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Abstract: Digital twins (DTs) are highly valuable tools for urban planning as they provide a virtual
replica of the physical city, integrating real-time data and simulations to enhance the decision-making
and management processes. The use of DTs expands the possibilities for data integration and
visualization in urban contexts. This includes real-time data measurements from multiple sources,
such as sensors and IoT devices, facilitating comprehensive insights. DT’s virtual representation
helps authorities and planners visualize urban dynamics and improve their understanding of urban
ecosystems, energy efficiency, traffic management, emergency response, and more. DT supports the
simulation and modeling of different scenarios in an urban built environment, enabling the predictive
analysis of transformation decisions and the anticipation of future trends and challenges. This paper
highlights the assumptions and ongoing progress in the development of a DT for the city of Turin
(Italy), focusing on a range of applications, such as the extraction of built and natural environment
features, land use data, road network and pavement quality, and signage, along with continuous
model updates over time.

Keywords: 3D model; digital twins; urban planning; smart city; sustainable city

1. Introduction

The field of spatial planning is currently facing a number of new challenges, par-
ticularly in terms of the analysis, evaluation, and management of cities and territories.
These challenges are a result of a number of factors, including the occurrence of extreme
environmental emergencies, the effects of climate change, and the ongoing process of
urbanization. With the number of people living in cities expected to reach 5 billion by
2030, it is becoming increasingly important for planning to be effective, intelligent, and
open to innovation, both in terms of the tools and data that are used and the way in which
these data are shared. These aspects are particularly highlighted by the United Nations
Sustainable Development Goal 11, which states that it is necessary to “make cities inclusive,
safe, resilient and sustainable” [1].

Today, the awareness of sustainability is profoundly changing the way in which the city
should be managed. A smart city is a city that combines ICT with physical infrastructure,
architecture, urban equipment, and people to address economic, environmental, and social
issues in an integrated way. However, working in an integrated way is not an easy goal;
the perspective is not only that of the search for sustainability but above all, that of the
competitiveness that cities must now pursue at a global level. Van Agtmael and Bakker, in
their work entitled “The Smartest Places on Earth” [2], counter the recent consensus that
the American and Northern European economies have lost their innovation initiative and
competitive edge by referring to the so-called rustbelts, i.e., the former industrial areas
that are now turning into brain belts, revitalized through the training of innovative centers,
start-ups, and new collaborations with universities and oriented toward the search for a
new model of economic and, at the same time, sustainable competitiveness.
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However, not all cities should become the new Silicon Valley, and “Innovation isn’t
what you think” [3]; a misleading idea of innovation often prevails, which does not take
into account the enormous variety of daily innovations that can lead to real progress
and development, but which depend on the capacity of the context in which they are
inserted, where it is necessary to rethink the role of local ecosystems and the importance
of collaboration. Among the emerging innovations, digital twins (DTs) could constitute
a significant technology because they represent dynamic and interactive virtual replicas
of the physical environment of cities, starting from an extremely accurate 3D model in
which near-to-real-time information is aggregated. The success of the application of DT will
depend on the extent to which they can represent the complexity of the local ecosystems
of reference.

The real potential of a DT is to have a 3D digital model that allows us to capture the
entire city and determine real-world impacts to make timely decisions; to do so, the model
must also be given workflows that use standardized metrics and processes to manage
and maintain city elements and also to evaluate ongoing projects. The concept of 3D
urban models has evolved, particularly with the integration of geographic information
systems (GIS) and real-time data. This evolution is fundamental for analyzing dynamic
urban elements, such as traffic patterns, environmental changes, and population dynamics.
In addition, the potential of augmented reality (AR) and virtual reality (VR) in urban
modeling offers immersive experiences that open new frontiers; 3D urban models have
become increasingly important in urban planning because they enable better visualization
of data, favor participatory planning and collaborative processes, and help in the simulation
and evaluation of the impacts of urban transformation projects.

The field of spatial planning is increasingly reliant on the contributions of communities
to spatial knowledge through online platforms, social media, and participatory GIS. This
necessitates the treatment of spatial data as big and open data. This area of application, in
conjunction with the integration of 3D modeling, represents a path of innovation within
the spatial science disciplines. It is undoubtedly an attractive field for scientists and
spatial planners who apply these theories in a wide range of disciplines. However, it
would require the implementation of awareness-raising actions for the majority of users.
The risk of DTs is, therefore, to foster critical glances between disciplinary fields that do
not normally communicate and to allow city administrators to gain new perspectives on
common frontiers. This is fundamental to an understanding of the realities and evolutionary
processes of increasingly complex territorial systems in which institutional actors, economic
actors, and environmental resources interact.

This paper aims to describe the progress and ongoing efforts in urban DTs, with a
specific focus on the development of the Turin DT in Italy. The Turin DT project aims to
create an advanced digital replica of the city, continuously updated with real-time data
from internet of things (IoT) devices. In this paper, we have attempted to address and find
solutions to the following research questions:

1. What is the current state of the art in the field of city DTs in terms of practical
implementations of DTs as a system?

2. What are the strengths and weaknesses of urban digital twins, and how have the
digital twins been used by cities for different purposes?

3. With reference to the Turin DT project, what are the practical challenges faced in the
implementation of digital twins for cities, and what are the possible solutions that
have been explored so far?

2. Relevance of 3D City Models for Urban and Regional Planning

This section examines the evolution of 3D city models and their significance in the
nascent field of geospatial sciences. It underscores the pivotal role of 3D city models in
urban planning and regional development and how they serve as a valuable resource
for various stakeholders engaged in planning and development processes. By offering
detailed spatial representations, 3D city models facilitate comprehensive analysis and
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decision-making in urban contexts. The integration of 3D city models into a digital twin
(DT) enables planners, policymakers, and citizens to collaborate in an effective manner,
thereby improving the efficiency and sustainability of urban development initiatives.

2.1. Technological Advancements in 3D City Models

The technological landscape of 3D city modeling has been reshaped significantly
with advancements in GIS integration and real-time data assimilation. The fusion of GIS
with 3D modeling [4] has been pivotal in enhancing the accuracy and relevance of urban
models. This integration facilitates a multidimensional representation of urban spaces,
encompassing topographical and infrastructural details. The introduction of real-time
data into 3D urban models, considering the positive and negative aspects [5], has enabled
dynamic simulation of urban environments. Although a digital 3D model of the city can
be useful for visualizing important details and can help provide accurate information for
the management of a smart city, the development and maintenance of a 3D model can
indeed have some negative aspects, such as significant investment in terms of technology;
technical complexity related to the use of a large amount of data; the need to change the
organization of roles for managing the model within the public administration, etc.

