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Abstract: Land use and land cover change (LUCC) prediction of cities in Western China requires
higher accuracy in quantitative demand and spatial layout because of complex challenges in balancing
relationships between urban constructions and ecological developments. Considering city-level areas
and various types of land use and land cover, existing LUCC models without constraint or with
only loose demand constraints were impractical in providing evidence of high accuracy and high-
resolution predictions in areas facing fierce land competition. In this study, we proposed a two-layer
SD-ANN-CA model to simulate and explore the LUCC trend and layout predictions for 2018, 2028,
and 2038 in Ya’an City, Western China. The two-layer structure with an upper layer of the SD
model and a lower layer of the ANN-CA model, as well as the advantages of all three methods of
system dynamics (SD), artificial neural network (ANN), and cellular automata (CA), have allowed
us to consider the macro-level demand constraints, meso-level driving factors constraints, and the
micro-level spatial constraints into a unified model framework. The simulation results of the year
2018 have shown significant improvement in the accuracy of the ANN-CA model constructed in
our earlier work, especially in types of forest land (error-accuracy: 0.08%), grassland (error-accuracy:
0.23%), and construction land (error-accuracy: 0.18%). The layout predictions of all six types of land
use in 2028 and 2038 are then carried out to provide visual evidence support, which may improve
the efficiency of planning and policy-making processes. Our work may also provide insights into
new ways to combine quantitative methods into spatial methods in constructing city-level or even
regional-level LUCC models with high resolution.

Keywords: land use and land cover change model; system dynamics; artificial neural network;
cellular automata; evolution of land use

1. Introduction

Land use and land cover change (LUCC) are considered important indicators reflecting
the essential link between human activity process and natural environmental evolution.
Understanding the driving mechanism and the simulation of LUCC spatiotemporal dy-
namics are crucial for designing strategies to address sustainability challenges, including
climate change, food security, energy transition, and biodiversity loss [1,2]. The LUCC
modeling is used to analyze both the causes and consequences of alternative future land-
scapes related to diverse socioeconomic and natural environmental driving forces, which is
of great importance in enhancing its simulation effectiveness and accuracy [3,4]. However,
the data-intensive task, which requires both historical and current land maps as well as
data describing multiple drivers, the LUCC modeling has not been extensively tested in
empirical studies at different scale contexts until the advancing of remote sensing technol-
ogy, which increased the LUCC monitoring capacity [5]. Considerable effects are made in
existing works of the literature all over the world to witness the LUCC simulation model
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frameworks being significantly improved from the earliest quantitative methods, which
simply predict land use demand and general LUCC trends, to current spatial methods that
simulate and rebuild the spatial layout of land use [6–10]. Typical quantitative methods
generally include system dynamics (SD), gray models (gms), Markov models (Markov),
artificial neural networks (ANN), and the computable general equilibrium of land use
change (CGELUC). Common spatial methods generally include the change in land use
and effect (CLUE) model, dynamics of land system (DLS) model, cellular automata (CA)
model, and multi-agent (MAS) model. Among these, the CA model is known for its dy-
namic evolvement mechanism and high-resolution microscale analysis capability, which
has been widely used in recent decades [11–13]. However, the CA model must follow
a set of rules of neighboring cells or dynamical transition rules, which are difficult to
determine scientifically; therefore, the high-resolution advantage of the CA model can only
be presented at small spatiotemporal scales [3]. The overview of the research also pointed
out major limitations of most traditional CA model applications in that they only simulated
the dynamics of one individual land use/land cover type or have often been applied to
small areas like counties or districts. Also, the identified driving factors vary widely across
models and are heavily determined by local sites, which may not be considered proper
representatives in the perspective of multi-typed land interaction in a broader context [14].

In fact, the LUCC patterns are found to be determined by multiple land types pro-
cessing simultaneously and affecting each other in larger areas, especially in regions with
increasing populations and rapid urbanization where land competitions and changes occur
more fiercely [15,16]. Different LUCC trends of diverse land types are obtained in macro-
level research, which helps provide essential evidence of driving mechanisms. Causing
tremendous decrease in vegetation of natural landscape, urban sprawl and expansion of
unplanned built-up areas are considered the biggest threat to other land types, especially
in mountain valleys and basins or other ecologically fragile regions [17–19]. In regions
where the urbanization level is already high, interactions and changes between natural
land types are much more obvious. For example, cross-national research in Eastern Europe
discovered that agricultural change was captured as generally complementary to forest
change during the past 250 years, where forests increased, agriculture decreased, and vice
versa [20]. Tokyo Metropolitan Area was also experiencing changes from cropland to other
land use/cover types while construction land area was almost stable [21]. Different key
factors behind such changes are also discussed in the existing literature. Natural/spatial
drivers were described as more influential on land abandonment than on other change
processes. Socioeconomic factors like population density and property value were found
to be closely related to where new urban development would occur [14]. Political and
institutional underlying drivers like protection policy were found to play a dominant role
in shaping forestation expansion patterns, and economic factors were most typically related
to agricultural expansion/intensification [22]. With such diversities in change patterns and
driving mechanisms, it is difficult and challenging to conduct multiple LUCC simulations
within one CA model, which can capture complicated interactions and competitions among
different land use and land cover types in defining transition rules [3]. Especially in areas
particularly sensitive to disturbance in terms of ecosystem services, high accuracy should
be considered in both amount and location prediction of land change [23].

