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Abstract: Developing photocatalytic nanomaterials with unique physical and chemical features using
low-cost and eco-friendly synthetic methods is highly desirable in wastewater treatment. In this work,
the magnetically separable α-Fe2O3-CeO2 nanocomposite (NC), with its respective metal oxides of
α-Fe2O3 and CeO2 nanoparticles, was synthesized using a combination of hexadecyltrimethylammo-
nium bromide (CATB) and ascorbic acid via the hydrothermal method. To tune the band gap, the
heterojunction nanocomposite of α-Fe2O3-CeO2 was decorated with plasmonic Au nanoparticles
(Au NPs). The various characterization methods, such as FTIR, UV-vis DRS, XRD, XPS, TEM, EDX,
SEM, and PL, were used to determine the properties of the materials, including their morphology,
elemental composition, optical properties, band gap energy, and crystalline phase. The nanocom-
posite of α-Fe2O3-CeO2@Au was utilized to remove Rose Bengal (RB) dye from wastewater using a
photocatalytic technique when exposed to visible light. A comprehensive investigation of the impact
of the catalyst concentration and initial dye concentration was conducted to establish the optimal pho-
todegradation conditions. The maximum photocatalytic efficiency of α-Fe2O3-CeO2@Au (50 mg L−1)
for RB (20 ppm) dye removal was found to be 88.9% in 120 min under visible-light irradiation at
a neutral pH of 7 and 30 ◦C. Various scavengers, such as benzoquinone (BQ; 0.5 mM), tert-butyl
alcohol (TBA; 0.5 mM), and ethylenediaminetetraacetic acid (EDTA; 0.5 mM), were used to investigate
the effects of different free radicals on the photocatalytic process. Furthermore, the reusability of
the α-Fe2O3-CeO2@Au photocatalyst has also been explored. Furthermore, the investigation of the
potential mechanism demonstrated that the heterojunction formed between α-Fe2O3 and CeO2, in
combination with the presence of deposited Au NPs, led to an enhanced photocatalytic efficiency by
effectively separating the photogenerated electron (e−)–hole (h+) pairs.

Keywords: nanocomposite; heterojunction; surface functionalization; photocatalysis

1. Introduction

The production of synthetic dyes, such as fabrics, papers, cosmetics, and leather, has
increased in several industries [1,2]. Approximately 7 × 107 tons of these toxic dyes are
manufactured annually [3], and often 5 × 103 tons are released into the aquatic environment
as wastewater [4], posing a threat to human health and other living organisms [5,6]. One
such dye is Rose Bengal (4,5,6,7-tetrachloro-2′,4′,5′,7′-tetraiodofluorescein), also recognized
as Acid Red 94, a synthetic dye belonging to the basic xanthene group. Rose Bengal is
water-soluble and comprises functional groups such as hydroxyl and carboxyl, along with
aromatic rings crucial for its molecular interactions. It is widely employed in various in-
dustries, like textiles, cosmetics, medical diagnostics, and microbiology, as a staining agent.
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However, its widespread use has resulted in its presence in wastewater effluents. Despite
its utility, this dye is hazardous and capable of causing skin and eye irritation. If released
into water bodies, it can pose a significant threat to aquatic ecosystems. Furthermore, it is
not biodegradable, which makes it necessary to have effective strategies for its disposal
and removal from wastewater. Fortunately, Rose Bengal is light-sensitive, particularly to
visible and UV wavelengths, rendering it prone to photodegradation [7–12].

Researchers have tried to remove pollutants from wastewater using conventional meth-
ods such as adsorption [13–16], oxidation [17], biodegradation [18], and membrane [19],
but they are both inefficient and expensive [8]. Therefore, there is a crucial demand for
an affordable and environmentally friendly approach to treating dye wastewater before
it is disposed of into the environment [19–22]. Photocatalysis is mainly used to degrade
textile dyes using effective semiconductor photocatalysts [22,23]. The limited recombi-
nation rate of electron–hole pairs are responsible for efficient degradation upon solar
or UV–visible-light excitation [21–23]. Semiconductor nanomaterials ranging from 1 to
100 nm have garnered significant interest in photocatalysis because of their distinct physical
and chemical properties compared to bulk materials [22–24]. Among others, transition
metal oxide and semiconductor nanomaterials are appealing candidates in the photolysis
field [21–23] because of their biocompatibility, remarkable stability, and capacity to produce
charge carriers when stimulated with sufficient light energy [23,24].

Chemical catalysis and energy conversion are two areas where intelligent and effective
nanomaterials are gaining popularity. Nanostructured metal oxides, including CeO2, Fe2O3,
TiO2, MnO2, ZnO, Fe3O4, and SnO2, have been used to drive chemical reactions instead
of conventional energies [25–31]. Of these metal oxides, α-Fe2O3 is a semiconductor with
great potential for the breakdown of organic contaminants through photocatalysis and
the generation of hydrogen in water splitting because of its natural abundance, chemical
stability, low band gap, and environmental friendliness [32,33]. Although possessing these
characteristics, α-Fe2O3 exhibits a high recombination rate due to the short path length for
hole diffusion and its restricted oxidation capability. This rapid recombination of electron–
hole pairs hinders the commercial viability of the material. To address this issue, it is
essential to incorporate additional active materials with a greater surface area in the host
matrix [34].

Many researchers have created heterojunction composites, including α-Fe2O3@TiO2, α-
Fe2O3@ZnO, Fe3O4-ZnO/TiO2, α-Fe2O3@SnO2, Fe3O4-CdO, and TiO2-CeO2, in an attempt
to harvest solar energy, reduce the charge carrier recombination rate, and increase the
photocatalytic activity [35–40]. To improve electron–hole pair separation, rare-earth oxides
can be combined with α-Fe2O3 [41]. Because of its ability to both gain and lose oxygen,
the multifunctional rare-earth metal oxide CeO2 is one of several oxides of rare-earth
metals that could be used in photocatalysis. The narrow band gap and oxidative–reductive
capability of the Ce(III)/Ce(IV) pair make CeO2 an attractive photocatalytic candidate [42].
An increase in photocatalytic activity can be achieved through the reversible transformation
of Ce(III)/Ce(IV) couples, which allows for the movement of electrons and the diffusion of
charge carriers between CeO2 and other semiconductors, like TiO2, MoS2, and CdS [43–45].
Thus, creating a heterojunction of Fe2O3 with CeO2 makes sense, has also enhanced the
redox stability of the material, and is essential for photocatalytic performance. Numerous
scientists have developed heterojunction composites comprising Fe2O3 and CeO2 to explore
their potential in various applications, such as photocatalytic hydrogen evolution, ethanol
conversion, supercapacitor technology, and dye degradation [46–49].

