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Abstract: The identification of priority restoration areas (PRAs) for ecosystems is a critical step in
establishing restoration programs. Because the majority of existing studies focused on improving the
ecosystem supply, the PRAs selected are likely to be remote from human demand, and the restoration
benefits will not flow to humans. To fill this gap, we constructed an improved framework integrating
the ecological restoration projects’ cost and benefits as indicators for choosing PRAs. Then, we
identified PRAs for each ecosystem service (ES) with Marxan, and ranked the restoration priority
grades according to the superimposed value of PRAs for each ES. Finally, we adjusted the restoration
priority grades based on human demand and the concentration of those areas, and chose PRAs with a
high ES supply and demand. This framework was applied to the Dongting Lake Eco-Economic Zone,
one of China’s most significant ecological restoration project sites. The results indicated that the areas
with “high”-, “sub-high”-, and “low”-grade PRAs, based only on the increase in the ES supply, were
equal to 82, 410, and 1696 km2, respectively. After considering human demand, the PRAs moved
continuously towards places with a high human demand; high-priority areas grew to reach 144 km2,
while low-priority areas decreased to 1498 km2. The upgrade of the proposed framework for the
identification of PRAs can contribute to increasing human well-being, while also serving as a support
tool for environmental restoration management.

Keywords: priority restoration areas; restoration priority grade; human demand; ES importance;
Dongting Lake Eco-Economic Zone

1. Introduction

Ecological issues such as biodiversity loss and land degradation have recently emerged
under the double pressure of global climate change and human activities, seriously threat-
ening human well-being and sustainable development [1–3]. China is one of the countries
that have been suffering from serious ecological degradation. In order to ensure the sustain-
able supply of ecosystem services (ESs), the restoration of ecologically degraded areas has
become an important objective of ecosystem management [4–6]. Nevertheless, inadequate
financing constrains the large-scale implementation of ecological restoration [7,8]. For the
sake of improving the efficiency of restoration and achieving the related goals as soon as
possible, it is particularly important to scientifically delineate priority restoration areas
(PRAs) [9,10].

Potential restoration areas (PoRAs) need to be identified before prioritizing restoration
areas. To this purpose, current research mainly applied the criteria of site suitability [11,12],
ecosystem pattern [13,14], and quality [15–17]. Suitability-based studies typically apply
land-use rationalization methods, such as converting space that is unsuitable for cropland
to other land-use types (e.g., forests or grassland) [18]. Ecosystem-pattern-based studies
prioritize the preservation of an ecosystem’s natural pattern, such as the restoration of
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forest that has been converted to grassland [19]. Finally, quality-based studies, which
are the most commonly performed, include both narrow and broad spatial scales. At
narrow scales, integrated indicators (e.g., tree attributes, plant species diversity, and forest
biological productivity) are typically used, including detailed information on the forest
ecosystem structure [20], biodiversity composition [21], and function [22,23]. At broad
spatial scales, ecological restoration aggregation indicators are frequently gathered through
field surveys or long-term monitoring [24,25]; as such, it is difficult to adopt them, due to the
time-consuming data-collection process. Therefore, some scientists developed complicated
ecological models to estimate the native forest community biomass at the pixel scale as a
quality-assessment standard for broad spatial scales [26,27]. Although these approaches
improve the accuracy of the ecosystem quality assessment, they need a vast volume of data.

The primary aim of ecological restoration is to enhance the ES supply [22]. Therefore,
several researchers, from the perspective of the ES supply, identified areas with a low ES
supply but are critical for the development of ecological security patterns as PRAs [22,28,29].
Although this approach improves the structural integrity of the ecosystem and ensures
ecological benefits, it fails to account for human demand. In fact, the mismatch between
the ESs’ supply and demand usually occurs when ESs are provided in places where there is
no human demand, or when ESs are not insufficient for human demand [30]. Therefore, a
focus solely on the ESs’ supply without considering human demand may not provide direct
restoration benefits to human society, which will result in a loss of ESs. [31]. Furthermore, as
ESs are a vital source of livelihoods for those in impoverished areas, ecological restoration
neglecting human demand will destroy human well-being [32,33]. Hence, works of research
integrating ESs and human demand into ecological restoration have gained much attention,
such as establishing key protection areas in regions with a low ES supply and high human
demand [34], considering the ESs’ supply–demand balance to optimize the ecosystem
configuration [35], integrating the ESs’ supply–demand with the relevance of ecosystem
protection and restoration to support regional sustainable management [36], etc. These
studies have enriched the practice of ecological restoration by applying the exploration of
the relationship between ESs and human demand to ecological restoration and protection.
However, the cost-effectiveness of restoration has not been emphasized in these works
of research. As restoration projects have spread over an increasing number of regions
and countries, a planning solution that balances the restoration costs and benefits must
be urgently developed. In order to solve these problems, several optimization strategies
have been proposed and are rapidly becoming a hot topic of current research; these include
the use of linear-programming techniques to optimize the biodiversity or ES in protection
areas [37], and the use of heuristic algorithms to identify unknown optimal conservation
solutions for protected areas, which, however, faces the problem where large data volumes
are required [38]. Marxan, as a system-protection-planning model, can minimize comput-
ing effort by applying it to the identification of PRAs, employing a simulated annealing
approach to obtain the ideal solution after numerous iterations based on the weighting of
multiple indicators [39,40].

