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Abstract: Considering the COVID-19 pandemic, this research aims to investigate some herbs as prob-
able therapies for this disease. Achillea millefolium (Yarrow), Alkanet, Rumex patientia (Patience dock),
Dill, Tarragon, and sweet fennel, including some principal chemical compounds of achillin, alkannin,
cuminaldehyde, dillapiole, estragole, and fenchone have been selected. The possible roles of these
medicinal plants in COVID-19 treatment have been investigated through quantum sensing methods.
The formation of hydrogen bonding between the principal substances selected in anti-COVID natural
drugs and Tyr-Met-His (the database amino acids fragment), as the active area of the COVID protein,
has been evaluated. The physical and chemical attributes of nuclear magnetic resonance, vibrational
frequency, the highest occupied molecular orbital energy and the lowest unoccupied molecular orbital
energy, partial charges, and spin density have been investigated using the DFT/TD-DFT method
and 6-311+G (2d,p) basis set by the Gaussian 16 revision C.01 program toward the industry of drug
design. This research has exhibited that there is relative agreement among the results that these
medicinal plants could be efficient against COVID-19 symptoms.

Keywords: natural medication; COVID-19 treatment; achillin; alkannin; cuminaldehyde; dillapiole;
estragole; fenchone; medicinal plant; DFT

1. Introduction

The COVID-19 pandemic is a serious malady caused by a new coronavirus known
as severe acute respiratory syndrome (SARS-CoV-2). There are no trustworthy remedies
or acceptable vaccines to fight against SARS-CoV-2. More attempts to probe for antiviral
agents against COVID-19 are essential, while phytochemicals can be a powerful solution.

Natural medications are an important part of common health, notwithstanding the
progress of the health system. In rural areas, local treatment keeps its importance as the
primary procedure in the usual seasonal maladies, like colds and flu. The most important
reason for using herbs and medicinal plant treatments is the belief that they will influence
one’s health. Natural products from medicinal plants are, therefore, bringing hope in the
form of phytocompounds, which can either kill SARS-CoV-2, interfere with its replication,
or strengthen the human body’s immunity to fight against infection.

Recently, almost all antibodies have been produced in human cells and transformed
animal cells. These are platforms that require a lot of equipment and take a long time
to set up. Many plant-based antibodies can respond very quickly to the emergence of
new variants of COVID-19. The emergence of a new coronavirus, known as SARS-CoV-2,
has initiated a pandemic of COVID-19. Since its first reported case in Wuhan, China, in
December 2019, new evidence discovered by both clinicians and researchers globally has
helped to shed some light on the disease pathogenesis and the nature of the virus itself. The
availability of new information has subsequently informed policy changes on transmission
prevention strategies, as well as the development of preventative vaccines and therapeutic
drug candidates. Enforced physical distancing, hand hygiene, and arguably, proper usage
of personal protective equipment, including wearing a surgical mask, remains the most
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effective way of controlling the spread of the disease. Most countries that have adopted
such measures have reported some success in curbing the spread of the disease [1–10].

In the research of phytomedicine, it is common to observe multiple pharmacological
properties from a single plant. It is now well understood that a single plant may contain a
wide range of phytochemicals, making ethnopharmacology research full of possibilities yet
challenging. On top of exhibiting direct antiviral effects, medicinal plants with reported
anti-inflammatory activities may have pleiotropic roles in COVID-19 management, such as
the elevation of inflammatory markers [11–19].

Achillea millefolium, or common yarrow, is a flowering plant in the family Asteraceae. It
is native to temperate regions of the Northern Hemisphere in Asia, Europe, and North
America. It has been introduced as a feed for livestock in New Zealand and Australia,
where it is a common weed growing in both wet and dry areas, such as roadsides, meadows,
fields, and coastal locations. Achillea millefolium is used in traditional medicine, possibly
due to its astringent effects. Yarrow and its North American varieties were traditionally
used by many Native American nations. Native American nations used the plant for
healing cuts and abrasions, for relief of earaches and throat infections, and as an eyewash.
Common yarrow was used by plains Indigenous peoples to reduce pain or fever and aid
sleep (Table 1) [20,21].