To provide a better understanding of both multiple-land macro-level trends and micro-
level dynamics, CA-based hybrid or integrated LUCC models for better accuracy have
become the hottest topic in geoscience and the RS community [24,25]. With efficiency and
convenience being proven to be integrated with other methods, the most widely used
CA-based hybrid algorithms are CA-Markov and the ANN-CA [26–29]. In the CA-Markov
algorithm, the Markov matrix determines the number of pixels that transition from each
category to every other category during time intervals, while the CA influences the spatial
allocation of extrapolated change, which has been applied in studies globally. However,
with kappa coefficients ranging from 0.73 to 0.90, there are also arguments about the
unstable performance of the CA-Markov algorithm when dealing with large-scale and
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more complex land use and land cover types [30–34]. With the advent of machine-learning
techniques, Artificial Neural Networks (ANN) have proven to be a powerful tool to tackle
unprecedented, large-scale, influential challenges [35,36] and are known for the perceptron
and recognition logic for establishing essential knowledge about driving factors that could
make target patterns happen, which can provide the necessary basis to set evolvement
process rules for CA models [12,37]. The application of the ANN-CA algorithm became
quite popular in the literature, especially in China and other developing countries with
more rapid LUCC change and more competition between different land use/land cover
types [38–42]. Significantly higher kappa coefficients are obtained in this research, ranging
from 0.81 to 0.94, indicating better performance of ANN-CA when formulating future
LUCC scenarios. Based on such an algorithm, some research has considered employing
a two-layer simulation framework by introducing macro-demand constraint into the CA-
based model, such as the CLUE-S model [43,44] and the FLUS model [3,45,46]. Both
frameworks added a demand calculation module for different land types to determine
whether the spatial layout simulation process was to be finished, which is processed
under logistical regression in the CLUE-S model and under the system dynamics method
in the FLUS model. Despite the great progress having been achieved, two limitations
exist in the current LUCC simulation models. Firstly, the driving mechanism is still
lacking between the demand layer and spatial layout simulation layer in existing model
frameworks. Even though the demand layer has considered multiple driving factors to
formulate and predict future demand, those identified factors are not considered and tested
in the spatial simulation layer to understand their effects in influencing land use and land
cover layout, which may bring less coupled results between the macro demand change
and the local change allocation. Those links are essential in ecologically fragile areas like
Western China, where forest and water conservation, as well as environment protection,
play essential roles in national ecological security and understanding of interaction links or
feedback between various factors concerning population, socioeconomic features, as well
as spatial and environmental heterogeneity, is necessary before the dynamic processes of
land-use change can be simulated, which is considered to be the most apparent advantage
of systemic dynamics (SD) model [47]. Secondly, considering land use competition under
the Chinese rapid urbanization context with limited land resources and high population
pressure, micro-level spatial constraints are also needed to improve accuracy in spatial
layout. The results have been presented in the existing literature with better space pattern
shapes, which are more similar to reality [48,49]; however, their effects have not been tested
in a unified LUCC simulation model framework as essential steps.

Therefore, this research proposes an SD-ANN-CA model framework considering
macro-level demand constraints, meso-level driving factors, feedback constraints, and
micro-spatial heterogeneity constraints for simulating dynamic land-use change processes
and predictions. The model framework also contains two layers. In the upper layer,
the system dynamics (SD) model is used to determine related driving factors and their
interaction links, as well as the total demand of different types of land use as meso-level
and macro-level constraints from the perspective of the system. In the lower layer, the
ANN-CA model under constraints is built to simplify the transformation rules and facilitate
dynamic evolution to explore the land-use trend and layout predictions of 2028 and 2038 in
the study area. During this time, spatial gravity center transfer analysis is also considered
a micro-level spatial constraint for the final output results. It should be mentioned that
this work is also further developed from our earlier preprint version, which can be found
at the Research Gate [50]. The preprint can be considered as an attempt to introduce only
macro-level demand constraint into the ANN-CA layer. Based on the results, we have
then largely improved the whole model framework considering the macro-level demand
constraints, meso-level driving factors constraints, and micro-level spatial constraints,
which are specifically presented in the following sections.
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2. Materials and Methods
2.1. Study Area

Ya’an City is a prefecture-level city located in the transition zone from the Sichuan
Basin to the Qinghai–Tibet Plateau, which is widely known as “the City of Rain”, “the
throat of Western Sichuan”, “the gate of Tibet”, “the corridor of nationality” and “the
lung of heaven”. With the highest vegetation coverage in Sichuan province, ecological
and biodiversity environment conservation in Ya’an City is vital for the whole province
and even the nation. We can see that the National Nature Reservation area covers most
part of Northwestern Ya’an, which is presented in Figure 1. Meanwhile, the urbanization
process in Ya’an City is also rapid, yet it suffers the great challenge of limited land resources.
Ya’an City has two municipal districts (Yucheng District and Mingshan District) and six
counties (Yingjing County, Hanyuan County, Shimian County, Tianquan County, Lushan
County, and Baoxing County) with a total area of 15,046 km2 and population of 1.43 million.
However, we can see extreme differences from the Digital Elevation Model (DEM) image
shown in Figure 1, with large areas of mountains in the western part of the city and
relatively small areas of plains, considered residential and productive areas, concentrated
in the eastern part. Under the future objective of becoming a national green development
demonstration city outlined in Ya’an’s economic and social development agenda, Ya’an
faces a significant challenge in balancing relationships of multiple types of land resources
concerning urban construction, agricultural production, and eco-environmental protection.
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2.2. Data Preparation

This study requires two types of data: numerical data; and geospatial information
data (Table 1). To guarantee the operability of this model, spatial data were used as the
standard for uniform environmental settings, and the vector data were transformed into
raster data using the face transformation raster tool. The coordinate system was unified as
WGS_1984_UTM_Zone_48N (EPSG:32648) using the projection raster tool; the pixel size
of all spatial data was set as 90 m using the resampling tool. The numbers of rows and
columns of the raster data were unified using the clipping tool. To ensure ArcGIS and
MATLAB data compatibility, making it convenient for the loose coupling development of
the model, the raster format was further transformed into ASCII-GRID format.
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Table 1. Abstraction of the dataset.