To address these issues, we developed an optimized framework to prioritize ecological
restoration areas. According to this framework, PoRAs were defined as the area where
the ESs’ potential supply declines above the mean value. Moreover, Marxan was used to
define low-cost, high-supply areas as PRAs for individual ESs. PRAs were then classified
based on the overlap of those for the individual ESs, and revised based on human demand
and aggregation. This framework was applied to the case-study area of the Dongting Lake
Eco-Economic Zone, which is one of China’s major ecological restoration project sites and
an important ecological barrier in Hunan Province. The objectives of this study were to
develop an optimized ES-based framework to identify PRAs, and include the intensity of
human demand for ESs as an indicator to determine the grade of the PRAs, in order to
provide a theoretical basis for ecosystem restoration practices.
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2. Materials and Methods
2.1. The Study Area

The Dongting Lake Eco-Economic Zone (27◦58′–31◦37′ N, 110◦21′–114◦09′ E) includes
4 cities and 1 district. It is located in the north of Hunan Province, and has a total area of
61,000 km2 [41] (Figure 1). This area is characterized by a subtropical monsoon climate,
abundant annual precipitations, and a well-developed water system; as such, it is a funda-
mental water storage ecological zone in the middle and lower reaches of the Yangtze River,
as well as an important grain- and cotton-producing area [42]. The diverse topography
and favorable climate have resulted in an abundance of biological resources, concentrated
at the node where the conjugate and divergent Yangtze River systems coexist, thereby
entailing a high ecosystem sensitivity and vulnerability. In recent years, climate change
and intense human activities have damaged the Zone’s ecosystem, resulting in a series of
ecological issues such as environmental pollution, biodiversity reduction, and the shrinking
of lakes [43].

Figure 1. Map and location of the study area.

2.2. Datasets

The data used in this study were obtained from the sources given below, and the
access dates for all data are 15 April 2021.

• The land-use maps for 2000, 2005, 2010, 2015, and 2020 (30 m resolution) were obtained
from the Resource Environment and Science Data Center of the Chinese Academy of
Sciences (https://www.resdc.cn/, accessed on 13 March 2023). Based on the character-
istics of the ecosystem composition of the study area, land-use types were reclassified
into six categories: cropland, forest, grassland, water bodies, artificial land, and
unused land.

• Average annual rainfall, evaporation, and temperature data were downloaded from
the China Meteorological Data Service Center (http://data.cma.cn/, accessed on
13 March 2023).

• The net output productivity (NPP, 100 m resolution) data were retrieved from the
website of National Aeronautics and Space Administration (NASA) (https://www.
nasa.gov/, accessed on 13 March 2023).

• The Digital Elevation Model (DEM, 90 m resolution) was taken from the Geo-spatial
Data Cloud (https://www.gscloud.cn/, accessed on 13 March 2023).

https://www.resdc.cn/
http://data.cma.cn/
https://www.nasa.gov/
https://www.nasa.gov/
https://www.gscloud.cn/
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• Soil classification and data on associated soil attributes were obtained from the
1:1 million digital soil map of China and the Second National Soil Survey of China
(http://www.ncdc.ac.cn/portal/, accessed on 13 March 2023).

• Socioeconomic, population density (1000 m resolution), and road, river, and settlement
data were obtained from the Resource and Environment Science and Data Center
(https://www.resdc.cn/, accessed on 13 March 2023).

All raster data were modified to a spatial resolution of 100 m using the ArcGIS
resampling tool.