Advances in remote sensing data collection techniques, such as light detection and
ranging (LiDAR) and photogrammetry, have greatly improved the accuracy and efficiency
of capturing urban environments. The integration of 3D city models with GIS platforms and
semantic information (digital ontologies [6]) enables spatial analysis and the visualization
of complex urban data. This integration also facilitates the incorporation of a metadata
model that automates the labeling, classification, and analysis of objects and features,
thereby promoting more intelligent applications, such as automated object recognition and
urban monitoring.

This development is crucial for urban planning, allowing the analysis of traffic patterns,
environmental changes, and population dynamics in real-time scenarios. The potential
of AR and VR in urban modeling [7] offers immersive and interactive experiences, open-
ing up new frontiers in urban planning and design, stakeholder engagement, tourism,
and education.

2.2. Relevance of 3D City Models in Urban and Regional Planning

The existence of advanced data collection technology and sensors, particularly for
environmental and traffic monitoring, is now mainstream and GIS must deal with near
real-time data. New developments in visualization (geo-visualization) have transformed
cartography by integrating animation, the search for salient features, and more. Similarly,
the use of big data has led public administrations to consider new ways of using such data.
In addition, the trend toward voluntary geographic information (VGI) and the willingness
of people to participate in decision-making processes under the banner of crowdsourcing
have implied the need to address these features efficiently.

Digital 3D city models have evolved significantly over time. Initially, they were simple
three-dimensional representations used primarily for visualization. Over the years, they
have become more complex and functional, integrating geospatial data and becoming
essential tools for urban planning, resource management, and scenario simulation. Today,
the most advanced techniques for building such city models include the photogrammetric
management tools of remote sensing imagery (from aircraft or drones), combined with the
availability of dense LiDAR point clouds to provide detailed and accurate measurements
of the shape and physical characteristics of elements in the built and natural environment.
There is also a need to integrate the potential of GIS with that of building information
modeling (BIM) for architectural and environmental surveying.

The relevance of 3D city models in contemporary urban planning [8] lies in their ability
to enhance the planning process in terms of data quality, technical complexity, scenario
testing, and stakeholder engagement through visualization and communication. These
models go beyond traditional 2D representations and provide stakeholders with a more
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comprehensive understanding of proposed urban changes. Improved communication is
necessary to promote collaborative planning processes. In addition, the efficiency that
3D modeling brings to urban planning has streamlined design processes, enabling rapid
iterations and effective decision-making; GIS, which provides spatial data management
and analysis capabilities, can be integrated with expert systems, which emulate human
expertise in a particular domain, to support automated planning tasks.

The use of 3D city models in a DT plays a pivotal role in the field of sustainable urban
development. These models provide invaluable tools for the simulation and evaluation of
environmental impacts, thereby contributing to the creation of sustainable urban ecosys-
tems. This is in accordance with the findings of [9], which highlight the significance of this
approach. Furthermore, the application of these models in disaster management has been
transformative, enabling the implementation of more effective resilience strategies [10]. This
is an important area of planning research that uses spatial data and technology to mitigate
risks, respond to crises, and aid recovery efforts. The utilization of interactive and realistic
3D models generated within the context of DT technology can facilitate the engagement of
citizens in the planning process, thereby promoting a more inclusive approach to urban
development [11]. This participatory planning ensures that urban development reflects
the needs and aspirations of the community, which in turn leads to the creation of more
liveable and equitable urban spaces. In this context, the democratization of urban planning
facilitated by these models aligns with the principles outlined in Arnstein’s work, “A Lad-
der of Citizen Participation” (1969) [12], and encourages inclusive and community-based
urban development.

The advancements in urban 3D modeling technologies have enriched the processes of
collaboration, sustainability, and public engagement in city development. These models
stand as vital tools in the toolkit of modern urban planners, architects, and policymakers,
driving the creation of more resilient, sustainable, and inclusive urban environments. By
leveraging these new aspects, spatial planning can be more efficient, effective, and inclusive,
leading to more sustainable, resilient, and livable communities.

3. Transition from 3D City Models to Urban DTs

The move from simple 3D models of cities to digital twins of cities marks a significant
shift in the way that cities are understood and how they are managed. DTs, with their
ability to use real-time data and advanced simulation capabilities, provide better insights
for urban planning and decision-making. This transition is important for creating more
resilient and sustainable cities by enabling more accurate predictions and responses to
urban challenges.

3.1. Evolution of 3D City Models over Time

Three-dimensional city models generally have more advantages than two-dimensional
maps, such as three-dimensional geometry of elements; light/shadow and lighting effects
on elements; texture information; and the ability to change perspective for a correct view of
the urban environment. At the same time, 3D city models also have some disadvantages,
such as high production costs and the possibility that some models may be inaccurate at
a certain level of detail. Until recently, the traditional method of 3D modeling required
an enormous amount of manual work, including scanning a map to obtain a digital
image, plotting the digital image with 3D CAD softwares, manual 3D modeling, extruding
2D contours to the height of the building, and/or modeling geometries from drawings
and photographs.

Three-dimensional digital models of cities have traditionally been used to document
urban assets and other dynamics to support urban planning activities; in general, such
models represent physical objects statically, at a given point in time. This static state is
clearly due to the sources used to generate these models, which “take a picture” at a precise
point in time, such as aerial or drone remote sensing, nadir and oblique photography,
and LiDAR point clouds. Updating the 3D model therefore often requires a new aerial
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survey and a relative data processing time that takes a certain amount of time [13,14]. The
transition from static 3D models to urban DTs therefore requires minimizing this time as
much as possible during the update phase; only in this way can these models represent a
significant evolution in which the urban environment is conceptualized and represented
digitally, as in continuous evolution and change.

Today, despite the possibility of integration with BIM and the efforts made to develop
the automatic (parametric) generation of 3D city models, which have accelerated proce-
dures toward more accurate results and lower costs, modeling remains challenging. The
difficulties are still related to the data providers and the quality of the optics and sensors
used in remote sensing operations. Other aspects may be of some concern, for example, the
semantic attributes and the coherence of the model elements, which must minimize the
presence of errors to effectively map a complex geospatial infrastructure.

The real challenge is therefore to consider a real-time update that allows the incor-
poration of high levels of detail (e.g., realistic textures, geometric precision, and semantic
relationships between territorial objects) [15–17]. This transition to DTs involves the need to
combine real-time data from IoT sensors and process data, thanks to continuously learning
artificial intelligence models. By integrating disparate data streams and analysis tools into
a single, unified platform, DTs can support more holistic and integrated decision-making,
leading to more informed and sustainable planning decisions [18–20].