Rumex patientia, known as patience dock, [4] garden patience, herb patience, or monk’s
rhubarb, is an herbaceous perennial flowering plant belonging to the family Polygonaceae.
In spring, it is often consumed as a leaf vegetable and used as a filling in pies in Southern
Europe, especially in Bulgaria, North Macedonia, and Serbia. It is also used in Romania
in spring broths or sarmale. Rumex patientia, or patience dock, is an uncommon weed
found growing on roadsides, farm fields, and waste areas. Some of the distinguishing
characteristics of Rumex patientia are whether the leaves are crinkly wavy or relatively flat,
the shape of the inner tepals at maturity, the size and shape of the grains, whether the grains
on all three inner tepals are about the same size, sometimes the length of the flower stalk,
whether the stalk is jointed, or whether a vein pattern appears on the leaves. Patience dock
has weakly crinkly wavy leaves, tepals up to 8 mm long that range from kidney-shaped
to nearly round and is slightly ragged around the edge, a single grain about a quarter as
long as the tepal, and a flower stalk that has a swollen joint near the base. It has the largest
tepals of the Minnesota Rumex species, and the (usually) single, small grain makes it unique
(Table 1) [22].

Dill or Anethum graveolens is an annual herb in the celery family Apiaceae. It is the
only species in the genus Anethum. Dill is grown widely in Eurasia, where its leaves and
seeds are used as an herb or a spice for flavoring food. Dillapiole is a natural constituent
of Anethum graveolens, which exhibits potential biological properties. Dillapiole may be
used as an analytical reference standard for the quantification of the analyte in the French
bean Phaseolus sp. Treated with pesticidal formulation, as well as in dill, caraway seeds, and
pharmaceutical formulations using chromatography techniques (Table 1) [23,24].

One subspecies, tarragon, is cultivated for the use of its leaves as an aromatic culinary
herb. From some other subspecies, a characteristic aroma is largely absent (Table 1) [25,26].

Sweet fennel is a flowering plant species in the carrot family. It is a hardy, perennial
herb with yellow flowers and feathery leaves. It is indigenous to the shores of the Mediter-
ranean but has become widely naturalized in many parts of the world, especially on dry
soils near the seacoast and on riverbanks. It is a highly flavorful herb used in cooking
and, along with the similar-tasting anise, is one of the primary ingredients of absinthe
(Table 1) [27,28].

Flavonoids from natural medication were represented as possessing antiviral bioactiv-
ities [29–31]. In this work, it has been illustrated that achillin, alkannin, cuminaldehyde,
dillapiole, estragole, and fenchone are the probable anti-COVID-19 receptor derived from
medicinal plants (Table 1).
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Table 1. Plant species most preferred against COVID-19 include achillin, alkannin, cuminaldehyde,
dillapiole, estragole, and fenchone.

Compound Molecular Structure Sources Applied Symptom
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Based on this research, it can be estimated the occasions for discovering the efficient
medication against COVID-19 using quantum mechanics computations to measure the
effect of hydrogen bonding in the variety of junctions with these seven natural drugs of
achillin, alkannin, cuminaldehyde, dillapiole, estragole and fenchone bound to the active
area of COVID-19 virus [32–37].

2. Materials and Methods

Achillin, alkannin, cuminaldehyde, dillapiole, estragole, and fenchone have been
attached to the active area of COVID-19 protein compounds, which approves the exis-
tence of hydrogen bonds toward resistant complexes. Therefore, quantum mechanics
approaches with m062x/cc-pvdz pseudo=CEP function for complexes of seven inhibitors
for COVID-19 have been accomplished. The favorable coordination of the optimized sub-
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stances of phenilic natural drug joint to Tyr160-Met161-His162 with IR spectroscopy using
the Gaussian 16 revision C.01 program package [38] has been measured due to the DFT
method and m062x/cc-pvdz pseudo=CEP level of theory. The [Perdew–Burke–Ernzerhof]
“PBE” functional with high-precision generalized gradient approximation “GGA” has been
employed to achieve more authentic results [39].

