 (n = 1) - - - - 100 -
8 (n = 2) - - - - 100 -
9 (n = 2) - 100 - - - -
11(n = 8) 37.5 - - 12.5 - 50
12 (n = 3) - - - 33.3 -
13 (n = 2) - - 50 - - 50
14 (n = 4) - - 25 - - 75
15 (n = 2) - - - - - 100
16 (n = 2) - - - - 100 -
17 (n = 1) - - - - - 100
18 (n = 1) - - 100 - - -

1 = Filtration-membrane; 2 = Separation-constructed/natural wetland; 3 = Coagulation/electrocoagulation;
4 = Flocculation & sedimentation; 5 = Adsorption; 6 = Magnetization; 7 = Micromachines; 8 = Superhydrophobic;
9 = Microorganism aggregation; 10 = Photocatalytic degradation; 11 = Microorganism degradation; 12 = Thermal
degradation; 13 = Oxidation ditch; 14 = Sedimentation; 15 = Mechanical manual removal; 16 = Agglomeration;
17 = Sand filtration column; 18 = Laundry technology.

The results described above confirm that filtration technologies such as UF, sand filtra-
tion and granular filtration are the most popular choices—no doubt related to their effective,
economic and energy-efficient application in WWTPs of different sizes [53,192]. In most
cases in the articles reviewed here, the WWTP-related studies employed membrane biore-
actor technologies, which is not surprising since membrane bioreactors have become the
most popular and most effective (usually >99% removal rate) treatment technology among
all of the biological treatment methods for MP removal [71]. Similarly, the combination
of filtration with other biological treatment methods (e.g., activated sludge process, aero-
bic digestion, anaerobic digestion, biological degradation and constructed wetlands) was
more common than combinations with chemical methods (e.g., oxidation, photo-oxidation,
photo-catalytic degradation, coagulation, Fenton, photo-Fenton and acid–alkali treatment).
Electrochemical methods such as electrocoagulation [127] and electro-Fenton processes [93]
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have added a new dimension to chemical methods to improve their efficiency but were less
frequently combined with other technologies. It was also interesting to note that pyrolysis
and co-pyrolysis technologies which were touted as promising approaches for MP removal
over the last decade based on their extra advantages of low-cost fuel production [202,203]
were virtually absent from the technology/method combinations identified in this review.

3.6. Overview of Knowledge Gaps & Recommendations Extracted from Review Articles

To supplement the results of the systematic review, the recommendations and knowl-
edge gaps were extracted from 129 review articles and subjected to thematic analysis which
showed that these could be separated into the following categories: source control, wastew-
ater and sludge treatments, bioremediation, stormwater treatment, behavior, education
and awareness, and policy and regulatory frameworks (Table 7). However, there was
sufficient overlap across categories for us to generate a set of overarching recommendations
and knowledge gaps (five each, Table 7) based on the frequency of occurrence across the
articles reviewed.

Table 7. Top five recommendations and knowledge gaps on management interventions for control-
ling MP pollution in freshwater bodies, ranked in descending frequency (F) of occurrence across
129 review articles published between 2012 and 2023 [1,3,11,14–16,18–20,25–27,36,38,41,43,45,47–
56,189,192–200,204–296].

Rank Knowledge Gaps F
(n = 129) Citations

1
Data on sources, diversity, transport and

fates of MPs, particularly within
developing countries.

30
[3,20,27,45,49,56,189,198,205,206,209,
215,218,219,223,226,234,235,238–240,
244,248,277,278,280,282,286,290,292]

2
Exposure pathways and

biological/toxicological effects of MPs for
humans and environments.

24
[14,15,20,26,49,51,213,215,218,220,222,
224,229,231,237,242,278,284,285,289,

290,292–294]

3 Standardized MP analytical methods:
Quantification and characterization. 24

[15,16,18,37,41,189,193,199,211,214,
219,220,222,227,233,246,254,255,264,

274,280,283,289,293]

4 MP weathering, degradation and
removal (e.g., via biodegradation). 12 [1,49,50,53,195,196,246,247,262,266,

272,274]

5 Abilities of MP to interact with and
eventually release associated pollutants. 7 [3,197,217,221,225,226,252]

Recommendations

1
Develop standardized detection and

analytical methods to study and
monitor MPs.

37

[14,26,27,49,50,56,189,192,197,199,
204–206,208,209,215,225–

227,234,235,239,240,242–244,251,252,
255,256,268,282,284,288,294–296]

2

Conduct more research on sources,
transport pathways, fates, trophic
interactions, toxicity, removal (e.g.,

biodegradation, electrocoagulation) and
ecological impacts of MPs.

28
[16,25,36,47,49,52,53,189,205–

207,209,212,216–
223,226,231,238,239,243,258,295]

3

Implement comprehensive
policies/legislation/regulations at local,

national and international levels to
prevent or remove MPs, and foster

research collaboration and cooperation.

24 [14–16,18,41,193,216,219,224,227,229,
230,232–234,242,277–279,290–294]
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Table 7. Cont.

Rank Knowledge Gaps F
(n = 129) Citations

4
Conduct extensive public education,

training and awareness programs on MP
pollution mitigation.

16 [18,51,204,223,229,231,233,242,244,
245,267,279,282,283,285,292]

5

Optimize secondary and tertiary MP
treatments (e.g., with membrane

bioreactors) at wastewater/sludge
treatment plants.