3.2. An Example of Implemented Urban DT: Zurich Digitale Stadt

The above-mentioned aspects are well-included in several experiences currently un-
derway in all major cities around the world. Certainly, a significant experience for our
work on the Turin case is that of Zurich 3- to 4D (Figure 1). The geospatial dataset of the
Swiss city is made freely accessible and virtually navigable through various visualization
options (https://www.stadt-zuerich.ch/ted/de/index/geoz/plan-und-datenbezug/3d-
stadtmodell.html, accessed on 14 April 2024). In particular, it is possible to make simple
measurements in the third dimension and to simulate the projection of shadows at different
times and on different days of the year. Figure 1 below shows a 3D city model and urban
digital twin for the city of Zurich, Switzerland [21].
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Figure 1. Illustration of (a) 3D city model vs. (b) 3D urban digital twin, adopted from [19]. Source:
authors’ reworking from [21].

The Zurich digital twin is a comprehensive spatial and digital representation of the city,
including various components, such as digital terrain models, buildings, roads, and climate
data. The model seamlessly integrates existing spatial data and metadata infrastructure
and complies with standards such as the European INSPIRE Directive and the GeoCat 2019
catalog. Through metadata description and the use of IoT systems, real-time information
on status and usage data are transmitted, enabling efficient planning and digital updates
of various components within the DT, including buildings and roads. This integrated

https://www.stadt-zuerich.ch/ted/de/index/geoz/plan-und-datenbezug/3d-stadtmodell.html
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approach to the Zurich DT facilitates the dynamic management and maintenance of urban
infrastructure, increasing the city’s resilience and responsiveness to evolving needs and
challenges. The Zurich DT serves as a valuable tool for urban planners and policy makers,
providing insight into the complex dynamics of the city and supporting informed decision-
making processes. The development of the project is led by the GIS City of Zurich and has
its origins in the City’s Spatial Information Coordination Network with 25 service partners,
which was established some 20 years ago. Open data are the foundation of the digital
twin’s infrastructure; from the press conference on 12 November 2018, related to the release
of the 3D model of the terrain, building blocks and roofs in open format, until 20 September
2019, 11,722 datasets have been downloaded from the open data portal, a third of which
correspond to the 5 datasets of the 3D spatial model of the city [21].

The experience of the Zurich DT shows that the utility of DT technology in urban
planning and management lies in its dynamic and interactive nature. DTs allow for the
simulation and analysis of different urban scenarios [22]. This feature is invaluable for
urban resilience planning, as it allows disaster response strategies and infrastructure
robustness to be tested in a virtual environment prior to real-world implementation.

In addition, DTs facilitate the optimization of urban operations through big data, such
as traffic flow and energy distribution, thereby improving overall urban efficiency [23]. DT
technology plays a crucial role in promoting sustainable urban development. By simulating
different urban development scenarios, planners can assess the environmental impact of
different initiatives and ensure that urban growth is consistent with sustainability goals [24].

It is important to recognize that certain critical factors remain present in this expe-
rience. For instance, the geospatial data utilized in the DT frequently pertains solely to
the city, yet there are currently no guidelines at the cantonal or federal level that permit
adequate modeling, recording, and updating. Additionally, there are no detailed methods
for integrating the potential of BIM with GIS in terms of detail, automatic generalization,
and mutual exchange of data. A further relevant aspect is the relationship between the
quantity of data and the performance capabilities of the hardware for the construction of
the 3D model, also considering the time needed to prepare them. This aspect also opens up
the issue of the real-time update of the DT, which remains far from resolved. Therefore, it
is necessary to understand how new point clouds from mobile mapping can be exploited
to refine the quality of the 3D mesh.

3.3. Another Example: Helsinki 3D and Kalasatama DT

Significant experiments in urban DTs are underway in many cities around the world,
often focusing on useful elements to improve urban planning, resource management, and
active citizen participation in decision-making processes. In the case of Helsinki, this is one
of the most significant experiments on the European scene, in which a virtual representation
of the environment, together with a rich set of information services and open data, creates
a dynamic model.

The 3D model, the Helsinki Reality Mesh Model (https://kartta.hel.fi/3d/mesh/,
accessed on 11 March 2024), is hosted on a Cesium platform (Figure 2); the City of Helsinki
has specifically experimented with the open cityGML standard in its 3D modeling work. In
fact, the cityGML standard has significant advantages over static CAD models and allows
urban planning and design to be much more performative; in particular, the standard
allows for the integration of external data sets into the DT, thereby improving its content
and visual presentation [25].

One of the most intriguing contexts for the application of the DT model in Helsinki is
the district of Kalasatama (2018–2019). This area, which is situated on the outskirts of the
city, has a rich history as a fishing port. However, it has undergone a significant transforma-
tion in recent years, becoming an up-and-coming seaside location. The district now boasts
an industrial charm but also includes sports activities, high-rise office buildings, two city
parks, and the Redi Shopping Centre. Some traditional and international restaurants have
terrace tables and views of the harbor, while shops and groceries are distributed through-

https://kartta.hel.fi/3d/mesh/
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out the district. A specific DT (https://kartta.hel.fi/3d/mesh/Kalasatama/, accessed on
11 March 2024) was constructed in this area with the primary objective of linking semantic
data and high-resolution 3D mesh models.
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The information model of the Kalasatama district comprises three categories of build-
ings, including those in their current state, separately modeled buildings under construction
or planned, and bridges (present and planned). Additionally, the model includes land
and waterways, which are represented according to the CityGML standard. The current
representation of the buildings was created in 2017 and is subject to ongoing updates. The
starting data for modeling are the footprints of the buildings on the base map, which are
compared to LiDAR point clouds. Other special features, such as bridges, are also included.
With regard to the water bodies and the marine area, the model was created from the data
on the base map and the relevant elevations.

During the construction of the DT in Kalasatama, a specific application called “Open
Cities Planner” (Bentley Systems) was developed to complement and reinforce the use
of the DT’s platform (Figure 3). This allowed for the linking of urban regeneration data
with visualizations of specific use cases. Furthermore, the Open Cities Planner application
included the possibility of improving citizen participation through the proposal of surveys
and the utilization of a participatory GIS (PGIS) as a basis. Another noteworthy aspect is
the incorporation of wind and solar irradiance simulation data, which aims to assess the
most significant air flows and examine sun-exposed areas and ground temperatures. The
platform is now a model for the rest of the city to follow in future development projects
and to demonstrate how digital twins can be continuously developed to meet the evolving
needs of the city.