It has been exhibited that polarization functions in the employed basis set in the
calculation always reflect magnificent prosperity in simulation and modeling in the drug
design industry [40–47]. Frequency achievement is the finding of harmonic potential wells
by analytic procedures that keep the activity of all atoms at the same time in the vibration
time scale, conducting an inherent illustration of vibrations in molecules [48–52].

Thus, the geometry optimization of coordination in medicinal extracts-TMH agents
based on the drug design has been found from the active area of certain atoms of “O”, “N,”
and “H” in the attachment of bond angle and torsion angle values (Table 2).

Table 2. The geometry optimization amounts with m062x/cc-pvdz pseudo=CEP for achillin, cumi-
naldehyde, dillapiole, and estragole bound to the active site of COVID-19 protein through the drug
design approach.

Medicinal
Extracts—COVID-19

Active Area
Bond Length (Å)

Bond/Torsion
Angle (◦)

Achillin
N67-H68 1.036

N67-H68-O15 176.181H68-O15 0.9974
O15-C13 1.4123 N67-H68-O15-C13 178.492

Cuminaldehyde
N61-H62 1.0351

N61-H62-O9 179.192H62-O9 0.9966
O9-C7 1.4150 N61-H62-O9-C7 31.2731

Dillapiole
N78-H79 1.0295

N78-H79-C13 179.216H79-C13 1.1193
C13-O12 1.4131 N78-H79-C13-O12 55.0114

Estragole
N71-H72 1.0358

N71-H72-C11 179.208H72-C11 1.1244
C11-O10 1.4099 N71-H72-C11-O10 106.924

For carrying out a firm compound of natural medication attached to a COVID-19
active site, the chemical shift of nuclear magnetic resonance, vibrational frequency, and
intensity of the normal modes have been computed with the “QM” methods, and the
original vibrational modes have been analyzed [53–58].

Computational measurements have been carried out in a variety of theoretical levels
to profit from the more precise balance of geometrical amounts and infrared spectral
information for each of the indicated substances. It is assumed that further diffuse and
polarization functions into the basis set employed in the calculation direct us to the high
evolution of the results of methodical approaches [59–62].

The different approaches in modeling and simulation exhibit the path that can generate
a usual model at a particular temperature by evaluating all physical and chemical attributes
based on the partition function amounts [63–71].

3. Results and Discussion
3.1. Nuclear Magnetic Resonance (NMR) Analysis

The amounts of “NMR” shifts for Tyr160-Met161-His162 through the database of
amino acids in beta-sheet conformation and four certain extracts of natural medications
containing achillin, alkannin, cuminaldehyde, dillapiole, estragole, and fenchone have been
evaluated to discover the exhibited of oxygen, nitrogen, and hydrogen in the active sites of
these anti-virus medications through the production of hydrogen bonding by representing
the reaction area of “TMH” agent (Figure 1a–f).
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extracts of pharmaceutical kinds for attaching to the Tyr160-Met161-His162 (TMH) in pro-
ducing the anti-virus medications while each critical atom of “O” and “N” as the electro-
negative atoms for jointing to the hydrogen has remarked the major changing in the 
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Figure 1. “NMR” spectroscopy for (a) achillin, (b) alkannin, (c) cuminaldehyde, (d) dillapiole,
(e) estragole and (f) fenchone bound to “TMH” COVID-19 active area through the drug design approach.