Moreover, researchers have observed that covering the surface of NPs with noble
metals like platinum, silver, or gold can further enhance their electron–hole separation
and photocatalytic activity [50–52]. The surface plasmon resonance (SPR) effects of these
nanoparticles can considerably promote the ability of photocatalysts to respond to visible
light [50–52]. Gold nanoparticles, in particular, are highly stable, with enhanced visible-light
absorption and efficient charge separation, and can serve as an electron intermediary during
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charge transfer, significantly preventing the recombination of photogenerated electron–hole
pairs [53,54].

In this study, a hydrothermal method was used to fabricate CeO2, α-Fe2O3, and
the heterojunction of α-Fe2O3-CeO2 nanoparticles combining different materials (CTAB
and ascorbic acid) for surface modification to achieve improved physical and chemical
properties [55,56]. CTAB is frequently utilized as a template to enhance uniformity and
create a mesoporous structure [57,58], while ascorbic acid, with its four hydroxyl groups,
functions as a ligand for metal oxide nanoparticles [59]. The visible-light absorption and
decreased e−-h+ pair recombination improved with the decoration of Au NPs on the
surface of α-Fe2O3-CeO2 NC.

Gold ions were effectively transformed into nanoparticles by utilizing jujube extract
as a reducing agent [60–62]. The α-Fe2O3-CeO2@Au nanocomposite was designed to de-
grade RB dye, aiming to minimize the production of harmful byproducts and secondary
pollution, in line with the sustainability goals [63]. The degradation was achieved un-
der visible light. This light is a significant portion of solar radiation, making it a great
source of renewable energy and reducing energy consumption compared to UV light [64].
The reusability capabilities of the as-synthesized photocatalyst were investigated to re-
move RB. A proposed mechanism for a photocatalytic process driven by visible light was
also presented.

2. Materials and Methods
2.1. Materials

The reagents used in this study include iron(III) nitrate nonahydrate (Fe3(NO3)3.9H2O,
purity 98.0%), cerium(III) nitrate (Ce(NO3)3. 6H2O, purity 99.0%), Hexadecyltrimethy-
lammonium bromide (C19H42BrN; purity 99.0%), L-ascorbic acid (C6H8O6; purity 99.0%),
Ethanol, (C2H5OH; Purity 99.5%), Ammonia (NH3; purity 99.0%), Gold(III) chloride (AuCl3;
purity 99.0%), and Rose Bengal dye (C20H2Cl4I4Na2O5; purity 95.0%) were acquired from
Sigma-Aldrich, St. Louis, MO, USA. Ziziphus jujuba fruit was purchased from the local
market. All chemicals were utilized as received without additional purification. All of the
solutions were prepared using deionized water.

2.2. Synthesis of Fe2O3, CeO2, Fe2O3-CeO2 and Fe2O3-CeO2@Au NPs

For the preparation of Fe2O3 and CeO2 NPs, a hydrothermal approach was carried
out [65,66]. Initially, 2 g of Fe(NO3)3·9H2O and Ce(NO3)3.·6H2O were separately dissolved
in 50 mL of deionized water to create a homogeneous solution. An aqueous solution of
CTAB (10 mL, 0.2 M) and ascorbic acid (20 mL, 1.0 M) was added to each metal ion solution
with continuous stirring at 50 ◦C. After that, aqueous ammonia was slowly added, drop by
drop, to the reaction mixture, until a pH of 12 was achieved [67,68]. The mixture was moved
into a Teflon-lined autoclave with a volume of 100 mL. Following that, it was subjected to
heating at 180 ◦C in the oven for a period of 24 h. The obtained material was centrifuged
at 4000 rpm for 20 min and rinsed multiple times with deionized water and ethanol. The
obtained solid samples were subjected to drying at a temperature of 70 ◦C for a duration of
24 h, and subsequently subjected to calcination at a temperature of 500 ◦C for a duration of
four hours.

Furthermore, α-Fe2O3-CeO2 NC was prepared by mixing an equal quantity of metal
ion solutions of Fe(NO3)3·9H2O and Ce(NO3)3·6H2O in one beaker and an aqueous solution
of 10 mL CTAB (0.2 M) and 20 mL ascorbic acid (1.0 M) were added with continuous stirring
at 50 ◦C. Aqueous ammonia was slowly added, drop by drop, to this mixture until the
pH reached approximately 12. The mixture was moved into a Teflon-lined autoclave and
heated at 180 ◦C in the oven for a period of 24 h. After allowing the autoclave to cool
down, the as-prepared material was collected by centrifugation for 20 min at 4000 rpm and
subsequently washed with deionized water and ethanol, followed by drying at 70 ◦C for
24 h and calcination at 500 ◦C for 4 h.
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All prepared samples were kept in an airtight, dark place for additional character-
ization and use. The Au-supported α-Fe2O3-CeO2 NPs were prepared by facile green
synthesis technique employing aqueous jujube fruit extract as both a reducing and capping
agent [69,70]. Initially, 20 g of dried jujube fruit was washed several times with deionized
water and then air-dried at room temperature. The completely dried jujube fruit was
crushed into fine powder and boiled for 20 min in 250 mL of deionized water. After being
cooled down, the aqueous extract was filtered and then kept in a refrigerator for future
utilization. The Au NPs deposition on the surface of α-Fe2O3-CeO2 NC was achieved by
dispersing 1.0 g of α-Fe2O3-CeO2 NC in 10 mL of deionized water and vigorously stirring
for 30 min. To this suspension, 15 mL of 0.20 M AuCl3 aqueous solution was added and,
subsequently, 10 mL of the jujube aqueous extract was added with continuous stirring for
1 h at 40 ◦C. After the complete reduction of Au3+ to Au◦ on the surface of α-Fe2O3-CeO2
NC, the solid samples were centrifuged at 4000 rpm for 10 min and rinsed multiple times
with deionized water and ethanol. Subsequently, the sample was further dried at 70 ◦C
for 24 h. Eventually, α-Fe2O3-CeO2@Au NC was collected and kept for further study.
The schematic representation for the synthesis of α-Fe2O3, CeO2, α-Fe2O3-CeO2, and
α-Fe2O3-CeO2@Au NPs is illustrated in Figure 1.
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Figure 1. Synthesis representation showing the synthesis of (a) α-Fe2O3, CeO2, α-Fe2O3-CeO2, and
(b) α-Fe2O3-CeO2@Au.