12 [11,51,53,195,200,237,248,251,252,255,
257,258]

In terms of knowledge gaps, it appears that the application and efficacy of inter-
ventions could benefit from increased availability of data on sources, diversity, transport
and fates of MPs, particularly within developing countries. Fit-for-purpose interventions
could also be designed if exposure pathways and biological/toxicological effects of MPs
for humans and environments are better characterized. In general, interventions need
to be informed by/based on more robust and standardized MP analytical methods (for
quantification and characterization). Management interventions appear to be hampered by
insufficient knowledge of MP weathering, degradation, removal (e.g., via biodegradation)
and the abilities of MPs to act as vectors of other pollutants.

Based on the 129 review articles included in the analysis, the major recommendations
largely speak to the knowledge gaps identified in that they call for the development of
standardized detection and analytical methods to study and monitor MPs and generate
more data on sources, transport pathways, fate, trophic interactions, toxicity, removal (e.g.,
biodegradation, electrocoagulation) and ecological impacts of MPs. Additionally, the risks
posed by WWTPs need to be addressed by optimizing or improving secondary and trtiary
(e.g., with membrane bioreactors) MP treatments at wastewater/sludge treatment plants.
Importantly, the recommendations do speak to the need to bring about behavioral change
for reduced plastic use, improved plastic waste management and mitigation of MP pollution
through the implementation of comprehensive policies/legislation/regulations, research
collaboration and cooperation, and extensive public education, training and awareness
raising (Table 7).

4. Concluding Remarks & Recommendations

To protect freshwater bodies from MP pollution, we must seek to develop and im-
plement fit-for-purpose interventions. This can best be achieved by an evidence-based
approach toward intervention design, selection and implementation. Irrespective of the
intervention(s) selected, they must strike the balance between resource availability and
environmental sensitivity. On this note, lab-based studies aimed at developing manage-
ment interventions need to be more environmentally relevant and focus on treatment
technologies that can be taken to scale in both the developed and developing world. Highly
effective technologies used for the removal of MPs at wastewater/sludge treatment plants
such as UF are a case in point; these must be made more accessible and affordable to
developing countries [10].

To better protect freshwater bodies from MP pollution, we must increase awareness
around the fact that ecosystems and human systems are connected within a catchment
(though not always at the primary level), which implies that what happens in one compart-
ment in terms of MP pollution can have knock-on effects on others. These knock-on effects
can be accommodated when management interventions for MP pollution are planned and
implemented at the catchment scale using participatory approaches such as catchment
management forums.

Reducing the discharge of MPs from WWTPs into freshwater systems represents an
immediate priority. Though wastewater, and, by implication, the MPs that cannot be
removed, may be transferred to marine environments by deep sea discharge, it is now
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well-established in the literature that WWTPs represent the dominant discharge pathway
of MPs into freshwater environments [56,151,193,239]. In fact, Wang et al. [239] reported
that 85% of the studies they reviewed on discharge pathways into freshwater ecosystems
involved discharge from WWTPs.

New interventions are constantly being developed and refined under laboratory con-
ditions but their scalability and suitability across different settings are uncertain. For
improved efficacy, the application of these interventions must also be strategically tai-
lored to local hydrogeological and climatic conditions. Downstream interventions are
not sustainable without effective upstream interventions. Though in situ methods are
technically achievable, they may not be feasible in resource-limited settings. On this note,
although it did not emerge as part of the findings of this study, cost-benefit comparisons of
the different types of interventions reviewed here represent a major knowledge gap that
should be addressed in future studies. These types of analyses are a major consideration,
and, in resource-limited settings, perhaps the basis, for management decisions related to
pollution control.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w16010176/s1, Supplementary File S1: Meta-data on interventions
applied to freshwater bodies extracted from 124 articles included in the systematic review.
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Appendix A Search Strategies

Google Scholar
Limits: None
Microplastic* AND (freshwater OR river* OR wetland* OR estuar* OR catchment*

OR drainage OR basin* OR reservoir* OR stream*) AND (intervention* OR manage* OR
mitigation OR *remediation OR reduction OR treatment OR removal OR regulation* OR
law* OR polic*)

Web of Science Core Collection (Clarivate Analytics)
Limits: 2012–2023
(microplastic* OR microbead*) AND (freshwater OR river* OR wetland* OR estuar*

OR catchment* OR drainage OR basin* OR reservoir* OR stream* OR lake* OR pond* OR
“inland water bod*” OR dam OR bay* OR lagoon*) AND (intervention* OR manage* OR
mitigation OR *remediation OR reduction* OR treat* OR removal OR regulation* OR law*
OR policy OR policies OR “land use” OR prevent*)

Scopus
Limits: 2012–2023
(TITLE-ABS-KEY ((microplastic* OR microbead*)) AND TITLE-ABS-KEY ((freshwater

OR river* OR wetland* OR estuar* OR catchment* OR drainage OR basin* OR reservoir*
OR stream* OR lake* OR pond* OR “inland water bod*” OR dam OR bay* OR lagoon*))
AND TITLE-ABS-KEY ((intervention* OR manage* OR mitigation OR *remediation OR
reduction* OR treat* OR removal OR regulation* OR law* OR policy OR policies OR “land
use” OR prevent*))) AND PUBYEAR > 2011 AND PUBYEAR < 2024

https://www.mdpi.com/article/10.3390/w16010176/s1
https://www.mdpi.com/article/10.3390/w16010176/s1
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Dissertations and Theses Global (ProQuest) and Environmental Science (ProQuest)
Limits: 2012–2023
noft ((microplastic* OR microbead*)) AND noft ((freshwater OR river* OR wetland*

OR estuar* OR catchment* OR drainage OR basin* OR reservoir* OR stream* OR lake* OR
pond* OR “inland water bod*” OR dam OR bay* OR lagoon*)) AND noft ((intervention*
OR manage* OR mitigation OR remediation OR reduction* OR treat* OR removal OR
regulation* OR law* OR policy OR policies OR “land use” OR prevent*))
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