Achillin, alkannin, cuminaldehyde, dillapiole, estragole, and fenchone have approxi-
mately shown identical behavior (about 30–200 ppm) for different atoms in the interaction
site of these substances with Tyr160-Met161-His162 through the “NMR” calculations accom-
panying electron spin density (ESP) (Figure 1). The strongest graph of “NMR” spectroscopy
has been almost seen in 30 ppm for all principal ingredients of herbal medicine. The most
fragile graphs of the “NMR” spectrum have approximately been observed between 50 and
200 ppm (Figure 1).

Nuclear magnetic resonance properties have denoted the critical points of essential
extracts of pharmaceutical kinds for attaching to the Tyr160-Met161-His162 (TMH) in
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producing the anti-virus medications while each critical atom of “O” and “N” as the
electronegative atoms for jointing to the hydrogen has remarked the major changing in the
“NMR” graphs (Figure 1a–f).

3.2. Infrared (IR) Spectra Analysis and Thermodynamic Properties

The IR calculations for main ingredients of medicinal plants including achillin, alkan-
nin, cuminaldehyde, dillapiole, estragole and fenchone have been calculated for fixing the
intersection of Tyr160-Met161-His162 as the anti-COVID-19 medication through the drug
design approach applying “IR” spectroscopy using Gaussian 16 revision C.01 program
to obtain the best amounts for geometrical coordination and thermochemical parameters
(Figure 2a–f). The most fluctuation of frequency of “IR” spectra for alendronic acid, iban-
dronic acid, neridronic acid, and pamidronic acid has been approximately seen between
500 and 3000 cm−1. The strongest peaks of “IR” graph for principal ingredients of herbal
medicine have been observed in 1850 cm−1 for achillin (Figure 2a), in 2000 cm−1 for alkan-
nin (Figure 2b), in 1950 cm−1 for cuminaldehyde (Figure 2c), in 2050 cm−1 for dillapiole
(Figure 2d), in 1850 cm−1 for estragole cm−1 (Figure 2e), and in 2125 cm−1 for fenchone
(Figure 2f).
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Figure 2. The graphs of “IR” spectra for (a) achillin, (b) alkannin, (c) cuminaldehyde, (d) dillapiole,
(e) estragole, and (f) fenchone bound to “TMH” through the drug design approach achieved by
m062x/cc-pvdz pseudo = CEP level of theory.

In achillin, cuminaldehyde, dillapiole, and estragole attached to Tyr160-Met161-His162
through its database of amino acids in beta-sheet conformation, as the critical point of
COVID-19 protein compound in the procedure of drug design steps, the functions of
frequency and intensity of diverse infrared normal modes of pharmaceutical extracts-
TMH complexes have been discovered to be significantly distinct through the resistance
of hydrogen bonding organized between the critical point of COVID-19 agent B.1.1.529
and pharmaceutical extracts which establishes the anti-COVID-19 medication (Table 3
and Figure 3).

Table 3. The compounds of Achillin, cuminaldehyde, dillapiole, and estragole as anti-COVID-19
drugs in distinct normal modes of infrared spectra.

Inhibitor Normal Mode Frequency
(1/cm)

Intensity
(km/mol)

Achillin 275 3336.01 2292.987
Cuminaldehyde 236 3395.38 2270.866

Dillapiole 205 1998.66 202.722
Estragole 185 1971.26 226.961

The intensity and frequency of TMH attachment have been explored to vary dra-
matically with each pharmaceutical extract therapy consisting of achillin, cuminaldehyde,
dillapiole, estragole, and fenchone. It has been seen that the frequency and intensity of
achillin and cuminaldehyde are higher than dillapiole and estragole (Figure 3). Then, ther-
modynamic properties have distinguished the resistant anti-COVID-19 agent complexes
of principal extracts of pharmaceutical kinds of “TMH” through the hydrogen bonding
constitution employing the drug design framework (Table 4).
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Figure 3. The curves of “IR” spectra for medicinal plants of achillin, cuminaldehyde, dillapiole, and
estragole anti-COVID-19 drugs in normal mode = 59.