Type Data Time Description Source Format/Resolution

Geospatial
information data

Remote
sensing images

1998
2008
2018

Three phases of graphic
data regarding land use

status through
interpretation of remote

sensing images.

Geospatial data
cloud (http://www.
gscloud.cn/search)

[51]

Raster, 30 m

DEM 2018

Slope and aspect were
acquired through the 3D
analysis of DEM, which
are used as the model’s

constraints.

Geospatial data cloud
(http://www.

gscloud.cn/search)
[51]

Raster, 30 m

Road map 2020
The arterial road map

was acquired as a
constraint of the model.

Open Street Map
(https://www.

openstreetmap.org/)
[52]

Shapefile (line)

River chart 2020
The major river chart was
acquired as a constraint

of the model.

Open Street Map
(https://www.

openstreetmap.org/)
[52]

Shapefile (line)

Residential
areas 2020

Major cities and towns
were acquired as rated

constraints of the model.

Open Street Map
(https://www.

openstreetmap.org/)
[52]

Shapefile (point)

Natural
reserve 2020 Used as the constraint of

the model.

The World Database
on Protected Areas

(WDPA) [53]
Shapefile (polygon)

Administrative
map 2020 Running boundary of the

model.
BIGEMAP software

ver. 30.0.9.14 [54] Shapefile (polygon)

Numerical data

Population
data 1998–2018

Input data of the SD
model. Include

information on urban and
rural population

numbers, change rates,
and carrying capacities.

Statistical Yearbook
of Ya’an City [55]

Statistical Yearbook
of Sichuan Province

[56]

PDF

Industrial
output value 1998–2018

Input data of the SD
model. Encompass the

value-added of primary,
secondary, and tertiary
industries along with

their growth rates, as well
as land value-added

information

Statistical Yearbook
of Ya’an City [55]

Statistical Yearbook
of Sichuan Province

[56]

PDF

Agricultural
and grain data 1998–2018

Input data of the SD
model. Comprise

production quantities, per
capita consumption
levels, and demand

figures for grains and
livestock meat products.

Statistical Yearbook
of Ya’an City [55]

Statistical Yearbook
of Sichuan Province

[56]

PDF

Housing and
construction
information

1998–2018

Input data of the SD
model. Contain

urbanization rates,
housing areas, housing
demands, land usage

areas, etc.

China National Land
and Resources

Statistical Yearbook
[57]

China Urban
Construction

Statistical Yearbook
[58]

PDF

Land use status data processing includes image mosaicking and clipping, radiation
calibration, and monitoring classification. The land in Ya’an City was divided into six land
use types: cultivated land; forest land; grassland; water surface; construction land; and
other land. The chart of ultimate land use status in Ya’an City in three phases is shown

http://www.gscloud.cn/search
http://www.gscloud.cn/search
http://www.gscloud.cn/search
http://www.gscloud.cn/search
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
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in Figure 2. Spatial data maps used in the following Ya’an City model were acquired and
yielded through the ArcGIS spatial analytical method. The slope and aspect processing
of DEM data was performed using a 3D analysis tool. The Euclidean distances in the
distribution maps of roads, rivers, and administrative centers were calculated using the
spatial analysis tool.
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Historical data show that forest land dominated all three time phases, revealing the
great ecosystem service value of Ya’an City. A great loss for cultivated land and a great
increase in forest land during the period of 1998–2008 was obtained, while the percentage
of those two land types remained stable during the period of 2008–2018. Grassland saw a
slight decrease while water surface, construction land, and other land maintained growth
trends during both time periods of 1998–2008 and 2008–2018. Transitions from cultivated
land to forest land, grassland, and construction land were also significantly obtained, which
is consistent with the national policy of “Returning farmland to grassland and forest” for
Western China’s development. The construction land area in 2018 increased three times
compared to 1998, indicating a fast urbanization process in Ya’an City.

2.3. A Two-Layer SD-ANN-CA Model Framework Construction

To better understand land-use change in six land types, including cultivated land,
forest land, grassland, water surface, construction land, and other land in Ya’an City, we
have established a two-layer simulation model combining the SD model and the ANN-CA
model into a uniformed framework. The function of the upper layer was to formulate
suitable constraints, including driving factors and critical feedback loops concerning land-
use change (labeled as meso-level constraint) and the total demand of six types of land-
use, respectively (labeled as macro-level constraint), using the SD method from a more
systematic perspective. The function of the lower layer was to predict and output the
layout results of all six types of land use, considering all constraints. Specifically, the
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ANN simulation process in the ANN-CA model was trained under certain relationships of
driving factors and feedbacks identified in the SD model layer to determine transformation
rules for the CA simulation process. The CA parameters were then set following such rules
and simulated under the micro-level land-use spatial center constraint using the gravity
transfer analysis method. Moreover, the prediction results of the ANN-CA model were also
considered under the macro-level of demand constraint that the result would be output
only when the errors between the quantitative prediction area based on the SD model and
the simulation areas based on the ANN-CA model of four land use types (cultivated land,
construction land, forest land, and grassland) were lower than ±5%. The overall model
framework is presented in Figure 3.