It is important to note that the Kalasatama DT experience is not without limitations.
While DT has the potential to revolutionize urban design, there are still significant organiza-
tional and technical challenges that impede the widespread adoption of digital technology
in the development of smart cities. This is largely due to public resistance to changing
attitudes and behaviors toward the adoption of digital models. Another aspect to consider
is the sheer volume and complexity of the data involved, as well as the integration between
the data and the computing power needed to generate the 3D model. The generation of a

https://kartta.hel.fi/3d/mesh/Kalasatama/
https://kartta.hel.fi/3d/mesh/
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high-quality model can be laborious, as the cleaning and preparation of the same is still
necessary [26].
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3.4. Algorithms and Software Used for the Production of 3D City Models

The creation of 3D city models using DTs begins with the critical stage of data acqui-
sition and processing. This process involves collecting real-world measurements from a
variety of sources and then processing them so that they can be effectively used to create
and update the DT. A primary method of data collection is through sensors and internet of
things (IoT) devices. These devices collect a wide range of data, including traffic patterns,
weather conditions, energy consumption, and more [27,28]. Remote sensing technologies,
including satellite imagery and aerial photography (e.g., using drones), are crucial for
capturing large-scale urban landscapes. Ref. [29] notes how these methods provide a
macro-level view of urban areas. GIS plays an important role in data acquisition for 3D
urban models. It involves the collection and management of geospatial data, which is
essential for mapping and analyzing urban environments. In terms of data processing
techniques, once the data has been collected, it needs to be cleaned and integrated. This
step involves removing inaccuracies, resolving inconsistencies, and combining data from
different sources into a coherent format [30]. Transforming raw data into a usable format
for DTs often involves sophisticated modeling and simulation techniques. For example, [31]
discusses how data are used to create detailed 3D models that accurately reflect the physical
characteristics and dynamics of urban areas. Advanced data analysis plays a crucial role in
interpreting the data. This can include statistical analysis, predictive modeling, and the use
of machine learning algorithms to extract insights and patterns from the data [32].

The creation of 3D city models, especially when integrated with DT technology, re-
lies on sophisticated modeling methodologies. These methodologies include a range of
algorithms and software tools designed to produce accurate, detailed, and dynamic repre-
sentations of urban environments. In terms of geometric and textural modeling, these are
algorithms that create detailed 3D geometric representations of urban features, including
buildings, roads, and natural elements. Texture modeling adds realistic surfaces to these ge-
ometries. Techniques such as photogrammetry are often used to capture real-world textures
and appearances [33]. As for spatial analysis algorithms, they are usually integrated into

https://kartta.hel.fi/3d/mesh/Kalasatama/
https://kartta.hel.fi/3d/mesh/Kalasatama/
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GIS applications and used to analyze spatial relationships and patterns in urban contexts;
this is crucial for understanding urban dynamics, such as land use patterns and population
distribution. Finally, simulation and forecasting algorithms can simulate urban processes
(such as traffic flow or environmental changes) and predict future scenarios. These can
include agent-based modeling or computational fluid dynamics [34].

Tools such as CAD and building information modeling (BIM) software (e.g., AutoDesk
Auto-CAD 2024 and Revit 2022) are fundamental to the creation of detailed architectural
and infrastructure models. These tools allow for the accurate modeling of individual
buildings and infrastructure [35]. GIS software, such as ESRI’s ArcGIS Pro or QGIS (v. 3.34),
is essential for integrating spatial data into urban models. This software supports mapping,
spatial analysis, and the integration of different data layers [36]. Software specifically
designed for urban modeling, such as CityEngine 2023.1 or UrbanFootprint 1.5, provides
tools for creating large-scale urban models. It offers functionalities for simulating urban
layouts, land use, and zoning scenarios [37]. Tools such as Tableau or Power BI are used for
data analysis and visualization, helping to interpret complex urban data and present it in
an accessible format [38].

The 3D models with a digital representation of the physical world have also been
complemented by data sharing platforms and game engines for the development of urban
DTs. Game engines are the real-time simulators that have been proposed for the creation of
DTs, as they have the capability of providing realistic graphics and lighting that simulate
real-world conditions in a virtual replica. Modern game engines can offer various func-
tionalities for different applications in addition to the development of game environments.
Game engines such as Twin Motion, Unreal Engine, and Unity have recently been used
to develop the digital twins of the city. Data platforms such as Cesium and MapStore
can also provide data-sharing functionalities, as well as some basic measurement and
visualization functions.

The integration of the internet of things (IoT) and artificial intelligence (AI) significantly
enhances DT applications, particularly in the area of urban modeling. This integration
brings a new level of intelligence and interactivity to DTs, enabling them to process vast
amounts of data and provide insightful analysis for better decision-making and predictive
modeling. IoT devices play a critical role in collecting real-time data from the physical
environment. These data can include traffic flow, weather conditions, energy consumption
and much more. IoT is essential for collecting the diverse data required for an accurate and
up-to-date digital representation of the physical world. The integration of IoT devices leads
to increased connectivity and interactivity within the DT. This connectivity allows for a
more responsive and dynamic model that can adapt to changes in real time, increasing the
usefulness of the model for urban planning and management [39]. From an AI perspective,
AI algorithms are crucial for processing and analyzing the vast amounts of data collected
by IoT devices. AI can identify patterns, trends, and anomalies in the data, facilitating more
informed decision-making. Predictive models built using AI can forecast future urban
scenarios, aiding long-term urban planning and development. AI contributes to more
sophisticated decision-making capabilities within DT systems. By processing complex
datasets, AI can provide insights that may not be apparent through traditional analytical
methods, and AI-assisted analysis can lead to a better understanding and optimization
of urban planning processes [24]. AI can also enable DTs to learn from data over time,
adapting and improving their models. This aspect of machine learning allows DTs to
continuously refine their accuracy and effectiveness [40].

4. Digital Twin Technology: Essential Elements

DT technology refers to the creation of a digital replica of a physical entity or system.
This digital counterpart is not just a static representation; it is a dynamic model that mirrors
the real-world object in real time [41], continuously updated with data from sensors and
other sources. The core of DT technology lies in its ability to simulate, analyze, and predict
behaviors of its physical counterpart, making it a powerful tool for various applications.
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DTs were primarily focused on manufacturing and product lifecycle management [41].
The DT is therefore an abstraction of the structure and processes that take place in reality,
a simplification of the real city. So it must be said that DT does not aim to replicate the
whole real system but focuses only on some key elements and processes that describe a
certain phenomenon taken into consideration at that moment; in other words, we can say
that there can be a succession of models of a system that are composed partly of equal
supports and partly of supports different from the basic system. However, the scope has
since expanded significantly.