2.3. Characterization

The surface morphology and elemental analysis of the prepared NPs were investigated
by scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectrometry
(EDS) (EDS Bruker, FEI Nova NanoSEM 450, Billerica, MA, USA). The determination of the
sizes and shapes of the particles was carried out through the use of a transmission electron
microscope (TEM) with Technai 200 model, which was produced by FEI and is based in
Pleasanton, CA, USA. Fourier-transformed infrared spectra (FTIR) were also recorded in
the range of 400–4000 cm−1 on Bruker Alpha-II spectrometer, Billerica, MA, USA, to verify
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the essential function of functional groups in stabilizing, capping, and reducing during
NP formation. Furthermore, Bruker D2 Phaser diffractometer, Billerica, MA, USA, was
used to perform X-ray diffraction (XRD) analysis. The employed radiation was Cu Kα

(1.5412 Å) over the 2θ range of 10–90◦, with a step size of 0.002◦, for the identification of
photocatalysts’ phases. X-ray photoelectron spectroscopy (XPS) was carried out to analyze
the chemical and elemental composition of synthesized materials using Kratos Analytical
AMICUS instrument, Manchester, United Kingdom, outfitted with a dual Al-Mg anode
and an achromatic X-ray source (1468.6 eV), with a step of 0.1 eV. UV-vis DRS analysis was
performed using Thermo Scientific Evolution 220 UV–visible spectrophotometer, Waltham,
MA, USA, to acquire the absorption spectra of the as-prepared samples over a 200–900 nm
range. The photoluminescence (PL) spectral analysis was performed using a fluorescence
spectrophotometer LS 45, Perkin Elmer, Waltham, MA, USA).

2.4. Photocatalytic Activity

In this work, RB dye was utilized as the standard pollutant to examine the photocat-
alytic effectiveness of α-Fe2O3-CeO2@Au NC. The dye was degraded in an aqueous media
(deionized water) using a quartz photocatalytic double-layer reactor in the presence of
visible irradiation. Before conducting photocatalytic degradation experiments, preliminary
studies were carried out to determine the optimal concentration of the dye and a catalyst
for their specific system. Each experiment used 50 mg L−1 of the photocatalyst, and an
aqueous solution of RB (20 ppm) was used to disperse the sample in the dark for 30 min
before irradiation to achieve adsorption–desorption equilibrium [49]. The reaction was
conducted at a neutral pH of 7 [71,72] while maintaining the temperature at 30 ◦C using a
circulating water-cooling system [73].

The photocatalyst was subsequently illuminated with visible light using a Tungsten
lamp (400 W) under constant stirring. The concentration of the aqueous solution was
determined using a UV-vis spectrophotometer at λmax of 562 nm to monitor the decrease
in the RB concentration over time. The α-Fe2O3-CeO2@Au photocatalyst was then mag-
netically separated, washed, and dried for subsequent reactions to assess its stability and
reusability. The photocatalytic experiments were optimized by varying photocatalyst and
dye concentrations.

The data were also used to study the kinetic behavior of RB dye in the presence of the
photocatalyst, and the rate constant (k) was calculated using Equation (1). The apparent
rate constant of the reaction (kapp) in min−1 was acquired from the slope of the ln A0/At
Vs time plot.

ln
(

A0

At

)
= kapp ·t (1)

Additionally, experiments were conducted to examine the effect of different free
radicals on the photocatalytic process using various scavengers, including ethylenedi-
aminetetraacetic acid (EDTA), tert-butyl alcohol (TBA), and benzoquinone (BQ), which
were used as scavenging agents for h+, •OH, and •O−

2 , respectively [49,74,75].

3. Results and Discussion
3.1. FTIR Spectroscopy Analysis

The synthesized NPs, α-Fe2O3, CeO2, α-Fe2O3-CeO2,, and α-Fe2O3-CeO2@Au, were
explored using the FTIR spectroscopic analysis, as shown in Figure 2. In general, the
spectra did not substantially differ with the deposition of the Au NPs. The peaks of all
samples at about 1630 cm−1 could be explained by the stretching and bending vibrations
of O–H bonds in the absorbed molecular water. On the contrary, the stretching of O–H
bonds in the hydroxyl groups of the capped ascorbic acid appeared as a broadband at
around 3400 cm−1 [76]. Furthermore, the peaks located at 2800–2900 cm−1 could be cor-
related with the asymmetric and symmetric stretching of CH2 in the methylene chains
of amine, confirming that CTAB is coupled with the photocatalysts’ surfaces [77]. Mean-
while, the bands corresponding to the C–H bending of the methyl group appeared at
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approximately 1380 and 1460 cm−1 [76,78]. In addition, FTIR spectra at 1050–1160 cm−1

are associated with the C–O stretching vibration peaks that might refer to ester groups
of ascorbic acid [79]. The observed peak intensities within the range of 1450–1700 cm−1,
1462 cm−1, and 1000–1250 cm−1 were attributed to the presence of C=O, C–H stretching
vibrations, and C–N stretching due to phenolic acids, terpenoid-phenols, and aliphatic
amines, respectively [80,81].

Water 2024, 16, x FOR PEER REVIEW 6 of 23 
 

 

asymmetric and symmetric stretching of CH2 in the methylene chains of amine, confirm-
ing that CTAB is coupled with the photocatalysts’ surfaces [77]. Meanwhile, the bands 
corresponding to the C–H bending of the methyl group appeared at approximately 1380 
and 1460 cm−1 [76,78]. In addition, FTIR spectra at 1050–1160 cm−1 are associated with the 
C–O stretching vibration peaks that might refer to ester groups of ascorbic acid [79]. The 
observed peak intensities within the range of 1450–1700 cm−1, 1462 cm−1, and 1000–1250 
cm−1 were attributed to the presence of C=O, C–H stretching vibrations, and C–N stretch-
ing due to phenolic acids, terpenoid-phenols, and aliphatic amines, respectively [80,81]. 

 
Figure 2. FTIR spectra of α-Fe2O3, CeO2, α-Fe2O3-CeO2, and α-Fe2O3-CeO2@Au. 