2.3. Methods

We selected the year 2000 as the starting point for our study, considering the significant
milestone achieved by China’s economic growth and rapid urbanization, as well as the
implementation of ecological policies during that time. In addition, we employed a research
timeframe of 20 years, spanning from 2000 to 2020. Figure 2 illustrates the methodological
framework employed in this study for the identification of PRAs and ranking of restoration
priority grades, which is comprehensively articulated into six steps. The initial step entailed
leveraging pre-compiled foundational data to calculate the potential supply and demand
of ESs. Afterwards, PoRAs were determined based on the dynamic changes of ES potential
supply from 2000 to 2020. Subsequently, it was essential to collate the requisite data for
Marxan to establish the foundation for the identification of PRAs of individual ES. A critical
component of this step was the development of a comprehensive restoration cost index.
In addition, Marxan was used to facilitate the identification of the PRAs for each ES that
incorporated both restoration costs and benefits among the PoRAs. In the fourth step,
the restoration priority grade, considering only ESs’ importance, was ranked based on
the spatial overlap analysis of the three PRAs maps. The basic settings were as follows:
planning units with PRAs for all three ESs were assigned the highest restoration priority
grade, while those with PRAs for any two ESs were assigned a sub-high priority grade,
and those with PRAs for any single ES conferred the lowest priority grade. The fifth step
was to revise the restoration priority grades using human demand. Finally, the areas with
an aggregation degree of less than 100 km2 were eliminated from the PRAs.

2.3.1. Accounting for Potential Supply of ES

Comprehensively considering the Chinese government’s carbon management goals
and the distinct function of the study area within the ‘National Ecological Function Zoning’,
as well as the special environment demand of the research area’s industrial characteristics,
we ultimately chose three representative ESs in demand, namely, carbon sequestration (CS),
habitat support (HS), and water harvesting (WH), for the purpose of research.

(1) Carbon sequestration (CS)

CS is the process through which atmospheric CO2 is fixed in plants and soil [44]. The
amount of CS was calculated using the CS module in the InVEST model [45], as follows:

Qc=∑n
i=1 Qi×Si×FNEP

×10−9 (1)

where Qc indicates the total CS of the ecosystem (t·yr−1); Qi indicates the amount of carbon
sequestration of land-use type i (Mg·yr−1), including the organic carbon density of above-
ground, below-ground, soil, and dead organic matter, respectively (Mg·hm−2·yr−1); Si
indicates that area of land-use type i (hm2); and FNEP represents the spatial correction factor
of net ecosystem productivity (NEP), which was obtained using the affiliated fuzzy method
based on the mean value for the study area. NEP was obtained by NPP conversion.

http://www.ncdc.ac.cn/portal/
https://www.resdc.cn/
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Figure 2. A research framework for the identification of priority restoration areas.

(2) Habitat support (HS)

Habitats are the natural environment that offers living space for a certain species or
population within a specific region; as such, they are frequently used as an indication of
biodiversity [46]. The Habitat Quality module of the InVEST model was utilized to quantify
HS [47], as follows:

SQij = Hi × [1− Dz
ij/(Dz

ij + Kz)] (2)

where SQij is the habitat quality index in cell i of land-use type j; Dij is the habitat degrada-
tion index in cell i of land-use type j; z and k are constants; and Hj is the habitat suitability
of landscape j. All parameters are dimensionless.

(3) Water harvesting (WH)

Following the water balance equation [48], WH was calculated as follows:

Qw =
j

∑
i=1

(Pi − Ri − ETi)× Ai × 10−3 (3)

where QW is the amount of WH (m3·yr−1); Pi represents precipitation (mm); Ri denotes
rapid runoff (mm); ETi indicates evapotranspiration; and Ai represents the area of ecosys-
tem i (m2).

2.3.2. Accounting for the Importance of ES Demand

Relative inequalities in socioeconomic development and natural resource availability
within a certain zone result in disparities in ES demand. The concept of ‘point of interest’
(POI) refers to the spatial distribution of geographic entities in a city that are closely
linked to human activities, including food and beverage services, medical education, and
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residential and recreational places, reflecting the density of population and socioeconomic
activities. In general, the spatial distance between an ecological site and a POI impacts the
level of demand for the ecological site. The POI data were treated in ArcGIS 10.2 using
the kernel density analysis tool, with a search radius of 30 km. The generated POI kernel
density raster map was divided into three classes—high, medium, and low—utilizing
geometric intervals to ensure that the ecological demand is positively correlated with the
kernel density classes, as follows:

f (x) =
n

∑
i=1

1
D2 × k× (

x− ci
D

) (4)

where f (x) is the image element x’s kernel density calculation function; k is the spatial
weight function; D is the distance decay queue; and ci is the raster x distance in the search
decay range of all POIs. All parameters are dimensionless.

2.3.3. Identifying PoRAs

The potential supply of CS, HS, and WH was standardized using Equation (5). By com-
paring the potential supply in 2000 with the current situation, the areas where the supply
decreased more than the average value were defined as PoRAs for each ES, as follows:

ESx =
ESst − ESmin

ESmax − ESmin
(5)

where ESx denotes the standardized value of ESs’ potential supply; ESst represents the
current value of ESs’ potential supply; and ESmin and ESmax indicate the minimum and
maximum values of ESs’ potential supply.