The evolution of DT technology over the last 20 years can be summarized as follows:

1. The concept of DT originated in the early 2000s in the context of product lifecycle
management and manufacturing, as mentioned by [42]. The initial idea was to
create a digital copy of a manufactured product to monitor, analyze, and optimize
its performance.

2. The 2010s saw the expansion of DT technology into sectors beyond manufacturing.
This was driven by advances in IoT, cloud computing, and big data analytics. In
particular, the aerospace and automotive industries adopted DTs for complex system
simulation and maintenance optimization [43].

3. In the late 2010s, the integration of IoT and AI technologies marked a significant
evolution in the capabilities of DTs. The convergence of these technologies enabled
these models to provide more comprehensive and real-time insights, enhancing
decision-making processes in various industries.

4. In the 2020s, DT technology has begun to expand and advance significantly, particu-
larly in urban planning and smart city development. By creating digital replicas of
urban environments, DTs are revolutionizing urban planning, infrastructure manage-
ment, and environmental monitoring. This integration greatly improves the efficiency
and sustainability of urban development initiatives.

We could think of a smart city as a place where all objects with IoT connections have
integrated computing and communication capabilities; data collection has therefore become
relatively simple. What is complex is the convergence of the physical world with the virtual
world, a convergence based precisely on the creation of a DT, i.e., a model of a physical asset
that is adapted to the constant changes in the environment thanks to the use of real-time
data from sensors. The same model, as mentioned above, can therefore be used to monitor
and identify potential problems and anticipate their impact on its physical counterpart.

DTs can play different roles in constructing a detailed replica of the urban environment;
to do so, several essential elements must be taken into account, allowing for different steps,
from descriptive analysis to predictive modeling. Table 1 summarizes the three main levels
of application of an urban digital twin in terms of purpose and tools.

Exploring the core components of a DT system means understanding the essential
elements that provide its framework. These components are integral to the functionality,
efficiency, and effectiveness of DT technology in applications ranging from industrial
production to urban planning. The foundation of any DT system is robust data collection
and integration. Data can include real-time information on physical conditions, operational
data, and environmental inputs and is the mainstay of DT.

One of the common elements of all the current research on this topic is precisely the
issue of heterogeneous data integration; this involves the collection of data from different
sources, such as sensors, IoT devices, and existing databases. However, according to [44],
not only are real-time data important but also the time series of data that can describe trends
of past phenomena that are useful for understanding contemporary urban phenomena.
Because urban phenomena are complex and often non-linear (they often give rise to wicked
problems that are difficult to solve), and because urbanism is an activity that needs to
delimit defined time horizons, it would be more useful to talk not only about a single DT
but about several DTs [45], in which each “twin” is adapted to specific applications and
different purposes. Only then should they be aggregated to form an ecosystem of DTs.
Another peculiarity of DT is the continuous and bidirectional connection between the real
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world and the virtual world [46], according to three steps; based on the level of integration
of data from the digital and virtual worlds (Figure 4), the 3D model represents a simple
abstraction of the real city.

Table 1. Urban DT level of application. Source: authors’ work.

Phase Aim Tools

Analysis

Visualize the city in 3D and its
changes over time such as new

assets, roads and buildings,
mobility, demographic and

socio-economic changes

• Overall 3D modeling
• 3D modeling at the

street level
• Integration of IoT data

Predictive modeling

Model, predict, and forecast
underlying activities in

different sectors, such as city
planning, transport,

sustainability and ecology,
and socio-economic trends.

• AI and machine learning
to understand the
relation between
unstructured and
structured data.

Scenario planning
and simulations

Multiple what-if scenarios and
simulations by pulling levers
of change and its effects on

the city

• Model data
infrastructures: e.g.,
implementation of
generative AI for urban
planning scenarios

• Multi-criteria analysis
for choosing the best
planning scenario
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Any changes to the physical city must be manually entered into the digital copy and
vice versa. A digital shadow is defined as such when data are automatically transferred
from the physical city to the digital model but manually transferred from the digital model
to the physical city. On the other hand, we can only consider a DT when we obtain an
automatic update of the data in both directions, from real to virtual and back. In any case,
the concept of urban DT represents a rather useful perspective for most cities in the world,
as well as a wide field of study and research in different sectors of the academic world.
Currently, looking at the characteristics of DTs already developed in different experiences,
we can try to collect some common elements, even if we are far from a single and replicable
standard because there is no common definition, but also because the assumptions that
drive an administration to create a DT are absolutely different from city to city (Table 2). In
addition, we can point out that not all cities have the same types of data (possibly open)
available in terms of quantity and quality. If we look at the aspects of data integration,
especially from a geospatial point of view, we can identify the peculiarities of the recent
experiences of some cities.
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Table 2. Comparison of DT characteristics in some experiences. Source: authors’ reworking from [46].

DTs Aim Data 3D Model Front-End Visualization
Platform

Helsinki 3D+ Kalasatama

3D design, urban
planning, estimation of
climate change, energy
planning, sustainable

tourism.

Oblique photogrammetry
and

aerial LiDAR point cloud

City Information Model,
3D CityGML model,

mesh model

Semantic 3D city model:
VirtualCitySystems (Berlin

Germany), Cesium
(Philadelphia, PA, USA),
web and VR interfaces

Espoo

Urban construction, urban
planning, visualization of

city objects from above
and underground

3D city model database

3D CityGML Model
(textured building,

generics, city furniture,
water bodies,

transportation, vegetation,
land use and relief), 3D
city model with point
cloud, hybrid model,

underground
infrastructure

Espoo Map Service
(Espoo, Finland)

Vienna

Living virtual city replica
allows the monitoring of

the city, generation of new
information, scenario

simulations, and
data-driven decision

support system

GIS geodata inventory
and data from specialized

applications from
departments

Digital GeoTwin
Semantics 3D geo-objects

VirtualCityMap
(Berlin, Germany)

Boston Digital Twin

Digital twin helps city
visualize development

near beloved park.
Analyzing in 3D to

understand planning
impact.

ESRI 3D city model

Wide variety of
decision-making tasks

including planning and
development, flood

modeling, shadow studies,
and line-of-sight

evaluation.

ESRI ArcGIS online
(Redlands, CA, USA)

Rotterdam 3D

Climate change
adaptation, viewsheds,

and energy performance
of buildings. Integration
of the hydrodynamic city
model with the 3D model

LiDAR, aerial photo, basic
registration large-scale
topography (BGT) and

basic registration
addresses and buildings
(BAG), basic registration

of public space.