The prominent peaks at approximately 550 and 460 cm−1 were assigned to the bend-
ing and stretching vibrations of the Fe–O bonds [82], whereas the strong absorption bands 
at ~560 cm−1 were attributed to Ce–O. These results were consistent with the XRD, XPS, 
and EDX results, indicating the formation of CeO2 and α-Fe2O3 NPs [78]. However, the 
peaks associated with Au NPs did not emerge in the α-Fe2O3-CeO2@Au spectra. Similar 
observations were reported in a previous study [76]. This occurrence could be due to ei-
ther the prominent bands of the supporting nanoparticles masking the weaker bands of 
the gold nanoparticles or the low concentration of gold nanoparticles in the photocatalysts 
[33]. Furthermore, ascorbic absorption signals at ≈1750–1760, specifically attributed to the 
stretching of the carbonyl group in the γ-lactone ring, did not emerge [83]. Overall, the 
shift in peak intensities towards higher (redshift) wavelengths assured the deposition of 
Au NPs on the synthesized photocatalysts. 

3.2. UV–visible DRS Analysis 
DRS UV-visible absorption spectroscopy was used to investigate the light absorption 

properties of the synthesized materials, as shown in Figure 3. The absorption edge of pure 
CeO2 NPs, as shown in Figure 3a, was around 490 nm in the UV region, proving the tran-
sition of electrons in the formed Ce–O bond [84]. Moreover, a strong absorption peak 
emerged at about 380 nm for CeO2, referring to the charge transfer from O 2P to Ce 4f 
orbitals [85]. On the other hand, the UV-visible spectrum of pure α-Fe2O3 NPs represented 
a strong absorption band in the visible-light region (400–720 nm), which might enhance 
the use of visible light for photocatalysis [86]. The absorption peaks close to 200 nm were 
attributed to the direct transition of the metal oxide NPs [87]. Moreover, the broad peak 
at around 550 nm corresponded to the process of pair excitation in α-Fe2O3 NPs, while the 
one at approximately 650 nm might belong to the d–d transition [88,89]. 

Figure 2. FTIR spectra of α-Fe2O3, CeO2, α-Fe2O3-CeO2, and α-Fe2O3-CeO2@Au.

The prominent peaks at approximately 550 and 460 cm−1 were assigned to the bending
and stretching vibrations of the Fe–O bonds [82], whereas the strong absorption bands
at ~560 cm−1 were attributed to Ce–O. These results were consistent with the XRD, XPS,
and EDX results, indicating the formation of CeO2 and α-Fe2O3 NPs [78]. However, the
peaks associated with Au NPs did not emerge in the α-Fe2O3-CeO2@Au spectra. Similar
observations were reported in a previous study [76]. This occurrence could be due to either
the prominent bands of the supporting nanoparticles masking the weaker bands of the
gold nanoparticles or the low concentration of gold nanoparticles in the photocatalysts [33].
Furthermore, ascorbic absorption signals at ≈1750–1760, specifically attributed to the
stretching of the carbonyl group in the γ-lactone ring, did not emerge [83]. Overall, the
shift in peak intensities towards higher (redshift) wavelengths assured the deposition of
Au NPs on the synthesized photocatalysts.

3.2. UV–Visible DRS Analysis

DRS UV-visible absorption spectroscopy was used to investigate the light absorption
properties of the synthesized materials, as shown in Figure 3. The absorption edge of
pure CeO2 NPs, as shown in Figure 3a, was around 490 nm in the UV region, proving the
transition of electrons in the formed Ce–O bond [84]. Moreover, a strong absorption peak
emerged at about 380 nm for CeO2, referring to the charge transfer from O 2P to Ce 4f
orbitals [85]. On the other hand, the UV-visible spectrum of pure α-Fe2O3 NPs represented
a strong absorption band in the visible-light region (400–720 nm), which might enhance
the use of visible light for photocatalysis [86]. The absorption peaks close to 200 nm were
attributed to the direct transition of the metal oxide NPs [87]. Moreover, the broad peak at
around 550 nm corresponded to the process of pair excitation in α-Fe2O3 NPs, while the
one at approximately 650 nm might belong to the d–d transition [88,89].
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Compared to the individual metal oxide NPs, their NC exhibited a significant ab-
sorption ability under visible light irradiation. The strong absorption of visible light was
linked to the significant amount of interfacial contact between CeO2 and α-Fe2O3 NPs,
forming a successful heterogeneous structure accountable for the UV–vis spectrum shifts
and the bandgap width reduction [76]. Such an increase in the intensity might produce
active electron–hole pairs, enhancing the photocatalytic efficiency [90,91]. In the case of
Au-deposited α-Fe2O3-CeO2, there was a slight gold band at around 520 nm, associated
with the SPR effect; the band was not very prominent, and might overlap with the already
existing broad peak of α-Fe2O3 at 530–570 nm. Furthermore, this could also be attributed
to the comparatively minimal amount of Au NPs compared to the significant quantity of
the support [92]. However, the deposition of Au NPs was confirmed with the results of
XRD, XPS, and EDX [90]. The bandgaps were estimated for all samples from the carved
edges of the Tauc plot by drawing (αhυ) against hυ. It was found that the bandgaps of
α-Fe2O3, CeO2, α-Fe2O3-CeO2, and α-Fe2O3-CeO2@Au were 1.92 eV, 2.80 eV, 1.80 eV, and
1.78 eV, respectively, as represented in Figure 3b–e. Consequently, the NC band gap energy
(Eg) was lower than its corresponding metal-oxide-based NPs’, which was attributed to the
formation of a heterojunction structure between α-Fe2O3 and CeO2, which enhanced the
surface electric charge and facilitated the transmission of photo-excited electrons [93]. Addi-
tionally, the difference in the bandgap of 0.02 eV for α-Fe2O3-CeO2, after the gold deposition
demonstrated the impact of the Au NPs on the photocatalyst’s surface. These findings
further supported the photocatalysts’ catalytic activity in the visible-light region [94].