Land 2024, 13, x FOR PEER REVIEW 7 of 22 
 

To better understand land-use change in six land types, including cultivated land, 
forest land, grassland, water surface, construction land, and other land in Ya’an City, we 
have established a two-layer simulation model combining the SD model and the ANN-
CA model into a uniformed framework. The function of the upper layer was to formulate 
suitable constraints, including driving factors and critical feedback loops concerning land-
use change (labeled as meso-level constraint) and the total demand of six types of land-
use, respectively (labeled as macro-level constraint), using the SD method from a more 
systematic perspective. The function of the lower layer was to predict and output the lay-
out results of all six types of land use, considering all constraints. Specifically, the ANN 
simulation process in the ANN-CA model was trained under certain relationships of driv-
ing factors and feedbacks identified in the SD model layer to determine transformation 
rules for the CA simulation process. The CA parameters were then set following such 
rules and simulated under the micro-level land-use spatial center constraint using the 
gravity transfer analysis method. Moreover, the prediction results of the ANN-CA model 
were also considered under the macro-level of demand constraint that the result would 
be output only when the errors between the quantitative prediction area based on the SD 
model and the simulation areas based on the ANN-CA model of four land use types (cul-
tivated land, construction land, forest land, and grassland) were lower than ±5%. The over-
all model framework is presented in Figure 3. 

 
Figure 3. The model framework of the two-layer SD-ANN-CA model. 

2.4. Estimation of Simulation Accuracy 
To compare the prediction results with the actual land use and land cover conditions, 

the following equations for simulation accuracy calculation were adopted: 
- Overall Error-accuracy (OA) 

Figure 3. The model framework of the two-layer SD-ANN-CA model.

2.4. Estimation of Simulation Accuracy

To compare the prediction results with the actual land use and land cover conditions,
the following equations for simulation accuracy calculation were adopted:

- Overall Error-accuracy (OA)

OA = Nincorrect/Ntotal (1)

- The kappa coefficient

Kappa coefficient = (Pa − Pe)/(Pi − Pe) (2)

Equation (1) calculates the proportion of pixels incorrectly predicted among all pixels
in the samples, where Nincorrect is the number of pixels incorrectly predicted by the model;
Ntotal is the total number of pixels. Equation (2) is commonly used in CA simulation
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assessment, in which K means kappa index; Pa represents the actual accuracy; Pe is the
expected prediction accuracy; and Pi is the ideal accuracy (100%).

2.5. Selection of Key Driving Factors

LUCC is the result of the interaction between human activity and land-related bio-
physical constraints. The existing literature shows that drivers of landscape change
can be extremely diverse and that underlying factors consist of combinations of politi-
cal/institutional, economic, cultural, technical, and natural/spatial drivers, among which
the socioeconomic and geographic condition factors are two major categories addressed in
various LUCC models [14,22]. Different driving mechanisms concerning driving factors
in those two categories have been obtained. Human-environment interactions are mainly
reflected by anthropogenic exploitation of land cover and land use under rapid urban
expansion and socioeconomic development, and spatial drivers are found to be highly
related to land value and are described as fundamental standards to select the potential
area for future development [22]. Therefore, it is essential to consider both socioeconomic
and spatial factors comprehensively.

Spatial factors considered in related works were relatively fixed, involving elevation,
slope, aspect, distance to the main road, distance to rivers, and distance to the administrative
center [14], which were also selected in our case. However, the socioeconomic factors used
were more diversified. Some researchers highlighted the impact of population density
and growth rate on attracting or repelling urban growth [39]. While others argued that
the numerical value of total population and industry was also important, the LUCC
model would benefit from more detailed population and economic indicators [59]. More
comprehensive socioeconomic driving factors, including density, growth rate, and the
numerical value of population and industry, may be needed for the two-layer LUCC model
for better constraints. In our model framework, the advantage of the SD model layer has
enabled us to consider the socioeconomic driving factors based on collected historical data.
Together with spatial driving factors, the constraint links between the SD layer and ANN-
CA layer allow us to introduce the most significant socioeconomic factors driven by the
SD model into the ANN-CA training process for a better understanding of transformation
rules. Sixty-nine socioeconomic driving factors were selected, including values, density,
and growth rate variables, reflecting subdivided population and economic systems, which
are listed in Table 2. The six most commonly used spatial driving factors have also been
selected, involving elevation, slope, aspect, distance to the main road, distance to rivers,
and distance to the administrative center. However, the spatial factors usually include
multiple dimensions and a wide range of values. Normalization processing is commonly
used in machine-learning areas to deal with such data to eliminate the impact of dimensions
and enhance model convergence speed [4]. Considering the natural topography and larger
research areas of Ya’an City have led to a more widely ranged value of spatial factors, such
as elevation factor ranging from 500 to above 4500 m, slope factor ranging from 0◦ to above
45◦, distance to main road ranging from 0 to 5000 m; normalization process with such data
to range between 0 and 1 is important for better network training speed while still retaining
the original probability gradient. Six spatial factors under the normalization process are
shown in Figure 4. Apart from these, we also considered the National Nature Reservation
area in Ya’an City as a limitation condition as the land use and land cover types in the
nature reserve area remain unchanged during any time period.
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Table 2. Key driving factors included in the model framework.