Table 4. The thermodynamic factors of achillin, alkannin, cuminaldehyde, dillapiole, and estragole
bound to COVID-19 active site protein.

Plant
Component—Active Site

∆G × 10−4

(kcal/mol)
∆S

(kcal/K.mol)
Eelectronic × 10−4

(kcal/mol)
Ecore-core × 10−4

(kcal/mol)

Achillin −18.2174 607.2787 −214.3615 196.1441
Alkannin −19.6971 656.5647 −232.3721 212.6750

Cuminaldehyde −15.2850 509.7272 −165.8901 150.6051
Dillapiole −17.8553 595.2878 −198.4780 180.6227
Estragole −15.2109 507.3701 −160.6792 145.4682

Moreover, the difference in ∆HF among achillin, alkannin, cuminaldehyde, dillapiole,
and estragole has been illustrated due to the formation of the hydrogen bonding in Tyr160-
Met161-His162 agent of the critical point in COVID-19 macromolecule by analyzing the
database of amino acids in beta-sheet conformation (Table 5 and Figure 4).

Table 5. The calculated difference in ∆HF (kcal/mol) (heat formation) for achillin, alkannin, cumi-
naldehyde, dillapiole, and estragole attached to the critical point of “TMH” derived from COVID-19
macromolecule at 300 K.

∆
H

T
M

H
×

10
−

4

25
.8

24
2

(k
ca

l/
m

ol
)

∆H Achillin ∆H(Achillin - active site) ∆HF × 10−4 = ∆H (Achillin - active site) – (∆H Achillin + ∆H active site)
−76.2424 9.5452 −25.8156

∆H Alkannin ∆H(Alkannin - active site) ∆HF × 10−4 = ∆H (Alkannin - active site) – (∆H Alkannin + ∆H active site)
−80.8417 −1.3898 −25.8162

∆H Cuminaldehyde ∆H(Cuminaldehyde - active site)
∆HF × 10−4 = ∆H (Cuminaldehyde - active site) – (∆H Cuminaldehyde +∆H

active site)
−3.6680 67.8448 −25.8170

∆H Dillapiole ∆H(Dillapiole - active site) ∆HF × 10−4 = ∆H(Dillapiole - active site) – (∆H Dillapiole + ∆H active site)
−31.3428 33.0993 −25.8177

∆H Estragole ∆H (Estragole - active site) ∆HF × 10−4 =∆H (Estragole - active site) – (∆H Estragole + ∆Hactive site)
101.5614 14.9017 −25.8328
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bound to COVID-19 active site protein.

3.3. Charge Distribution

In this part, the atomic charge of certain atoms of “O” attachment of achillin, alkan-
nin, cuminaldehyde, dillapiole, and estragole with Tyr160-Met161-His162 agent has been
measured in the critical point of hydrogen bonding existence (Table 6).

Table 6. The amounts of atomic charge (Q) for indicated “O” atoms in the linkage of achillin, alkannin,
cuminaldehyde, dillapiole, and estragole to Tyr160-Met161-His162.

Achillin Q Alkannin Q Cuminaldehyde Q Dillapiole Q Estragole Q

N19 −0.0463 N24 −0.0442 N13 −0.0450 N30 −0.0455 N23 −0.0463
N40 −0.0506 N45 −0.0513 N34 −0.0503 N51 −0.0501 N44 −0.0482
N57 −0.0323 N62 −0.0368 N51 −0.0375 N68 −0.0377 N61 −0.0367
N67 0.1071 N72 0.0057 N61 0.0505 N78 0.3846 N71 0.2459
N73 −0.1103 N78 −0.0961 N67 −0.1211 N84 −0.0413 N77 −0.0487
O14 −0.2489 O11 −0.4572 O9 −0.4548 O9 −0.1526 O10 −0.1878
O15 −0.4204 O12 −0.1939 O18 −0.4041 O10 −0.1758 O28 −0.4031
O24 −0.4027 O14 −0.3115 O32 −0.2455 O12 −0.1684 O42 −0.2305
O38 −0.2326 O21 −0.3452 O39 −0.3786 O49 −0.2174 O49 −0.3875
O45 −0.3872 O29 −0.4001 O56 −0.3090 O56 −0.3826 O66 −0.3223