3.3. XRD Analysis

XRD analysis was used to investigate the crystal structure and purity of the as-
prepared materials. Figure 4 shows the XRD patterns of α-Fe2O3, CeO2, α-Fe2O3-CeO2,
and α-Fe2O3-CeO2@Au nanoparticles. The XRD pattern of CeO2 NPs shows characteristic
peaks, observed at 28.6◦, 33.2◦, 47.6◦, 56.6◦, 59.4◦, 69.8◦, 76.9◦, 79.3◦, and 89.7◦, correspond-
ing to (111), (200), (220), (311), (222), (400), (331), (420), and (422) crystal planes, respectively.
It can be inferred from the diffraction peaks that CeO2 NPs possess a cubic fluorite structure
and a face-centered cubic (FCC) structure and match well with the standard patterns of
CeO2 NPs (JCPDS-34-0394) [95]. The sharp diffraction peaks and the lack of additional
peaks confirmed the high purity and crystallinity of the CeO2 NPs [96]. The hematite phase
(α-Fe2O3) was observed in the XRD pattern of pure Fe2O3 NPs. The NPs were crystalline in
the rhombohedral lattice structure of α-Fe2O3 (JCPDS No. 24-0072), which had diffraction
peaks at 2θ = 24.4◦, 33.4◦, 35.8◦, 41.0◦, 49.6◦, 54.3◦, 57.7◦, 62.6◦, 64.2◦, 72.1◦, 75.6◦, 80.76◦,
83.08◦, 85.08◦, and 89.10◦, indexed as the (012), (104), (110), (113), (024), (116), (018), (214),
(300), (1010), (217), (312), (0210), (134), and (126) planes [97]. The absence of secondary
phases suggests that the produced material is pure and consists solely of the α-Fe2O3 single
phase. The absence of any diffraction peak associated with the FeOOH phase suggests that
the thermal annealing process entirely transformed the FeOOH into the α-Fe2O3 hematite
phase. XRD investigations confirmed that the XRD patterns of α-Fe2O3-CeO2 NC contain
all the rhombohedral lattice structures of α-Fe2O3 and face-centered, cubic-structured CeO2
NPs [98]. However, a slight reflection at around 35◦, corresponding to the (110) plane of
α-Fe2O3, was observed [96]. The majority of CeO2 nanoparticles might be distributed on
the surface of α-Fe2O3, effectively masking α-Fe2O3 and reducing its diffraction peaks
in α-Fe2O3-CeO2 NC, or the small amount of α-Fe2O3 NPs compared to CeO2 in the
nanocomposite [99].

Additionally, after gold deposition on the sample surface, additional peaks emerged
at 38.2◦, 44.4◦, 64.6◦, 77.6◦, and 81.7◦ corresponding to the characteristic face-centered cubic
(FCC) phase of gold (JCPDS no. 04-0784) [100]. The difference in their intensity reflected
the strong supporting influence of gold dispersion on nanocomposite [101].
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The average crystallite sizes (D) of the synthesized NPs and their NC were calculated
based on the Debye Scherrer equation (Equation (2)):

D =
Kλ

β cos θ
(2)

where λ is X-ray wavelength (0.154 nm), K represents the shape factor (0.9), β is the full
width at half maximum of the diffraction band (FWHM), and θ is the Bragg diffraction
angle [102]. The calculated crystallite sizes of CeO2, α-Fe2O3, α-Fe2O3-CeO2, and α-Fe2O3-
CeO2@Au were 9.43 nm, 6.94 nm, 7.92 nm, and 36.42 nm, respectively. The NC modified
with Au NPs obtained larger crystallite sizes than its pure form and components.
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3.4. XPS Analysis

The analysis using X-ray photoelectron spectroscopy (XPS) provides information
about the chemical composition and oxidation state of elements (O, Ce, Fe, and Au) in
α-Fe2O3-CeO2@Au NC. Figure 5 provides high-resolution XPS spectra of Fe 2p, Ce 3d, O
1s, and Au 4f, along with the survey spectra of the NC. The survey spectrum in Figure 5a
exhibits the peaks in binding energy associated with Ce 3d3/2, Ce 3d5/2, Fe 2p3/2, Fe 2p1/2,
O 1s, C 1s, and Au 4f. There are two main peaks in the Fe 2p spectrum, located at 710.4 eV
and 723.8 eV. These peaks correspond to Fe 2p3/2 and Fe 2p1/2, respectively, as well as two
satellite peaks at 718.7 and 732.2 eV, which are attributed to Fe3 (Figure 5b). This confirmed
the presence of the standard Hematite phase in the α-Fe2O3-CeO2@Au NC [103]. The Ce
3d spectrum shows Ce3+ and Ce4+ oxidation states associated with Ce 3d3/2 and Ce 3d5/2,
suggesting the existence of the CeO2 NPs in the NC. The Ce 3d5/2 peaks at 916.3, 897.9,
and 888.4 eV mainly represent the vibration peaks of Ce4+, indicating that the primary
oxidation state of CeO2 is Ce(IV). On the other hand, peaks at 907.1 and 900.4 eV belong to
Ce3+3d3/2, and the ones at 882.0 eV refer to Ce3+3d3/2 (Figure 5c) [104,105].
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Figure 5. XPS spectra of α-Fe2O3-CeO2@Au. (a) Survey spectrum of α-Fe2O3, CeO2, α-Fe2O3-CeO2,
and α-Fe2O3-CeO2@Au. High-resolution XPS spectra of (b) Fe 2p, (c) Ce 3d, (d) O 1s, and (e) Au 4f.

The O 1s spectrum demonstrated two broad peaks, with the lower binding energy peak
(529.6 eV) assigned to the lattice oxygen of the metal oxide phase in CeO2 NPs or Hematite
and the higher binding energy peak (531.7 eV) corresponding to chemisorbed oxygen from
hydroxyl (OH group) formed by oxygen (Figure 5d) [76,104]. The Au 4f XPS spectrum
shows a doublet resulting from the spin-orbital splitting of 4f7/2 and 4f5/2 states, located
at 83.6 eV and 87.2 eV, respectively, which is a typical characteristic of the presence of the
Au NPs’ state (Figure 5e) [100]. Two peaks were visible on the C 1s spectrum (Figure S1):
one at 285 eV and the other at 288.4 eV. The first peak indicated sp2-hybridized carbon
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(C–C), while the second peak indicated O–C=O [104,106]. The XPS results confirmed the
successful incorporation of the Hematite NPs into the CeO2 NPs and the Au NPs, which
aligns with the XRD and EDX results.