Classification of Driving Factors Number of Variables Considered Variable Names

Socioeconomic factors 69

• Population system factors: total population, annual
total population growth, annual total population
reduction, birth rate, death rate, rural population,
urban population, annual urban population
change, urban population change rate,
urbanization rate, and maximum population
carrying capacity;

• Land resources system factors: per capita share of
grain, food demand, multiple crop index, grain
yield per hectare, proportion of grain in crop
planting, cultivated land, per capita demand for
meat storage, meat storage demand, meat storage
yield per unit area of grassland, grassland, forest
land change rate, forest land change, forest land,
forest coverage rate, facility agricultural land,
agricultural land, reserve construction land area,
development rate of reserve construction land area,
development area of reserve construction land,
increase in construction land, construction land,
per capita construction land, total land area, land
development intensity, unused land, rural per
capita construction land, rural construction land,
urban industrial land, urban tertiary industry land,
urban per capita housing area, urban housing area
demand, conversion coefficient of urban residential
land, urban residential land, urban per capita land
for road transportation facilities, land for urban
road transportation facilities, other urban
construction land, urban construction land, and
urban per capita construction land;

• Economic systems factors: GDP, per capita GDP,
average production value per area, proportion of
primary industry, proportion of secondary
industry, proportion of tertiary industry, growth
rate of primary industry output value, added value
of primary industry, output value of the primary
industry, growth rate of secondary industry output
value, added value of secondary industry, output
value of the secondary industry, industrial ratio to
secondary production, industrial output value,
average output value of industrial land, growth
rate of tertiary industry output value, added value
of tertiary industry, output value of the tertiary
industry, and average output value of tertiary
industry land;

Spatial factors 6 Elevation, slope, aspect, distance to main roads, distance
to rivers, and distance to administrative centers
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3. Results

Compared to numerical data, spatial data are considered relatively stable and more
difficult to obtain. Therefore, the SD model, which is normally based on numerical data, can
simulate year-to-year dynamics of LUCC trend, while the ANN-CA model is more suitable
with a decadal time step. In this research, the SD simulation layer generates demand for six
types of land use and land cover in the prediction time of 2019–2038 based on historical
data of 1998–2018. The ANN-CA simulation layer generated results based on ten-year
intervals, meaning that it simulates the LUCC situation in 2018 based on historical data of
1998–2008, validates against actual conditions of 2018, and then projects future scenarios
for 2028 based on historical data of 2008–2018, and finally, the long-term future scenario is
generated for 2038 based on historical data of 2018 and prediction data of 2028.

The SD simulation model is conducted on Vensim PLE software ver. 5.8.3.1 and
the ANN-CA simulation model is conducted based on ArcGIS with GeoSOS extension
packages; the simulation process and results of 2018, 2028, and 2038 are discussed in detail
in the following sections. It should be mentioned that this model is simulated under the
assumption that no major unforeseen events would happen. However, the historical data
from 1998 to 2008 and 2008 to 2018 capture events like SARS in 2003 and the Wenchuan
earthquake in 2012. The impacts of those events are also learned by the simulation model.
Therefore, even though the COVID-19 pandemic occurred during the prediction time of
2018–2028, our model framework is still considered reliable for the 2028 simulation result
based on 2008–2018 data.

3.1. Simulation and Results of the SD Model Layer

In this layer, the feedback relationships and driving factors among massive variables
related to society, economy, and land use were first analyzed from the perspective of the
SD model. Then, the future land use demand prediction in Ya’an City was estimated. The
data used in the SD model contain two kinds of boundaries. The time boundary for model
simulation is from 1998 to 2038. Specifically, years from 1998 to 2018 were historical data
years, while years from 2019 to 2038 were prediction years. To decrease the error caused
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by period changes during prediction, the time step length was set to 1 year. The spatial
boundary for model simulation was the administrative regions in Ya’an City, Sichuan
Province. The construction and simulation processes of land use prediction by the SD
model include drawing the feedback loop chart, establishing system equations, verifying
model validity, and model prediction, which were mainly based on Vensim PLE software
ver. 5.8.3.1. Additionally, most equations in the SD model were derived through curve
fitting in MATLAB software ver. 9.0, while a small portion of them employed specialized
functions such as lookup tables and logical functions from the Vensim PLE function library.

3.1.1. Identification of Meso-Level Feedback Constraints

Considering 69 variables concerning the evolutionary process of population, economic,
and land resources systems, we identified 13 typical feedback loops using the SD model.
Those feedback loops were then calculated and presented in the stock-flow chart, as
shown in Figure 5, and 10 variables were labeled as crucial driving factors, including total
population, rural population, urban population, cultivated land, forest land, grassland,
construction land, the value of the primary industry, the value of the secondary industry,
and the value of the tertiary industry. Among these, the population and land-use resource
systems interacted through important feedbacks like food demand and cultivated land
connected by the total population, meat storage demand, grassland connected by the total
population, and construction land and maximum population carrying capacity connected
by the total population. Furthermore, the economic system interacted with land resources
and population systems through feedback like the value of secondary or tertiary industry
and urban industrial land demand connected by construction land and total population.
Therefore, the urban population, rural population, and values of primary, secondary, or
tertiary industries were considered key socioeconomic factors that needed to be introduced
for the following ANN input and training process as meso-level constraints according to
those feedbacks.
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3.1.2. Identification of Macro-Level Demand Constraint

Based on historical data from 1998 to 2018, the system equations were constructed
according to logic relations among variables and statistical data laws for land-use demand
estimation for 2018 and the prediction for 2028 and 2038, respectively, which were used as
the quantitative constraints in the follow-up simulation process of the constructed ANN-CA
model. Table 3 presents the estimation and prediction results of the three specific years. It
should be mentioned that the continuous historical data of water surface and other land in
the period of 1998–2018 were off record in data collection; we considered the rest of the four
types of land as macro-level demand constraints inputted into the lower ANN-CA layer.
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Table 3. Estimation and prediction results of land-use demand.