Above and underground
infrastructure BIM models

and 3D city models:
buildings, terrain, trees,

lampposts, cables,
and pipelines

VirtualCitySystems
(Berlin, Germany), ESRI
IMAGEM and UNITY

(Redlands, USA)

Zurich 3–4D
Urban planning and

climate change. Urban
spatial data infrastructure

Spatial data infrastructure,
geodata portal

Buildings, trees, forests,
and bridges. Over 50,000
buildings in various LoD;

walls and bridges

Web application,
geoportal

Virtual Zurich
Zurich 4D

(Zurich, Switzerland)

Amsterdam 3D City planning 3D basic addresses
and buildings

Buildings, roads,
vegetation, underground

parts (pipelines
and cables)

Unity3D (Copenaghen,
The Netherlands)

Virtual Singapore

Virtual experimentation
and test-bedding planning,
urban planning, efficient

energy consumption,
population dynamics

DEM, 3D city models
(buildings, roads,
coastline, airspace,

underground asset, and
3D geology), vegetation,
cadaster, land use, water

bodies, point cloud, reality
mesh, BIM.

GIS data, aerial mapping,
mobile street mapping,

LiDAR, and imagery data.
Orthophotos, CityGML
used for vector models

and surfaces

3DEXPERIENCity
Dassault Système

(Vélizy-Villacoublay,
France)

Digital Twin Munich Climate-neutral
smart cities 3D CityGML model

Aerial surveys of the
urban area, 3D point cloud

mobile mapping
campaigns, supplemented

by drone recordings

Urban data platform
based on the OGC
standards (Munich,

Germany)

Rennes 3D Tackling city complexities
in a systematic approach DEM, 3D city model

3D model demographic
data relating to mobility,

health, energy, vegetation

3DEXPERIENCity
Dassault Système

(Vélizy-Villacoublay,
France)
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Table 2. Cont.

DTs Aim Data 3D Model Front-End Visualization
Platform

Virtual Gothenburg

Urban planning,
evaluation of urbanization

growth, climate change
affecting the sea level and
posing a risk of flooding

3D Buildings, streets,
lampposts, tree

plantations, and forests

Parametric, or
procedural modeling

Unreal engine
visualization (v. 4.27,

Potomac,
Maryland, MD, USA)

Digital Twin Victoria
Visualize a DT model of

Victoria. Collection of 3D
spatial data.

an extensive catalog of
open data from across
local, state, and federal
government, more than

4000 datasets

Buildings, Roads,
Vegetation

Virtual environment
(commonly Cesium).

Shared data management
delivery platform Data

federation approach.
Open sourced TerriaJS

(Philadelphia, PA, USA)

Turin Digital Twin
Urban planning and

climate change. Urban
spatial data infrastructure

Nadiral + Oblique
photogrammetry

Aerial LiDAR dense point
cloud. High-resolution 3D

Mesh Model

GIS data, aerial mapping,
mobile street mapping,
LiDAR, and imagery
data. Orthophotos.

Cesium Virtual
environment

(Philadelphia, PA, USA).
Shared data management

delivery platform Data
federation approach.

Open-sourced MapStore
(Geosolutions,

Camaiore, Italy)

5. The Turin Digital Twin

This section of the article focuses on the digital twins use case from the city of Turin,
located in the north of Italy. The section includes the motivation, objectives of the project,
progress, and challenges faced so far in the implementation of the digital twin.

5.1. Turin Digital Twin: Aims and Objectives

The implementation of new planning strategies to govern, predict, and manage the
complexity of new urban phenomena, such as brownfields recovery, urban regeneration,
climate change adaptation, and sustainable mobility, represents the future of our cities.

In Turin, as in other major European and world cities, the need to support urban
planning through the creation of digital replicas of the urban environment represents
an opportunity to bring together heterogeneous data and, at the same time, to integrate
information within a system of structured semantic relationships between the different
spatial objects.

The experiences in Turin that can be recalled so far concern the production studies of
3D models oriented toward BIM-GIS integration, the exploration of data modeling plat-
forms at the urban scale, and their adaptability and compliance in terms of interoperability
at the architectural scale [47,48]. Since 2022, the Municipality of Turin has been collaborating
with the SDG11lab (https://www.dist.polito.it/en/the_department/laboratory/sdg11lab,
accessed on 9 March 2024) of the Politecnico di Torino to create the digital twin of the entire
city; the creation of the 3D model based on specific high-resolution aerial images is only
the starting point for obtaining new geospatial data, making existing data interoperable
and providing useful tools for managing urban complexity. The Turin DT project aims to
contribute significantly to the development of digital technologies in the city’s projects and
activities and considers the applicability of DT technology in urban planning and develop-
ment initiatives. The integration of existing data to make them efficient, in a perspective
of advanced interoperability within the public administration, is one of the most pursued
objectives; the public services of the city have, in fact, a large amount of information in the
form of archives, differently conceived and managed at different times and for different
purposes, often already largely digitized. With Turin DT, the intention is to rethink the
existing database architectures (more geospatially oriented) with the introduction of a new
metadata model and related update flows.

https://www.dist.polito.it/en/the_department/laboratory/sdg11lab


Land 2024, 13, 635 14 of 22

Agile practices of experimentation with digital technologies and services have become
strategic lines of action for new urban development. In fact, the City of Turin is investing
heavily in smart city projects and is trying to change the current experimentation practices
in the different sectors of the city; for example, the integration of urban data, such as energy
consumption of buildings or real-time traffic data, in DT models enriches the possibility of
simulating the potential impact of changes related not only to the transformation of the
built fabric but also those resulting from natural phenomena and meteorological conditions.

The Turin DT project aims to create an easily accessible and navigable digital city
ecosystem that describes the behavior of the real world and its evolution over time, as well
as the impact of future urban developments. The idea is to provide the public administra-
tion with a privileged tool for planning the future of the city while managing past, present,
and future information. The construction of the 3D digital model is the elementary step to
achieving these objectives; by integrating different sources and creating a virtual environ-
ment, it is possible to make explicit in real time the characteristics of the built environment,
data on land use, road networks, public infrastructures, and green areas, paving the way
for the real-time experience. Another final objective of the Turin DT is updating the model
over time, with a planned acquisition plan and with the help of different types of sensors;
this is necessary for the digital environment to maintain consistency over time, while at the
same time drawing attention to a multi-temporal and multi-scale approach.