O62 −0.3070 O43 −0.2657 O73 −0.3254

O50 −0.3842
O67 −0.2939

Then, in Figure 5, it has been sketched the alterations of “Q” of indicated “O” atoms
for optimized molecules of achillin, alkannin, cuminaldehyde, dillapiole, and estragole
with Tyr160-Met161-His162 agent due to the existence of hydrogen bonding. Thus, the con-
sequences of Table 6 in a polar area have notified the consistency of COVID-19 medications,
which have been accomplished considering the oxygen as the electronegative atoms in the
growth of the hydrogen bonding using the drug design insight, which has proposed the
modeling of an anti-COVID-19 drug.
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Figure 5. Comparing “Q” versus indicated “O” atoms in the attachment of active areas of achillin,
alkannin, cuminaldehyde, dillapiole, and estragole with Tyr160-Met161-His162 agent.

All in all, the prospect of Figure 5 suggests the proof for the existence of various “Q”
on natural medication-COVID-19 complexes as the anti-COVID-19 drugs, which basically
depends on the status of critical points of exhibited atoms of “O”, “N” and “H” in the
attachment of bond angles. On the other hand, the spin density and partial charges have
been achieved by matching the electrostatic potential to make up the charge of “O” and “N”
with high electronegativity in the linkage of an electrophilic group of “H” in the compounds
of natural medication-COVID-19 as the anti-virus drugs which can direct us toward the
industry of drug design outlook.

3.4. HOMO and LUMO: Frontier Orbitals

“HOMO”, the highest occupied molecular orbital energy, and “LUMO”, the lowest
unoccupied molecular orbital energy, have been calculated for some effective ingredients
of achillin, alkannin, cuminaldehyde, dillapiole, estragole, and fenchone (Table 7). The
HOMO, LUMO, and band energy gap (ev) indicated the pictorial explanation of the frontier
molecular orbital and their respective positive and negative zones, which are an important
factor for identifying the molecular characteristics of achillin, alkannin, cuminaldehyde,
dillapiole, estragole and Fenchone in of six selected medicinal plants of Achillea millefolium
(Yarrow), Alkanet, Rumex patientia (Patience dock), Dill, Tarragon, and Sweet fennel.

In fact, the “HOMO” presents the susceptibility for releasing an electron while the
“LUMO” as an electron acceptor introduces the competence for receiving an electron
particle. So, the energy gap (∆E = E LUMO–EHOMO) explains the energy diversity
between the frontier “HOMO” and “LUMO” orbital, showing the solidity of the substance
and illustrating the chemical activity of the molecule (Figure 6).
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Table 7. The “HOMO” (a.u.), “LUMO” (a.u.), and band energy gap (eV) of achillin, alkannin,
cuminaldehyde, dillapiole, estragole, and fenchone.

Molecule ELUMO (a.u.) EHOMO (a.u.) ∆E = ELUMO –
EHOMO (eV)

Achilin
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Figure 6. The band energy gap (eV) for achillin, alkannin, cuminaldehyde, dillapiole, estragole,
and fenchone.

Figure 6 has shown the sequence of band energy gap for chemical compounds of natu-
ral drugs as ∆Eachillin > ∆Ealkannin > ∆Ecuminaldehyde > ∆Edillapiole > ∆Eestragole > ∆Efenchone

with the relation coefficient of R2 = 0.9374 (Figure 6). While the band energy gap (∆E)
decreases, the stability of the compound increases. Therefore, the fenchone is predicted to
be more sensitive than other ingredients.