Output Variables The Year 2018 The Year 2028 The Year 2038

Area of forest land (ha) 537,953 570,353 603,948
Area of grassland (ha) 40,279 39,382 39,699

Area of cultivated land (ha) 55,090 50,661 51,809
Area of construction land (ha) 11,447 16,488 22,806

3.2. Simulation of the ANN-CA Model Layer under Constraints
3.2.1. Artificial Neural Network Training under Meso-Level Constraints

In this layer, a three-level back propagation neural network with a structure of 19–10–6
that contains a single hidden layer was built. Specifically, 19 neurons are present in the input
level, which correspond to six spatial factors processed before (DEM, slope, aspect, road,
river, and administrative center), 12 standardized statistical variables, including ten driving
factors captured in the SD model concerning land use types, population and value of the
industry in neighbor regions (cultivated land percentage, forest land percentage, grassland
percentage, construction land percentage, water surface percentage, other-land percentage,
total population, urban population, rural population, value of primary, secondary or tertiary
industry), as well as the land use types of the current cells; 10 is the number of neurons
in the hidden layer; 6 is the number of neurons in the output layer, which corresponds to
the transformation probability of six land use types. Here, the neighbor region for land
percentage neurons used the expanded Moore-type neighbor type of r = 3, and cells used the
raster grids with a resolution of 90 m × 90 m, while the neighbor region for land percentage
for population and industry value neurons was used according to the community panel
data we collected. Additionally, we have also considered the external neighbor buffer
regions around city administrative boundaries. However, those boundaries are mostly
covered by the National Nature Reservation areas, as shown in Figure 1, where those cells
remain in the original land use and land cover type as set. The rest of the boundary buffers
are covered by cultivated land, which is hard to change and affects the inside cells because
of the non-continuous urbanization between cities. Therefore, the matrix of transformation
listed in Table 4 is mainly applied inside city boundaries during the simulation process.

Table 4. Matrix of transformation suitability.

Cultivated Land Forest Land Grassland Water Surface Construction Land Other Land

Cultivated land 1 1 1 1 1 0
Forest land 1 1 1 1 1 1
Grassland 1 1 1 1 1 1

Water surface 0 0 0 1 1 0
Construction

land 0 0 0 0 1 0

Other land 0 0 0 0 0 1

The land use, population, industry status in Ya’an City in 1998 and 2008, and spatial
influence factor map binary data were input into the model. The simulation process was
conducted through the ArcGIS platform for inputting, outputting, and spatial visualization
of data while executing ANN and CA-related operations through the GeoSOS extension
package for ArcGIS.

Based on land use classification data of 1998, 5% of cells (raster) were randomly
selected. The corresponding data of the input and output layers, a total of 92,924 sample
data points, were input into the neural network model. The data of the output layer
corresponded to cell/raster land use types in 2008. Among these sample data, 80% and
20% were chosen as the training and verification sets of the neural network, respectively.
Also, several parameters had to be set before the training progress began. According to
earlier training results of the traditional ANN-CA model we applied to one district of Ya’an
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City, the ANN training network performed well at an e-learning rate of 0.05 and iterations
of 100 [49]. Considering the expansion of the simulation area in this study, the e-learning
rate was set to 0.05, and the max iteration was set to 200 to test both training accuracy and
efficiency. A neural network model was then constructed, and sample data were input.
Figure 6 shows the training accuracy of the neural network. The model began to converge
at iteration of 30, and there were no significant differences in mean squared error between
iterations times of 50 and 200, which meant that the network might perform well with more
than 50 iterations. The final training error (MSE) was 0.07898 when the iterations reached
200. The accuracy of the training dataset reaches as high as 93.991%, and the accuracy of
the verification set reaches as high as 93.855%. It reflects that the ANN training network
under meso-constraint has a faster processing speed and a relatively high degree of fitting
that can be coupled with CA for the subsequent land use and land cover simulation.
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3.2.2. Setting of CA Parameters Following ANN Rules and Spatial Constraints

Based on the trained neural network model, relevant CA parameters were set to
simulate the land use scenario in Ya’an City in 2018. In the specific simulation process,
the land use status in Ya’an City in 2008 must be input first and used as the land use data
in the first year of the simulation. Moreover, the chart of the land use status in 2018 has
to be input as the actual land use data of the terminal year. The data for the final year
serve two purposes: one is to set the total transformation quantity of the model simulation.
The quantity difference in urban land use raster in the land use data in the terminal year
and the first year was used as the total transformation quantity for model simulation,
which was calculated to be 6885. The other purpose was to analyze simulation results. The
simulation results and actual data were compared to analyze whether the setting of the
model parameters was reasonable.

Secondly, model parameters related to the transformation rules of cells must be set.
The transformation rules of CA involve comparing the transformation probability of cells
(θ) and the transformation threshold (η). Transformation was performed when θ ≥ η;
no transformation was performed when θ < η. The threshold of transformation ranges
between 0 and 1. Therefore, the cell state (land use types of raster) is more rigid to transform
when the threshold of transformation is set higher. The calculation formula for θ is

Θ = ƒ(Γ) ∗ βann ∗ ρ ∗ Φ (3)

where ƒ(Γ) is the random disturbance function, where the diffusion coefficient (γ) is used
as the independent variable and ranges between 1 and 10. βann is the transformation
probability calculated by the artificial neural network. P is the urban land use density in
the cell neighbor window. Φ is the suitability of transformation.

Based on an analysis of the practical situation of land use transformation in Ya’an
City, the setting of the suitability matrix for land use transformation in Ya’an City is shown
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in Table 4. The numerical values in the transformation suitability matrix are set to 0 or 1,
where 0 shows that the land use type cannot be transformed into another land use type. In
contrast, 1 shows that the given land use type can be transformed into another one.