5.2. Data Acquisition

Turin is the third-largest city in Italy, located in the North of Italy, and is home to
numerous UNESCO heritage structures. The location of the city of Turin is shown below in
Figure 5.
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The dataset used to model the Turin DT was acquired on 28–29 January 2022 using the
new Leica City Mapper-2, an airborne hybrid digital sensor consisting of both optical im-
agery and a LiDAR point cloud (Figure 6). For the optical imagery data, 20,291 images were
acquired over the city of Turin at an altitude of approximately 1 km. For each acquisition
point, one nadir and four oblique images were acquired. The photogrammetric image data
were characterized by a GSD of 5 cm, 60% overlap of the lateral images, and 80% overlap
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of the longitudinal images. In addition, the sensor is equipped with two different cameras,
including Camera NIR Lens 71 for nadir and multispectral acquisition and Camera RGB
Lens 112/145 for oblique acquisition. The acquisition scheme was based on a traditional
grid with nadir and oblique acquisitions. The LiDAR data were acquired simultaneously
with the imagery, with a point density of 30–40/m2 and an angle of 20◦. This system is
characterized by a conical scanning pattern, which allows vertical surfaces in all directions
in the resulting point cloud.
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5.3. Data Processing Methods

The optical imagery and LiDAR data with initial orientations and trajectories were
processed with Agisoft Metashape 2.1.0 and nFrames SURE 5.2 to derive classified dense
point clouds, 3D meshes, accurate and detailed orthophotos, DTM, and DSM for the city of
Turin (Figure 7).
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The use of a combined dataset aims to improve the quality of the final model because
the use of oblique images and the LiDAR system represent an advantage for modeling
the vertical surface or provide additional information, such as intensity, which is useful
for point classification. In fact, while with the image data, the classification only concerns
the land use and land cover visible on the images, with the LiDAR data, we can classify
the ground, vegetation, and buildings. Furthermore, a complementary benefit of using
LiDAR, which is an active sensor, in combination with imagery is the ability to compensate
for the need for sunlight with the ability to acquire in the shadows and under vegetation.
In addition, the combination of LiDAR and imagery is essential for 3D meshing, as one is
used for geometric modeling and the other for texturing the 3D model. In particular, the
processing phase on nFrames SURE 5.2 combines LiDAR and image data. This software
offers the possibility to use LiDAR data to improve the 2.5D and 3D products. The LiDAR
point clouds are useful where the surface geometry is difficult to reconstruct from imagery
alone, particularly where urban density is high or where imagery is affected by shadows
or occlusion. Using the LiDAR point cloud as a complement to the image data makes the
final result of the 3D model more complete and geometrically improved, as it allows for
the correction of typical photogrammetric errors during the surface reconstruction phase.

5.4. Data Products

The 3D city model developed in the first phase of this work is the basis for the
future application of the digital twin. Thanks to the synergy and integration of different
technologies, the previous stages have allowed us to obtain a metrically correct model
of the city, which will be useful for analyzing and describing all the different features of
the original environment. For example, the 2.5D DSM makes it possible to determine the
height of the building and extract the topography features, while the 3D point cloud is
used to classify the points into different classes, such as building and roof shapes, high and
low vegetation, and ground and road infrastructure. The 3D model can also be used for
visualization and web distribution applications. All these applications can be translated
into virtual layers that describe the city of Turin and can be enriched with semantic content
(Figure 8).
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5.5. Turin DT Challenges

The journey of developing the digital twins of Turin has been full of challenges, both
technical and semantic (Figure 9). The use of 3D urban digital twins holds immense
promise for urban planning, but it also comes with the complexities associated with
software benchmarking, data sharing, monetary constraints, data synchronization, and
data interoperability [49].
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Software benchmarking is a crucial aspect of evaluating the performance and efficiency
of different software tools for processing point cloud data and incorporating semantic
information. However, the absence of standardized benchmarks and evaluation criteria
makes it challenging to conduct comparative assessments and hinders progress in the
field. Overcoming this challenge necessitates the establishment of rigorous benchmarking
protocols to enable fair and accurate comparisons.

One of the main issues is the assignment of semantic information to the products
derived from data processing and the challenges of integrating semantic information into
3D city models derived from point clouds. Without semantics, it is almost impractical to
use point clouds/3D meshes/models for further analysis.

Data sharing is another major challenge, as the vast amount of data generated by
urban environments requires efficient sharing mechanisms between different stakeholders.
Privacy concerns, data security issues, and proprietary formats often prevent seamless data
exchange, limiting collaboration and hampering the development of comprehensive urban
digital twins. Overcoming this challenge requires the establishment of open data standards
and protocols to facilitate interoperability and promote transparency.

Monetary constraints are a barrier to the widespread adoption of urban DTs, as the
acquisition and processing of high-resolution point cloud data involves significant costs.
Limited financial resources can limit access to advanced technologies, stifle innovation,
and hinder progress in urban planning and management. Innovative funding models
and cost-effective solutions are needed to address this challenge and encourage the wider
adoption of digital twin technologies.

Data synchronization is critical to maintaining the accuracy and reliability of 3D urban
digital twins, especially in dynamic urban environments in which real-time updates are
essential. However, achieving synchronization between the digital model and the physi-
cal environment is technically challenging, as discrepancies in data sources and formats
can lead to inconsistencies and inaccuracies. The development of robust synchroniza-
tion algorithms and protocols is essential to ensure the integrity and reliability of digital
twin implementations.
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Data interoperability is a fundamental requirement for the seamless integration of
semantic information into 3D urban digital twins, enabling disparate data sources and
formats to be harmonized and effectively integrated. However, the lack of standardized
data formats and protocols complicates interoperability efforts, resulting in data silos and
fragmentation. The establishment of open standards and protocols for data exchange
and interoperability is essential to overcome this challenge and effectively facilitate the
integration of semantic information into DTs.

The Turin DT model is based on a large amount of geospatial and non-geospatial
data; the redefinition of Turin as a smart city is therefore implicit, aggregating and in-
tegrating data generated by sensors and acquired both in real time and at a later date.
The distinguishing feature of DT is therefore its ability to synchronize with reality, react
continuously to changes in physical conditions, and provide timely indications for planning
and management.

Ultimately, the integration of semantic information into 3D urban digital twins from point
clouds presents several processing challenges that must be addressed to realize its full potential.
By identifying the technical and semantic challenges and proposing potential solutions, the
Turin DT project is progressing toward a more robust and comprehensive implementation.