2.3.4. Marxan

Marxan, a systematic-protection-planning tool, uses simulated annealing methods to
provide the most effective protection within specific protection cost restrictions [40]. The
basic functions of the model operations are as follows:

Sc = cost + boundary + penalty (6)

where Sc is the total cost of protection; cost represents the combined cost of the selected
planning unit; boundary indicates the sum of the boundary lengths of the selected planning
units, whose value represents the strength of connectivity between planning units; and
penalty indicates the penalty assigned to the planning system for not effectively representing
conservation features. It relies on the idea that if the conservation target is not achieved,
then the penalty should be an approximation of the cost of raising the conservation feature
up to its target representation level.

Before running the model, the study area was first divided into a certain number
of planning units. The commonly used planning units were divided into 3 types: grid
cells, hexagonal, and catchment cells. Each planning unit contained a specific area of the
protected object and had a specific cost of protection. Then, four initial states were assigned
to the planning units based on their attributes (Table 1).

2.3.5. Identifying PRAs with Marxan

(1) Setting the research unit and the restoration target

The study area was divided into 61,741 cells of 1000 × 1000 m as the fundamental
restoration cells using the “Create Fishing Grid” tool of ArcGIS 10.2. Following the Aichi
Biodiversity Convention, which set the target of restoration of 15% of a damaged habitat to
significantly improve biodiversity [49], the restoration target was chosen as equal to 15% of
the PoRAs.
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Table 1. Description of the initial states for planning units.

Initial States Description

0

The planning units can be excluded or included in the final plan, depending on
the proportion of an initial reserve system (Marxan selects a certain number of
planning units as the initial protection system at the beginning of the operation
and performs iterations based on the initial protection system). Normally, the
initial state of remaining planning units other than those with the initial state of
1, 2, and 3 can be set to 0.

1 The planning units belong to the potential protection system, and their inclusion
in the final plan depends on the weight of the protection target.

2 The planning units are locked and will definitely appear in the final plan.

3 The planning units will definitely not appear in the final plan.

(2) Constructing the comprehensive restoration cost index

As stated in the “Announcement on the Implementation Plan for the Comprehensive
Management Plan of Dongting Lake Water Environment in Hunan Province (2018–2025)”,
the cost of the Dongting Lake water ecological restoration project was 5.4 million yuan/hm2.
In parallel, in accordance with the “Implementation Standards for Restoration of Vegetation
and Forestry Production Conditions in Hunan Province (trial version)”, the investments
necessary to restore forest and grassland vegetation were 2 and 3 million yuan/hm2, re-
spectively. Hunan Province is mainly characterized by paddy fields as the main type of
cultivated land; according to the available data, the approximate cost for the restoration
of paddy fields is 1.5 million yuan/hm2. As the cost of ecological restoration is influ-
enced by the ecological quality of the restored area, as well as by the difficulty of the
restoration project, the cost data were spatially adjusted using the slope, the distance-to-
road/settlement/river, and the GDP/population density [50], as follows. Initially, these
indicators were reassigned based on the ecological meaning of the aforementioned indica-
tors (Table 2); subsequently, the reassigned indicator values were utilized to modify the
ecological restoration project costs of each ecosystem. However, in some parcels of land
the costs and benefits of restoration were not comparable; therefore, focusing solely on
low prices could result in poor benefits for the PRAs. To address this issue, we quantified
restoration benefits as the largest difference on a long-term pixel scale, and integrated the
cost of ecological restoration project with the reassigned restoration benefits to calculate
the ecological restoration cost. To avoid the magnitude effect, we equalized the ecological
restoration project costs and restoration benefits. The formulae employed are as follows:

Ci = Pi ×
n

∑
j=1

Lj (7)

ηi = Ci + Bi (8)

where Ci indicates the amended cost of the ecological restoration project for planning unit
i; Pi represents the cost of the ecological restoration project for planning unit i, which is
determined by the land-use type of planning unit i; Li indicates the revised indicators after
reassignment; n is the number of restoration cost indicators; Bi indicates the restoration
benefits; and i is the comprehensive cost index. To avoid a negative “cost” parameter in
Marxan, we reassigned the restoration benefits in order of magnitude, and the ecologi-
cal restoration cost is obtained by adding the restoration project cost to the reassigned
restoration benefits.



Land 2023, 12, 965 8 of 20

Table 2. Revised indicators for C (L) and restoration benefits (B).