The simulation of land use scenarios of 2018 showed that the values of η and γ in this
model significantly influence the ultimate operation results. The ranges of η and γ with
relatively high fitting accuracy were chosen through the research process. Four different
parameter combinations were set ( 1⃝η = 0.8, γ = 1; 2⃝η = 0.8, γ = 2; 3⃝η = 0.9, γ = 1; 4⃝η =
0.9, γ = 1) to simulate land use scenarios in Ya’an City in 2018. The overall accuracy of the
simulation results under four parameter combination values were 95.93%, 94.91%, 93.56%,
and 92.90%, respectively. The simulation accuracy under the first parameter combination
was the highest. Hence, the threshold of transformation was set to 0.8, and the diffusion
coefficient was set to 1 for subsequent analysis.

To adequately understand the land use evolutionary trend of different land use types
in Ya’an City and prevent abnormal offsets of the spatial centers of different land use types
during simulation, this model was calibrated using the spatial center migration analytical
method. The actual land use data in Ya’an City and spatial centers of different land use
types (cultivated land, forest land, grassland, water surface, construction land, and other
land) in 2018 were calculated using the average center tool in the spatial statistical toolkit.
When a significant error occurred between the calculated and simulated results for the
actual center of a land use type, the processes of ANN-CA simulation were repeated until
the error was within a permissible offset range.

3.3. Output Simulation Results under Macro-Level Demand Constraints

The SD-ANN-CA model in this study requires the SD model estimation for constraints,
the artificial neural network training for transformation rules, the optimization of CA
parameters, and model calibration of spatial constraints. The simulation process ended for
the year 2018 estimation when the results of forest land area, grassland area, cultivated
land, and construction land between the SD model and ANN-CA model were similar, with
errors lower than ±5%. The final simulation output of Ya’an City in 2018 is presented in
Figure 7.
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The calculation results of error accuracy and kappa coefficient for the land use simula-
tion in 2018 are shown in Table 5. It can be said that the simulation errors of all land use
types in Ya’an City in 2018 were lower than 5%, except for the water surface. The kappa
coefficient of the simulation result of 2018 was 0.973, indicating that the model exhibited
high predictive performance. We also tested the constructed ANN-CA model in our earlier
work [49] for comparison, which is designed for four land-use types in the Yucheng district,
Ya’an City. The results showed that when considering the whole city area and all six types
of land use, there was an accuracy drop-down for the ANN-CA model and a remarkably
higher accuracy for the SD-ANN-CA model, especially with forest land, grassland, and
construction land. Hence, it can be preliminarily determined from the quantitative accuracy
verification that the SD-ANN-CA model can predict land use better.

Table 5. Simulation accuracy of land use types in Ya’an City in 2018.

Cultivated
Land Forest Land Grassland Water Surface Construction

Land Other Land

Actual number
of cells 185,868 1,403,516 233,992 11,520 18,986 3159

Simulation
number of cells
SD-ANN-CA

model (ha)

190,987 1,404,623 234,522 10,934 18,951 3145

Error-accuracy
of SD-ANN-CA

model
2.75% 0.08% 0.23% 5.08% 0.18% 0.44%

Kappa
coefficient of
SD-ANN-CA

model

0.931 0.998 0.994 0.873 0.996 0.989

Error-accuracy
of ANN-CA
model [49]

3.25% 3.57% 4.35% 7.34% 3.78% 5.56%

A layout comparison of six land types between simulation results and reality in 2018 is
shown in Figure 8. With the best simulation accuracy among all six land types, there are no
significant differences obtained for forest land between simulation layout and reality, except
for some spots alongside the National Reserve area. Construction land also shows great
accuracy, especially in continuous development areas. We have also illustrated specific
urban construction land differences (Figure 7), according to which the prediction error of
construction land is mainly located in small counties or villages northeast and southwest
of Ya’an City. The prediction distribution of urban construction land in Hanyuan County is
larger than the actual layout, indicating that cultivation land cells are wrongly transformed
into urban construction land cells during the simulation process. The prediction error for
grassland, cultivated land, and water surface is mainly located in areas alongside rivers
in Southern Ya’an City, indicating that cells may be transformed among those three land
types. With a total amount of 11,520 (ha), such mistakes cause much lower overall accuracy
of water surface (error-accuracy: 5.08%; kappa coefficient: 0.873) compared to cultivated
land and grassland.
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3.4. Land Use Prediction for the Years 2028 and 2038 in the Study Area

In this section, the SD-ANN-CA model that passed the accuracy verification was used
to simulate and predict the land use scenario in Ya’an City in 2028 and 2038, facilitating
the analysis of the future land use of evolutionary trends in the study area. Following the
model framework, the land use prediction results in 2028 and 2038 are shown in Figure 9.
A decreasing trend of cultivated land is obtained in both time periods of 2018–2028 and
2028–2038, indicating that cultivated land is still the main body of LUCC in Ya’an City.
The proportion of grassland reaches the top in 2028 and then decreases during 2028–2038,
while the proportion of forest land remains increases. Construction land embraces the most
significant increase. For better observation of the construction land expansion trend in
Ya’an City, the construction land was extracted from the land use simulation results in 2028
and 2038 based on the chart of the land use status in 2018. The construction lands in 2018,
2028, and 2038 were stacked from top to bottom; the results are shown in Figure 10.
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In Figure 10, the yellow region represents the construction land area in Ya’an City
in 2018, the blue region represents the construction land expansion area from 2018 to
2028, and the red region represents the construction land expansion area from 2028 to
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2038. The construction land in the central and eastern regions (Tianquan County, Lushan
County, Yucheng County, and Mingshan District) and southern regions (Hanyuan County)
expanded noticeably. Those regions with markedly construction land expansion are mainly
distributed along rivers and roads, fully reflecting the driving and radiation effect of roads
and rivers on urban construction in Ya’an City. Generally, the construction land in Ya’an
City presented a law of expansion from the center to surrounding areas, consistent with the
open development pattern of “Four-way expansion” proposed by Ya’an City during the
13th Five-Year Plan. This confirms that the simulated evolutionary results of the SD-ANN-
CA model under constraints are relatively accurate and reasonable for providing planning
departments with reliable references to formulate related policies.