3.5. TEM Analysis

The surface morphology and the size of the α-Fe2O3, CeO2, α-Fe2O3-CeO2, and α-
Fe2O3-CeO2@Au NPs were investigated by TEM analysis, as depicted in Figure 6. The
α-Fe2O3 NPs exhibited an irregular spherical and mixed-morphology nanostructure with
an average particle size of approximately 6 nm, with some particles appearing larger
due to agglomeration (Figure 6a). CeO2 NPs displayed a fluorite structure, manifested as
agglomerates of fine nanocrystallites with an average size of approximately 7 nm (Figure 6b).
TEM images of α-Fe2O3-CeO2 nanocomposites (Figure 6c) revealed the formation of large
agglomerations of semi-spherical structures consisting of fine and large nanoparticles
with a diameter of approximately 7 nm. These findings confirmed the formation of a
heterostructure between α-Fe2O3 and CeO2. Furthermore, the deposition of Au NPs on the
nanocomposite surface did not disrupt the α-Fe2O3-CeO2 nanostructure (Figure 6d), which
indicates the successful integration of spherical AuNPs with the heterojunction to produce
α-Fe2O3-CeO2@Au, which might hinder the recombination of e−–h+ pairs and enhance
their photocatalytic efficiency [40].
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3.6. SEM, Mapping, and EDX Analysis

The morphology and microstructure of α-Fe2O3, CeO2, α-Fe2O3-CeO2, and α-Fe2O3-
CeO2@Au were measured using SEM analysis, as represented in Figure 7. In Figure 7a,
Hematite exhibits the aggregation of semi-spherical nanoparticles with a high-crystallinity
nanostructure. Figure 7b displays CeO2 NPs, which appear as an aggregation of semi-
spherical fine nanoparticles. Meanwhile, the α-Fe2O3-CeO2 nanocomposite exhibits the
highest level of particle aggregation and showcases coral-like nanostructures with nu-
merous vacancy defects on its surface. However, the original nanostructures of α-Fe2O3
NPs and CeO2 NPs remained intact in the α-Fe2O3-CeO2 NC, confirming the formation
of a heterostructure between the two components (Figure 7c). Additionally, modifying
α-Fe2O3 with CeO2 NPs and Au NPs resulted in increased raggedness and surface rigidity
(Figure 7d), while reducing particle aggregation. Consequently, the porosity of the surface
increased, which facilitated greater contact between the active reactants. It is worth noting
that this porous structure amplifies the surface area and creates additional pathways for
charge carrier transfer, ultimately improving its photocatalytic activity [107].
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Figure 7. SEM images of (a) α-Fe2O3, (b) CeO2, (c) α-Fe2O3-CeO2, and (d) α-Fe2O3-CeO2@Au.

Elemental mapping was utilized to confirm the steady distribution of elements on
the α-Fe2O3-CeO2@Au nanocomposite. The images (Figure S2b–e) demonstrated the ho-
mogeneous distribution of the primary constituent elements, namely Fe, Ce, and O, and
the Au deposited on its surface. The nanocomposite’s elemental composition was further
investigated using energy-dispersive X-ray (EDX) spectra (Figure S2f). The absence of
impurities and the presence of strong peaks attributed to Fe, Ce, O, and Au in the nanocom-
posite confirmed its successful formation. The spectrum indicated that the nanocomposite
contained a significant amount of Fe, Ce, O, and Au. These findings were in line with the
findings of the XRD and XPS tests. Element mapping indicates the uniform distribution of
Fe, Ce, O, and Au species throughout the nanoparticle.
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3.7. PL Analysis

Efficiently separating e−–h+ pairs is crucial in photocatalytic applications. Therefore,
photoluminescence (PL) spectra were performed to assess the effectiveness of separating
the photogenerated electrons and holes of α-Fe2O3-CeO2 and α-Fe2O3-CeO2@Au NCs.
Figure S3 revealed that the α-Fe2O3-CeO2 exhibited a prominent peak at 430 nm, attributed
to the recombination of rapidly generated photoelectrons and holes. The intensity of the
peak in α-Fe2O3-CeO2@Au was diminished, likely due to the formation of a heterojunction
between α-Fe2O3-CeO2 and Au NPs, which can serve as an efficient electron sink. This
suggests that the recombination of photogenerated electrons and holes was suppressed [90].

3.8. Photocatalytic Activity

Based on the bandgap and PL results, α-Fe2O3-CeO2@Au NC was utilized for the
efficient photodegradation of RB dye under the influence of visible-light irradiation, as
shown in Figure 8. The desired concentrations of the photocatalyst and aqueous dye
solution were stirred in the dark for 30 min at a neutral pH before being exposed to visible-
light irradiation to achieve adsorption–desorption equilibrium. Under dark conditions,
no significant degradation of RB was observed, with a high absorption peak at 546 nm.
However, the spectrum decreased gradually in the presence of visible light. Figure 8 (Insert)
displayed that the degradation rate gradually increased with increasing irradiation time,
reaching 88.9% within 120 min. The increase in the photodegradation rate with a longer
exposure time is caused by the heterojunction formed between α-Fe2O3 and CeO2. This
junction promotes the transfer of charge between the semiconductors. The SPR effect of
Au NPS improves the absorption of visible light by the heterojunction, resulting in the
generation of more photoelectron–hole pairs. Additionally, the Au NPs can trap electrons
and enhance the separation of electron–hole pairs, leading to the generation of more
hydroxyl radicals. These radicals are responsible for degrading the dye [40,108].
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Figure 8. Time-dependent UV–Vis absorption spectra of the photocatalytic degradation of RB dye
under visible-light irradiation (insert: % degradation plot). α-Fe2O3-CeO2@Au nanocomposite
(50 mg L−1), RB dye (20 ppm), pH 7, and temperature 30 ◦C.
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Furthermore, Table S1 compares the present photocatalytic activity of α-Fe2O3-CeO2@Au
NC with recent studies using Fe2O3-based nanoparticles under light irradiation [109–118].