Evaluation Index Reassignment Method Grading/Distance Cost Index

L

GDP density, population density, slop Natural breakpoint method 5 Value assigned from 5
(highest) to 1 (lowest)

Distance to river Multi-ring buffer

500 m 1
500–1000 m 2
1000–1500 m 3
1500–2000 m 4
≥2000 m 5

Distance to road, settlement Multi-ring buffer

500 m 5
500–1000 m 4
1000–1500 m 3
1500–2000 m 2
≥2000 m 1

B ESV2000–2020 Natural breakpoint method 5 Value assigned from 1
(highest) to 5 (lowest)

(3) Setting the initial state of the research unit

According to the description of different initial states for planning units in Table 1,
we set the initial state of research units as follows: (i) As the surface of artificial land is
irreversible, we assigned the initial status for the planning units with the artificial land as
equal to 3, to ensure that those units would definitely not appear in the final plan. (ii) We
established a 15% restoration target in this research, which indicates that a portion of the
PoRAs will be identified as PRAs. Consequently, the initial state of the planning units for
PoRAs was set to 1. (iii) The other remaining units were set to 0.

2.3.6. Classification of the Priority Grade, Only Considering Ecological Importance

We overlapped the spatial distribution maps of PRAs for CS, HS, and WH to obtain
the ecological restoration priority grade. By default, Marxan assigned value of 1 to the
PRAs, and a value of 0 to other planning units. Then, we used the Raster calculator tool of
ArcGIS 10.2 to integrate the spatial distribution maps of the PRAs for three ESs. According
to the results, the planning units with a value of 3 had the highest restoration priority grade,
followed by the planning units with a value of 2, while those with a value of 1 had the
lowest restoration priority grade.

2.3.7. Modifying the Restoration Priority Grades, Considering Human Demand and
Aggregation Degree

Based on the importance of ES, both PRAs and the importance of ecological demand
were assigned a value from 3 to 1 from highest to lowest. According to the algebraic
summation, the ecological restoration priority grade was modified using the importance of
ecological demand (Table 3).

Table 3. Revision of priority restoration grades with human demand.

Priority Grade for Ecological Restoration
Only Considering Ecological Importance

Human Demand

High Sub-High Low

3 2 1

High 3 6 5 4
Sub-High 2 5 4 3

Low 1 4 3 2

Long-term ecological restoration activities have demonstrated the need for concen-
trated and large-scale treatment to produce comprehensive benefits. Based on the character-
istics of the study area, we eliminated from the PRAs those image cells with an aggregated
area of less than 100 km2. Then, with the support of the Grid module in ArcGIS 10.2, the
“docell” command was used to conditionally select the PRA layers corrected for demand
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importance with the aggregation layer, resulting in PRAs combining aggregation, demand
importance, and ecological importance.

3. Results
3.1. Potential Supply of ES

The ecological function spatial pattern reflects ES spatial heterogeneity. In both
2000 and 2020, the spatial distribution of CS increased from the center to the periph-
ery (Figure 3(a1,a2)). This is mainly attributed to the fact that the level of CS is primarily
dependent on the land-use types. The area with a high CS value was located in the north-
western portion of the study area, characterized by forest with a high carbon density and
CS capability. The central area, which includes cropland and water bodies, had a low
value of CS. The spatial distribution of HS followed those sites characterized by a perfect
ecological background and the absence of strong human disturbance. Accordingly, HS
was higher in the eastern and western parts of the study area and Dongting Lake, where
several national nature reserves are located, guaranteeing high levels of biodiversity. In
contrast, those areas with low HS were mainly located in the cropland-dominated central
area and other artificial land area (Figure 3(b1,b2)). Finally, WH depends on the water
storage capacity of vegetation. WH was higher in the eastern and southwestern parts
of the study area, characterized by high annual precipitation (Figure 3(c1,c2)), abundant
vegetation, and strong water storage capacity. Areas with low WH were mainly found in
the central part of the study area, characterized by low precipitation, mono-vegetation, and
rapid evaporation.
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In terms of the evolution of the spatial pattern from 2000 to 2020, CS recorded a small
increase, with the area of the increasing and unaltered parts being 27.3% and 58.1% of the
study area, respectively, while the part where CS decreased covered 14.6% of the study
area, primarily located in County 16 and County 18 (Figure 3(c1)). In parallel, HS showed a
significant decline. In more detail, the area of this decline reached 79.2% of the total area,
and was primarily located in areas other than Dongting Lake and Hong Lake (Figure 3(c2)).
This is attributable to the growing human disturbance, which has caused habitat stress and
the deterioration in habitat quality. The areas where HS increased and remained unchanged
were equal to 11.7% and 9.1% of the total area, respectively. Finally, WH also marked a
reduction, having decreased in 36.3% of the study area. The counties surrounding Dongting
Lake, as well as Counties 15, 13, and 12, saw the greatest declines (Figure 3(c3)), owing
to the transfer of water to unutilized land. The areas where WH increased and remained
unchanged were 46.3% and 17.4% of the total area, respectively, with Counties 4 and 7 as
the areas where the greatest increase occurred.