6. Discussion

It is beyond dispute that digital twins (DTs) are powerful tools for improving decision-
making, resource allocation, and urban infrastructure management. They also facilitate
communication and collaboration between stakeholders and propose new urban develop-
ment policies. However, the term “digital twin” is full of ambiguities. All models, to be
useful, cannot reflect the totality of reality; they must necessarily be selective. City DTs
are based on the latest developments of the IoT and extend the concepts of the smart city.
Advanced information modeling and, more importantly, data interoperability become the
key to managing the complex city. For this reason, the model must operate at two levels. At
the general level, the model attempts to maintain a broad view of the entire city, including
its general problems and development prospects. This is, in fact, the level of attention
of a master plan. At a more “close” and local level, the specificities of places become
apparent, necessitating critical and careful analysis. A number of pressing and important
questions remain regarding the concept of the “frictionless future”, as presented by the
smart city paradigm, which envisions a seamless entity of large-scale digital infrastructure
and physical cities. This vision inadvertently excludes a number of factors that are crucial
to the development of urban areas. Therefore, the ambitions for digital twins of cities
should ideally avoid the ambiguity and intangible nature of the smart city. To paraphrase
Michael Batty [50]:

“Thus the question ‘what and where is the smartest city?’ not only has no answer, it
is also ill-defined, largely because smartness or intelligence is a process, not an artefact
or product”.

This research topic presents several challenges, particularly in relation to the ongoing
Turin DT project. These challenges are primarily technical and semantic in nature. From a
technical standpoint, the issue of processing increasingly large and heterogeneous data sets,
commonly referred to as “big data”, and their cost-efficiency factor must be highlighted.
From a semantic perspective, there are issues related to the speed of urban transformation
and the complexity of design solutions, which increasingly require the support of the
DT model. This model must be updated in real time and be navigable across multiple
temporal periods.

The issue of integrating 3D city models from disparate sources to update the DT
remains unresolved. An update that should be automatic is hindered by the fact that
the key challenge, common to other experiences worldwide, is the lack of a simple and
operational product that is easy to understand and implement “from the bottom up”,
directly by stakeholders.
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From a technical standpoint, another challenge is the management of photogrammetric
and LiDAR datasets, which often necessitate the use of increasingly powerful computing
hardware for processing. When utilizing high-resolution aerial photogrammetric data
(in terms of short-range), LiDAR from an airborne sensor, and the integration of other
ground-based LiDAR data, it is of paramount importance to exercise caution in the georef-
erencing phase. In this context, it is advisable to avoid the pursuit of a single workstation
with sufficient computing power. Instead, the potential offered by cloud computing (e.g.,
through instances on Amazon AWS, Microsoft Azure, or others) should be leveraged to
reduce the cost and time of data processing.

The utilization of cloud computing can be strategically employed to facilitate the
management of data, metadata, and instances that are useful for open-source visualization
and sharing. In this context, the perspective of FAIR data management and sharing can
present a significant opportunity for public administrations to access interactive analyses
and simulations of the urban environment, as well as to facilitate collaborative and crowd-
mapping solutions for updating the 3D city model.

7. Conclusions

The lessons learned from this project are many. From a data management perspective,
the project has highlighted the importance of robust data processing capabilities and the
need for significant storage and computing power. Successful implementation also requires
strong collaboration between technology providers, academic institutions, and city author-
ities. Establishing clear data sharing and licensing agreements was essential for smooth
collaboration and data distribution. In terms of benchmarking and hardware testing, select-
ing the right software by ensuring hardware compatibility is a critical step in projects of
this scale. Benchmarking software capabilities and testing hardware configurations were
key to effectively managing the massive amount of data. The Turin DT sets a precedent for
future urban modeling projects. It demonstrates the potential of DTs in urban planning,
infrastructure management, and emergency response planning. Future projects can lever-
age the methods and insights gained from the DT, potentially integrating additional data
sources, such as IoT sensor data, for more dynamic and functional urban models.

The future of DT and 3D city modeling technologies is promising, with several ad-
vancements and expanding applications on the horizon, particularly in the areas of sus-
tainability and smart cities. From a technological advancement perspective, future de-
velopments in DTs and 3D modeling are likely to see greater integration with emerging
technologies such as AI, machine learning, and the internet of things (IoT). The integration
of AR and VR with DT is expected to provide more immersive and interactive experiences.
This could revolutionize the way urban planners and citizens engage with and understand
urban models. The advent of quantum computing could offer new ways of processing the
huge amounts of data involved in DTs, significantly speeding up simulations and analysis.
In terms of broadening applications beyond urban planning, DTs could be used in health-
care for city-wide health monitoring and in public safety for crime prevention and response
strategies, as well as in education and training, in which DTs could be used for educational
purposes, providing a virtual environment for training urban planners, emergency respon-
ders, and city administrators. In terms of sustainability and smart cities, DTs are expected
to play a crucial role in promoting sustainable urban development. They can help in energy
optimization, waste reduction, and resource management, contributing to greener and
more sustainable smart cities, enabling better urban management and improved citizen
services. DTs will be instrumental in the development of smart cities, providing solutions
to urban challenges through advanced data analysis and simulation [51].

The development of the DT then involves sophisticated modeling techniques that
incorporate not only the physical attributes of the city but also its dynamic aspects such as
traffic and population movements. The integration process is an ongoing effort, requiring
regular updates and maintenance to ensure that the DT remains an accurate and reliable
representation of the urban landscape. The applications of DT technology in urban plan-
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ning are vast and transformative. The first primary application is in urban infrastructure
management, where DTs assist in the monitoring, maintenance, and planning of urban
assets. They are also crucial in urban design and development, enabling the simulation
of new projects and their impact on the existing urban fabric. Furthermore, DTs play an
important role in environmental management and sustainability, as they can model envi-
ronmental scenarios and support decision-making for sustainable urban development [52].
Looking to the future, the potential advancements of DT technology within 3D urban
modeling are promising and diverse. Future advances may include enhanced data analysis
capabilities, allowing for deeper insights into urban dynamics. The integration of artificial
intelligence and machine learning could enable predictive modeling and more efficient
urban management. In addition, advances in immersive technologies, such as VR and AR,
could transform the way stakeholders interact with and understand urban models [53].

In conclusion, the study of DTs and 3D modeling technologies in the context of urban
planning and digital technology reveals several key findings with significant implications.
DTs and 3D modeling technologies have emerged as transformative tools in urban planning,
offering unprecedented levels of detail and interactivity. They enable more accurate and
dynamic representations of urban environments, facilitating advanced scenario simulations,
infrastructure management, and resource optimization. These technologies significantly
enhance public engagement and policymaking processes. By providing interactive and
understandable platforms, they democratize urban data, enabling more inclusive and
informed public participation. For policymakers, the data-driven insights and scenario
analysis provided by DTs lead to more informed and effective decision-making. Despite
the benefits, challenges remain in terms of data privacy and security, technical scalability,
and model accuracy. It is therefore imperative to address these challenges through the
implementation of robust security measures, the utilization of advanced data management
technologies, and the continuous validation of models. Furthermore, the establishment
of comprehensive policy and regulatory frameworks is essential to guide the ethical and
effective use of these technologies.
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