3.9. Effect of Various Photocatalyst Concentrations

Optimizing the concentration of the α-Fe2O3-CeO2@Au photocatalyst for the degrada-
tion of RB at a fixed pH, time, and temperature was the objective of a set of experiments that
were carried out. The experiments involved different concentrations of the photocatalyst
(20, 30, 40, 50 mg/L), as shown in Figure 9a. The results showed that as the concentration
increased from 20 to 50 mg/L, the constant rate rose dramatically, from 0.00895 min−1 to
0.01789 min−1. The highest degradation rate was achieved at a 50 mg/L catalyst concentra-
tion. With the increase in catalytic concentration, the availability of active sites increased,
resulting in the rapid adsorption of dye molecules as compared to comparatively minor
concentrations, thus reducing turbidity to opacity and enhancing the scattering of light radi-
ation in the mixture solution. As a result, the passage of irradiation was enhanced, causing
higher numeric values of photodegradation at 50 mg/L. This fact can also be attributed to
the increased density of active sites and absorbed photons generating free hydroxy radicals
(•OH) on the photocatalyst surface at a comparatively higher catalyst concentration, which
led to the high photocatalytic degradation rate [119]. Therefore, 50 mg/L was selected
as the optimum α-Fe2O3-CeO2@Au concentration for further experiments for recovery
cycle runs.
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Figure 9. Kinetic curves analyzed by the pseudo-first-order kinetic model for the degradation of RB
dye under visible-light irradiation for 120 min at a pH of 7 and 30 ◦C (a) using different concentrations
of α-Fe2O3-CeO2@Au (20 mg L−1–50 mg L−1) with a fixed amount of RB (20 ppm); (b) using different
concentrations of RB dye (20 ppm–50 ppm) with a fixed amount of α-Fe2O3-CeO2@Au (50 mg L−1);
(c) reusability of α-Fe2O3-CeO2@Au for the photocatalytic degradation of RB dye removal under
visible light for 120 min at a pH of 7 and 30 ◦C, and (d) scavenger effect on photocatalytic degradation
using α-Fe2O3-CeO2@Au (50 mg L−1) for RB dye (20 ppm) removal under visible light for 120 min at
a pH of 7 and 30 ◦C.
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3.10. Effect of Various Dye Initial Concentrations

The influence of the initial concentration of RB on its photodegradation was examined
using the α-Fe2O3-CeO2@Au NC. The degradation rate was measured at a fixed amount
of photocatalyst (50 mg/L), a neutral pH, and a temperature of 30 ◦C for 120 min. As the
concentration of RB initially increased from 20 ppm to 50 ppm, the rate constant of the RB
degradation declined from 0.01789 min−1 to 0.00851 min−1 (Figure 9b).

During the photodegradation process, increasing the initial concentrations of RB
molecules promoted the interaction between active sites of α-Fe2O3-CeO2@Au NC and
RB molecules onto the surface, leading to enhanced turbidity and opacity. At elevated
initial concentrations of RB molecules, the creation of electron–hole pairs decreased when
exposed to light radiation with a constant catalytic concentration. Consequently, photo-
degradation efficiency is reduced. Overall, the photodegradation process involves the
generation of reactive oxidation species (ROS) of •OH, h+, •O−

2 and e−. Hence, a decline
in ROS with increased RB concentrations at a fixed concentration of α-Fe2O3-CeO2@Au
NC was observed in this study. Additionally, the catalysts’ surface quickly became satu-
rated by dye molecules, leading to a shortage of active sites on which hydroxyl ions could
adsorb. This results in a lower •OH concentration, which, in turn, reduces the photodegra-
dation efficiency, as the •OH’s contribution to the photo-degradation of dye molecules
is significant [119]. Thus, we concluded that the comparatively lower concentration of
RB, i.e., 20 ppm, is an optimum concentration for photodegradation in the presence of
the α-Fe2O3-CeO2@Au NC and light radiation. Table S2 presents the values of k (pseudo-
first-order reaction rate constants) and half-lives for the photocatalytic degradation of RB
using the α-Fe2O3-CeO2@Au photocatalyst under different catalyst concentrations and
initial concentrations.

3.11. Reusability Study

The collection and reusability of photocatalysts are crucial, and one highly effective
approach to achieve this involves the utilization of magnetic materials [51]. In this study, α-
Fe2O3 and CeO2 were combined to form the α-Fe2O3-CeO2@Au heterojunction, as hematite
is the most suitable magnetic material due to its high magnetic properties, saturation
magnetization, and coercivity [90]. The α-Fe2O3-CeO2@Au NC showed excellent magnetic
recyclability, as it could be rapidly isolated from the solution through the application of
an external magnetic field. The photocatalyst stability was evaluated through 1–4 cycle
experiments under visible-light irradiation (Figure 9c). After four cycles, the degradation
of RB was observed to drop from 89% to 64% with less than a 25% decrease in its initial
activity. After conducting four photocatalytic tests, the photodegradability of the catalyst
decreased in comparison to the original photocatalyst owing to the degradation of the
photocatalyst over time, which can cause a decrease in the efficiency the generation of
reactive species. Additionally, the adsorption of the RB dye or other contaminants on the
surface during the recycling process hindered the active sites of the photocatalyst’s surface
and reduced its photocatalytic activity [120]. This investigation indicates that the present
photocatalyst can lead to the efficient photocatalytic degradation of RB dye due to its high
photostability and confirms its reasonable catalytic reusability. To enhance the stability
and reusability of the photocatalyst, it may be necessary to optimize or modify it without
compromising its performance.

3.12. Effect of Radical Scavengers

To better understand the RB photocatalytic degradation process usingα-Fe2O3-CeO2@Au
NC, a series of experiments were performed to deactivate potential reactive species by
employing different scavengers for the purpose of radical scavenging (Figure 9d).

The experiments were performed under optimal conditions, which included an initial
dye concentration of 20 ppm, a catalyst dose of 50 mg/L, a neutral pH, and an irradiation
time of 120 min at 30 ◦C. To scavenge h+, •OH, and •O−

2 , three chemical scavengers, namely
ethylenediaminetetraacetic acid (EDTA; 0.5 mM), tert-butyl alcohol (TBA; 0.5 mM), and
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benzoquinone (BQ; 0.5 mM), were used. There was also a control group without free
radical scavengers. The results showed that EDTA, TBA, and BQ inhibited the reaction
rate by approximately 40%, 46%, and 14%, respectively. The degradation effectiveness
of RB exhibited a notable decrease upon the addition of TBA and EDTA. These findings
indicated that •OH and h+ were the main reactive species contributing to the reaction
process. This could be attributed to the hetero-junction formed between α-Fe2O3 and CeO2,
and the presence of deposited gold nanoparticles, which enhanced the charge transfer
and, hence, electron–hole pair separation. On the other hand, the addition of BQ led
to only a minor reduction in degradation efficiency, indicating that •O−

2 did not play a
significant role in the photocatalytic degradation despite its known involvement in the
chain of heterogeneous/homogenous photocatalytic reactions [121]. This could be due
to the consumption of superoxide radicals by other compounds present in the system,
thereby reducing their overall impact on the degradation process [122]. Overall, the results
suggested that •OH and h+ were the primary reactive species involved in RB degradation,
while •O−

2 had a low impact on the reaction process.