3.2. Comprehensive Cost Index (η)

Ecological restoration costs were ranked as follows: CS (6.29) > HS (6.22) > WH (6.17),
indicating that CS had a higher restoration cost and lower benefits, and vice versa for WH
(Figure 4). Overall, the majority of counties had minimal differences in the mean value of η
for the three ESs, whereas large differences in the proportion of artificial land and ecological
land in Counties 15, 16, 18, and 32 resulted in wide variations in the mean value of η for
the three ESs. Specifically, at the county scale, those counties η with the smallest county
area, such as Counties 1, 10, 11, 12, 19, 27, and 28, had a lower, while the high degree of
human disturbance and economic growth in these counties lead to a high mean value of η.
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3.3. Potential Restoration Areas

Those areas where the potential ES supply is severely degraded were considered
as PoRAs. According to changes in the potential supply of the three ESs from 2000 to
2020, the area of CS-PoRAs was 6759 km2, equal to 38.8% of the CS degraded area, and
mainly located in Counties 16, 18, 32, and 31 (Figure 5a). The HS-PoRAs distributed in a
scattered manner covered 6407 km2, accounting for 42.9% of the HS degraded area, and
were mainly clustered in the counties surrounding the Dongting Lake, the southern part
of County 9, and the western part of County 1 (Figure 5b). The spatial distribution of
WH-PoRAs was equally scattered, accounting for 12.1% (3887 km2) of the WH degraded
area, and concentrated at the junction of Counties 9, 13, 15, 28, and 29 (Figure 5c). In terms
of land-use types, forest was the main land-use type in the CS-PoRAs, with an area of
5242 km2, corresponding to 77.5% of the total area of CS-PoRAs (Figure 5d). Cropland was
the main land-use type in the WH-PoRA, covering an area of 1823 km2, equal to 46.9% of
the total area of WH-PoRA.
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3.4. PRAs for Single ES

Figure 6 shows the spatial distribution of PRAs across counties. The PRAs in CS,
HS, and WH occupied 962, 885, and 538 km2 and covered 1.61%, 1.43%, and 0.87% of
the entire study area, respectively. The detailed breakdown of the area occupied by each
county in the PRAs, displayed in Figure 6, reveals that the CS-PRAs were mainly located in
Counties 13, 15, and 12, and the land-use type was mainly forest, accounting for 73.49%
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of the total area of CS-PRAs. This is mainly due to forest’s high biomass, which entails a
great CS after restoration, resulting in significant ecological benefits. HS-PRAs were mainly
located in Counties 33, 13, and 25, where they extended for 238 km2, 113 km2, and 66 km2

respectively. Water bodies were the main land-use type for HS-PRAs (32.77%), due to the
importance of the Dongting Lake wetlands in conserving biodiversity, particularly for bird
species. Other land-use types for HS-PRA were unutilized land, forest, and cropland, with
23.16%, 22.15%, and 21.24% of the total area of HS-PRAs, respectively. WH-PRAs were
relatively spatially concentrated in County 33 (200 km2), County 13 (84 km2), and County
15 (68 km2). Unutilized land and water bodies were the main land-use types in WH-PRAs,
accounting for 38.29% and 35.32% of the total area of WH-PRAs, respectively, followed by
cropland with 17.66%. This is because the unutilized land in these areas was practically
converted from water bodies, and restoring these areas back to water bodies can enhance
their water retention capacity. It is worth noting that PRAs to promote CS, HS, and WH
did not include artificial land, while they included only a small amount of grassland. This
is because irreversible changes to the surface of artificial land can result in high restoration
costs, while the restoration of grassland produces fewer ecological benefits.

Figure 6. Spatial distribution of PRAs among counties.

3.5. Restoration Priority Grade Based on ES Importance

The area and spatial distribution of PRAs varied greatly across different priority
grades. The PRAs with a “high” ranking were relatively concentrated in the northeastern
part of County 33 (Figure 7), with an area of 82 km2 (0.13% of the total study area). The
restoration of these areas can promote the synergistic enhancement of CS, HS, and WH.
Moreover, these areas were also found to have a low population density, hence resulting in
a low restoration cost. Moreover, a large amount of unutilized land degraded from water
was included in this area, which could yield significant restoration benefits by converting it
into water bodies through ecological measures such as dredging. The area of PRAs with a
“sub-high” ranking was 410 km2, the majority of which was devoted to enhancing HS and
WH simultaneously (207 km2), and was located primarily in the border areas of County 13,
15, 16, and 33. The PRAs to enhance CS and HS covered 150 km2, scattered in Counties 16,
32, and 3. The area of PRAs to improve CS and WH was only 53 km2 and had a scattered