4. Discussion

With limited land resources, higher pressure of rapid urbanization, and ecological
environment conservation, cities in Western China are struggling to balance relationships
among multiple types of land use. Simulation tools with better accuracy and more visual
prediction results of land-use change are urgently needed for more sustainable land-use
development objectives. In this study, we proposed a two-layer SD-ANN-CA model
combining the advantages of all three commonly used methods: the quantitative prediction
accuracy and interaction feedback analysis capability of the SD method; the recognition
logic of the ANN method; the dynamic and high-resolution microscale analysis capability
of the CA method. In the model framework, the two layers of the SD model and the
ANN-CA model were connected through the macro-level of demand constraints, as well
as the meso-level of driving factors and feedbacks, which were output in the upper layer
of the SD model and then used in the lower layer of ANN-CA model for training and
output processes. The model framework also considered the micro-level spatial constraints
for different types of land-use space centers to provide more precise output layouts of
land-use predictions.

With a kappa coefficient of 0.973, our model framework with multiple levels of con-
straints had shown excellent simulation accuracy for future LUCC predictions in the case
of Ya’an City. Compared to other multilayer LUCC models with only macro-level de-
mand constraint applied in Western China areas, such as the WLC-CA-Markov model
applied in three gorges reservoir area of Chongqing (kappa coefficient: 0.929, study area:
2182.911 km2) [60], our model has exceeded the other models largely in overall accuracy in
larger study areas. It indicates that macro-level, meso-level, and micro-level constraints
play essential roles during the simulation process. Particularly considering all six types
of land use/land cover, our model presented more balanced accuracy than related works
in mountainous cities [17], with our kappa coefficient of individual type exceeding 0.9
except for water surface. Due to the lack of continuous historical data in 1998–2018, the
macro-level demand and meso-level feedback for water surface land were much less con-
strained compared to cultivated land, forest land, grassland, and urban construction land;
the largest error accuracy was obtained for water surface. However, the simulation accu-
racy of the water surface can still be considered significantly improved compared to the
traditional ANN-CA model conducted in our earlier work. The much higher accuracy of
forest land and construction land has confirmed that those two types of land benefit most
from introducing socioeconomic driving factors into simulation model frameworks than
simply considering spatial factors like DEM in mountainous areas.

More detailed policy implications can also be discussed according to the results. Even
though the cultivated land proportion decreases at the city level, it increases in some
county-level areas, such as Minshan district and Hanyuan County, where agriculture is
considered a pillar of industry. It indicates that the industrial value factors driven from the
SD model layer have played well as meso-constraints in the ANN-CA simulation process.
Even though the area of construction land is increasing significantly, the Yucheng district,
where the main city center is located, is seeing a slight drop in construction land proportion
in both periods of 2028–2018 and 2038–2028.
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At the stage of incremental development, Yucheng district will first step into the
stage of stock development; policies concerning supply-side reform, such as land use mix,
may be needed for the government to promote high-quality development in Yucheng
district. With the highest grassland and forest land proportion and the lowest proportion
of construction land, Baoxin County may benefit the most from the national and provincial
policy of “Turning ecological advantages into economic growth”, in which new energy,
new materials, and big data industry are largely promoted.

5. Conclusions

The main contributions and conclusions are summarized as follows.
Firstly, considering all six types of forest land, grassland, cultivated land, construc-

tion land, water surface, and other land in whole city-level areas of Ya’an, the two-layer
SD-ANN-CA model we proposed has shown great accuracy in predicting the land-use
evolutionary trend of both quantitative demand and spatial layout. An error-accuracy
results comparison between the SD-ANN-CA model in this study and the ANN-CA model
constructed in our earlier work has confirmed that with larger prediction areas and more
various types of land use, the demand constraints and driver factor constraints from SD
model layer estimation results would benefit the training process of ANN-CA layer with a
significant improvement in simulation accuracy, especially in types of forest land, grassland,
and construction land area predictions. The results have provided insights into possible
ways to combine quantitative methods into spatial methods in constructing city-level or
even regional-level land-use change models with high resolution.

Secondly, under the SD-ANN-CA model framework, the land-use layout of 2028 and
2038 and the evolutionary trend in the study area were predicted. The results indicate an
expansion tendency from the center to surrounding areas of construction lands, which is
consistent with the development agenda proposed by the local government of “Four-way
expansion” in Ya’an City. Therefore, the visual results of the prediction layout for six
types of land use in any prediction year between 2019 and 2038 may also provide reliable
information for supporting related land-use planning or policy-making decisions.

Limitations are also found in this study. We excluded some variables related to cli-
mate change, policy making, and political regulations, which may also influence land-use
change because of data collection barriers. Those variables may be considered in the
model framework in our future work. Even though the two-layer SD-ANN-CA model has
shown significant accuracy in Ya’an City, the model validity still has to be tested in more
cities with different land-use patterns or in larger areas at the metropolitan and regional
levels. Considering the fierce land competition in the research area, especially in the city
center areas where urban construction land proportion will decrease, sub-cytoplasmic
cells instead of the pure cytoplasmic cells may need to be introduced in our future model
framework for generating detailed land use mix patterns. Also, the demand and driving
factors constraints set in the SD model layer were fixed in this study for ANN-CA train-
ing, which can be explored under different constraints scenarios for more information in
future works.
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