3.13. The Mechanism for Photodegrading RB Dye Using α-Fe2O3-CeO2@Au NC

The photocatalytic technique has several distinguishing characteristics, such as specific
bandgaps, as well as a specific surface area, morphology, reusability, and stability. In
this study, a proposed photodegradation mechanism for RB dye by α-Fe2O3-CeO2@Au
heterojunction was presented based on the experimental results, as illustrated schematically
in Figure 10. Upon exposure to visible light, photogenerated electrons in the valence bands
(VB) of both CeO2 and α-Fe2O3 were excited to their conduction bands (CB), leading to the
generation of photogenerated holes in the valence bands. The CB of α-Fe2O3 (0.41 eV) is
less negative than that of CeO2 (−0.34). Therefore, the photogenerated electrons moved
from CeO2 to α-Fe2O3. Similarly, the VB of α-Fe2O3 is less positive (2.33 eV) than that
of CeO2 (2.46 eV). Hence, the photogenerated holes in CeO2 also moved to α-Fe2O3.
The creation of the Schottky barrier at the nanocomposite interface facilitated the charge
transfer between the semiconductors [123]. In addition, under light irradiation, the surface
plasmonic resonance (SPR) effect enhanced the efficiency of light absorption and resulted in
the generation of additional photogenerated electron–hole pairs in the α-Fe2O3-CeO2@Au
nanocomposite [57,124]. However, the electrons accumulated on the CB of α-Fe2O3 cannot
convert dissolved oxygen into •O−

2 because the CB potential of α-Fe2O3 (0.41 eV) is less
negative than the electrode potential of O2/•O−

2 (−0.33 eV vs. NHE). The SPR effect
of Au NPs improved their ability to capture electrons, which assisted in separating the
photogenerated electron–hole pairs and reduced the probability of recombination. Hence,
the accumulated electrons on the CB of α-Fe2O3 can be easily trapped by Au NPs and
then captured by the adsorbed O2 to generate •O−

2 . This superoxide anion undergoes an
additional reaction with water, leading to the generation of the highly reactive oxidizing
agent, hydroxyl radical [122], which is consistent with the scavenger’s findings. These
transfers occurred much faster than the recombination of photogenerated electrons and
holes in α-Fe2O3 [125]. The holes on VB of α-Fe2O3 reacted with OH− to produce •OH,
since the VB of α-Fe2O3 is more positive than the electrode potential of •OH/H2O (1.99 eV
vs. NHE) [126]. The reactive oxidation species, including •O−

2 , •OH, and h+, interacted with
the RB molecules, contributing to their degradation [127]. In summary, the degradation
process could be described by the following reaction:

α-Fe2O3 + hv → e− (α-Fe2O3) + h+ (α-Fe2O3) (3)

CeO2 + hv → e− (CeO2) + h+ (CeO2) (4)

e− (CeO2) CB → e− (α-Fe2O3) (5)

h+ (CeO2) VB → h+ (α-Fe2O3) (6)

e− (α-Fe2O3) → e− (Au◦) (7)
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e− (Au◦) + O2 → •O−
2 (8)

H2O2 +
•O−

2 → •OH (9)

h+ + (α-Fe2O3) + OH− → •OH (10)

RB dye + h+ + •O−
2 + •OH → H2O + CO2 (11)
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The band position of the as-synthesized samples was determined using empirical
Equations (12) and (13).

ECB = χ − Ee − 0.5Eg (12)

EVB = ECB + Eg (13)

where χ is the electronegativity of the material and the χ values of CeO2 and α-Fe2O3
were estimated previously to be 5.56 [128–130]; Ee is the energy of the free electrons on
the hydrogen scale (4.5 eV); Eg represents the band gap of the material; ECB stands for the
conduction band potential; and EVB denotes the valence band potential. The values of χ,
Eg, ECB, and EVB for the synthesized samples are provided in Table S3.

4. Conclusions

A novel nanocomposite (NC) α-Fe2O3-CeO2@Au was developed to efficiently elimi-
nate Rose Bengal (RB) dye from wastewater using a photocatalytic technique under visible
light. The NC was synthesized with stabilizing or capping agents, and the surface was
coated with gold nanoparticles. The as-synthesized samples underwent characterizations
of their structural, morphological, and optical properties. The study evaluated the effec-
tiveness of α-Fe2O3-CeO2@Au photocatalyst concentrations, initial dye concentration, and
radical scavengers on the photocatalytic degradation of RB. The nanocomposite α-Fe2O3-
CeO2@Au (50 mg L−1) achieved 88.9% for the removal of RB dye (20 ppm) in 120 min
under visible-light irradiation at a pH of 7 and 30 ◦C. The results of the radical scavenging
experiments suggested that holes (h+) and hydroxyl radicals (•OH) were the main reactive
species involved in the Rose Bengal degradation. The study highlights the potential of
the nanocomposite for treating wastewater, especially for removing organic dyes. This
composite can be easily separated using a magnetic field, offering an efficient method for
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catalyst recovery and suggesting low operating expenses. However, the effectiveness of the
composite decreases with repeated use, which raises sustainability concerns. To ensure the
long-term sustainability of the photocatalytic treatment process, it is crucial to address the
issues of catalyst stability and reusability.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w16101334/s1, Figure S1: High-resolution XPS spectra of C 1s for
α-Fe2O3-CeO2@Au nanocomposite; Figure S2: (a) SEM image, Elemental mapping for (b) O atoms,
(c) Fe atoms, (d), Ce atoms, and (e) Au atoms; and (f) Energy-dispersive X-ray (EDX) spectra
analyses of α-Fe2O3-CeO2@Au nanocomposite; Figure S3: PL (photoluminescence) spectra of α-
Fe2O3-CeO2 and α-Fe2O3-CeO2@Au NCs; Table S1: Literature survey of Fe2O3-based heterojunction
in photodegradation of toxic dyes; Table S2. Pseudo-first-order reaction rate constants (k) and half-
lives for the photocatalytic degradation of RB by α-Fe2O3-CeO2@Au photocatalyst at various catalyst
concentrations and initial concentrations under visible light for 120 min at pH of 7 and 30 ◦C; Table S3:
Estimated band gap (Eg), conduction band (ECB), and valence band (EVB) of as-synthesized samples.
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