Land 2023, 12, 965 13 of 20

distribution, mostly located in Counties 16, 18, and 33. All other PRAs with a “low” ranking
priority covered an area of up to 1696 km2, located mainly in Counties 33, 32, 16, 13, and 12.
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3.6. Revising Priority Restoration Grades Based on Demand Importance and Aggregation Degree

The extent and spatial distribution of the various PRAs, taking into account human
demand, were modified as follows: (1) The “high”-grade PRAs increased by 75.61%,
reaching 144 km2, and began to shift from County 33 to areas with a “high” human demand
and “sub-high” ecological importance, such as Counties 13, 15, and 16 (Figure 8c(c1–c3)).
After restoration, these areas allowed the related benefits generated to flow directly to
human society (Figure 8b(b1–b3)). In contrast, while the high PRAs in County 33 can offer
more restoration benefits, they are relatively poor in terms of socioeconomic development;
hence, the initial “high” PRAs were reclassified into “sub-high” PRAs, considering human
demand. (2) “Sub-high” PRAs shifted from Counties 15, 33, and the eastern part of County
13, to County 16 and the western part of County 13, covering an area of 546 km2 with
an increase of 32.45%. The enlarged portion of sub-high PRAs within County 16 was
transformed from low PRAs with significant human demand. (3) “Low” PRAs shrank by
11.36%, with the majority of this reduction occurring in those areas where the original level
grade was “high” and “sub-high”.

In order to maximize efficiency, the aggregation areas smaller than 100 km2 were
removed from the PRAs, resulting in an improved distribution map of the restoration
priority grade. The total area of corrected PRAs shrank by 602 km2, reaching 1586 km2.
Specifically, the “high” PRAs decreased by 32 km2 (112 km2), while the “sub-high” and
“low” PRAs decreased to 386 km2 (160 km2) and 1088 km2 (410 km2), respectively. Moreover,
the geographical distribution of PRAs became more clustered, mainly at the junction of
Counties 13, 15, and 33 and within Counties 16, 25, and 32.
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4. Discussion

In order to promote the balanced allocation of limited restoration resources among
ecologically degraded areas, it is necessary to improve the accuracy of identification for
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PRAs. Although the current supply-based identification of PRAs can improve the ecological
patterns and, thus, increase their potential supply capacity [51], the widespread imbalance
between the ES supply and demand undermines the integrity of ES processes and hinders
the realization of social benefits from ecosystems [52]. It is well-known that ESs serve
as a bridge between the natural and social systems [53]. In this study, we proposed a
framework for the identification of PRAs to boost the ESs supply, which integrates the
ecological and socioeconomic benefits of restoration and simplifies the identification process
using Marxan.

The identification of PoRAs is the foundation for the selection of ecological PRAs [54].
In this respect, our study provided a novel viewpoint on PoRA identification. Several
previous studies concentrated on land-use change, considering the land transformed from
natural ecosystems to cropland, pastures, and even artificial land as PoRAs [55]. However,
with the increase in the intensity of anthropogenic disturbances, a large extension of
degraded land did not experience conversion [56], leading to a variety of global difficulties
if the land failed to be restored. Because changes in the ES supply may indicate ecosystem
conversion and degradation, this study utilized variations in the ES supply over a long
period to identify PoRAs. The findings showed that PoRAs for CS, WH, and HS include
not only areas converted from forest and water bodies to cropland, but also a large number
of degraded forest and water bodies.

Our framework enables the inclusion of ‘low-cost, high-yield supply’ areas in PRAs,
thereby boosting resource allocation efficiency and increasing the feasibility of restoration
projects in the case of limited restoration financing. In previous studies on the identification
of PRAs, ecological importance and restoration urgency were considered as the primary
determining factors. For instance, the areas with high ecological vulnerability and a sharp
decline in the ESs supply were regarded as PRAs [15,57,58]. However, these methods for
ecological restoration neglected the feasibility of implementation facing limited restoration
resource [39]. In this study, we evaluated the feasibility of restoration according to the
ecological restoration cost. Initially, the indicators measuring restoration difficulties such as
GDP, population density, and slope were used to modify the cost of ecological restoration
projects. Moreover, the maximum ES differential between PoRAs over the study period was
used to quantify the restoration benefits, while the ecological restoration cost was obtained
by integrating the restoration benefits, the cost of ecological restoration projects, and the
difficulties. The ecological restoration cost supported a more direct and accurate evaluation
in the feasibility of restoration compared to the indirect indicators such as urbanization
level [59]. According to the results of our study, forest and water bodies are the main land-
use types in PoRAs for CS, HS, and WH, all of which have a high ES supply. Additionally,
the degraded water bodies and forest are mainly distributed around Dongting Lake and
the southwest part of the study area, respectively, which are all low-cost and high-yield,
making it more feasible and easier for the government to implement.

The proposed framework aims to improve the ESs supply through restoration. Al-
though previous research showed that restoration allows us to successfully increase the
ESs supply, restoration activities aiming at improving a specific ES supply may jeopardize
other ESs. For example, non-native plants used to alleviate soil erosion in dry areas may
decrease native vegetation cover and increase water demand [60]. In this study, these
shortcomings were addressed by superimposing maps showing PRAs for HS, CS, and
WH, and assigning restoration priority grades based on the degree of the spatial overlap.
According to our findings, even if there is little spatial overlap in the PRAs for the three
ESs, the cost efficiency will be maximized if restoration funds are directed to locations with
high restoration synergy in priority. Furthermore, it has been demonstrated that water
bodies and forest play an important role in biodiversity conservation and climate change
mitigation [26]. This was confirmed by our study, which showed that the PRAs for CS were
dominated by forest, whereas those for HS were dominated by water bodies.

Moreover, the proposed framework balances the demand importance with the ESs
supply, as well as the aggregation degree of PRAs, assisting with generating the maximum
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restorative benefits flowing to human society. The majority of previous studies on ES
emphasized a supply-side perspective, i.e., restoring primarily high-supply areas [22].
Nevertheless, the prevalence of supply–demand imbalances in ecosystems prevents the
restoration benefits generated by restoring high-supply areas from flowing directly to
human society, resulting in a loss of ES. In this study, the demand importance was used
to modify the priority restoration grades. After considering human demand, the results
showed that the location of “high”-priority PRAs began to move away from County 33
and toward those areas with dense POI such as Counties 13, 15, and 16, characterized by
a heavy supply and demand (Figure 9). Furthermore, the scattered restoration patches
were removed from the PRAs after employing the aggregation correction, to ensure com-
prehensive restoration benefits. The proposed framework also serves as a useful tool for
the rapid identification of PRAs. Conventional methods for identifying PRAs using pixels
as research units encounter significant computation challenges due to the vast amount of
required data [30,57,61] On the contrary, the usage of Marxan considerably simplified the
computational effort based on a simulated annealing algorithm. Moreover, when multiple
comparative scenarios are required to be established, Marxan can swiftly compute an alter-
native solution tailored to the target by self-adjusting the parameters, thus considerably
improving the generalization of the method adopted.
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The proposed framework allows us to generate maps of PRAs based on a trade-off
between the social and ecological benefits of ecosystems, and enables government agencies
to manage ecosystems more effectively. For example, the PRAs for forest should be restored
primarily by enhancing forest quality. In terms of restoration areas dominated by cropland,
the first choice would be the selective restoration of cropland to forest and water bodies, on
the premise of guaranteeing regional food security, targeting, for example, cropland with
slopes greater than 15◦ or poor yields. Furthermore, the increase of plant diversity towards
the ending-stage of reforestation would dramatically favor the improvement of CS [62].

This study successfully identified PRAs for improving ES by considering the costs,
benefits, and human demand. Moreover, its findings are also critical for the sustainable
management of ES and the increase of human well-being. However, there is still potential
for improvement. First, this study was affected by uncertainty in the relevant data, such as
land-use maps and economic data. Second, the kernel density value of the POI data was
used to characterize human demand when determining the demand importance; however,
the value preference for the beneficiary subjects of social benefits varies widely, and this
method does not reflect the choice and preference of stakeholders for ES well. Hence,
future research should place a greater emphasis on incorporating stakeholder value into
decision making. Finally, our framework has identified PRAs based on the current state
of ecosystems and human demand, neglecting that ecosystems and social systems are
dynamic processes. Therefore, integrating regional development planning to identify PRAs
can lead to a more accurate identification of PRAs.

5. Conclusions

This study proposed a well-established framework for the identification of PRAs to
improve ES that integrates both the ecological and demand importance. The comparison
of changes in the potential supply of long-term ES facilitates the identification not only
of areas where ecosystem conversion has occurred, but also of unconverted areas where
ecological quality is being degraded, thus allowing us to perform a more comprehensive
selection of PoRAs. Furthermore, the ecological restoration cost integrated the ecological
restoration projects’ cost and restoration benefits, allowing the PRAs identified through
Marxan to be characterized by both a low cost and high ES supply. Finally, the correction
of the restoration priority grades based on the demand importance and aggregation degree
enabled “high” PRAs to maximize the comprehensive restoration benefits, i.e., to generate
a huge ES supply while meeting human demands. Applied into practice, the improved
framework allowed us to exactly define the restoration priority grade for CS, HS, and
WH in the Dongting Lake Eco-Economic Zone. These findings are critical for the efficient
implementation of ecological restoration in the region, as well as for supporting the effective
management of the ecosystem and improving human well-being.
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