In this research, the energy gap appoints how achillin, alkannin, cuminaldehyde,
dillapiole, estragole, and fenchone as an efficient anti-COVID-19 pandemic receptor can be
achieved from natural medications. In addition, frontier molecular orbitals carry out an
essential function in the optical and electrical properties, such as in UV-Vis spectra [72].

Furthermore, to accomplish more decisive approval in recognizing the compound
specifications, a group of chemical reactivity factors containing “µ” (chemical potential),
“χ” (electronegativity), “η” (hardness), “ζ” (softness), “ψ” (electrophilicity index) has been
accomplished (Table 8) [73–75]:

Table 8. Chemical reactivity factors “µ”, “χ”, “η”, “ζ”, “ψ” have been accomplished using the
following equations for achillin, alkannin, cuminaldehyde, dillapiole, estragole, and fenchone.

Compounds µ = (EHOMO + ELUMO)/2 χ = –(EHOMO + ELUMO)/2 η = (ELUMO–EHOMO)/2 ζ = 1/(2η) ψ = µ2/(2η)

Achilin −4.4694 4.4694 3.74495 0.1335 2.6670
alkannin −2.7891 2.7891 2.01905 0.2476 1.9264

cuminaldehyde −4.0300 4.0300 1.61635 0.3093 5.0239
dillapiole −4.4790 4.4790 0.1932 2.5880 51.9188
estragole −4.9851 4.9851 0.8408 0.5947 14.7783
fenchone −4.7783 4.7783 0.8408 0.5947 13.5776

The negative values of “µ” and the positive amounts of other quantities have exhibited
good stability of achillin, alkannin, cuminaldehyde, dillapiole, estragole, and fenchone in
Achillea millefolium (Yarrow), Alkanet, Rumex patientia (Patience dock), Dill, Tarragon, and Sweet
fennel (Table 8).
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3.5. Analysis of UV-VIS Spectroscopy

There is a critical factor as an energy gap between “HOMO” and “LUMO” for recog-
nizing the characteristics of molecular electrical transport [76]. Based on the Frank–Condon
principle, the maximum absorption peak (max) is related to a UV–visible spectrum to
vertical excitation.

In this research, TD-DFT/6-311+G (2d,p) computations have been carried out to iden-
tify the low-lying excited states of achillin, alkannin, cuminaldehyde, dillapiole, estragole,
and fenchone. The results contain the vertical excitation energies, oscillator strength, and
wavelength, which have been presented in Figure 7.
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Figure 7. UV–visible spectra of (a) achillin, (b) alkannin, (c) cuminaldehyde, (d) dillapiole, (e) estragole
and (f) fenchone.

In the calculated value of UV–visible spectrum of principal ingredients of medicinal
plants, there is a maximum absorption band between 200 and 250 nm for achillin, 250
and 500 nm for alkannin, cuminaldehyde, 170 and 230 nm for dillapiole, 160 and 250 nm
for estragole and 100 and 150 nm for Fenchone, respectively. Strong absorption has been
observed for achillin, about 225 nm; for alkannin, 488 nm; for cuminaldehyde, 230 nm; and
for pamidronic acid, 222 nm, respectively (Figure 7).

This research article has manifested that medicinal plants and phytocompounds can
have a considerable function due to their substantial antiviral activity against SARS-CoV-2
and other coronaviruses. Achillin, alkannin, cuminaldehyde, dillapiole, estragole, and Fen-
chone extracted from Achillea millefolium (Yarrow), Alkanet, Rumex patientia (Patience dock),
Dill, Tarragon, and Sweet fennel, respectively, were identified through in silico molecular
modeling by using DFT screening. Identified natural phytocompounds revealed to have
the potential to exhibit antiviral activities by disrupting the viral life cycle, including viral
entrance, replication, assembly, and discharge, as well as virus-specific host targets. Thus,
this prompt increase in the pharmaceutical industry focused on phytochemical extracts
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from medicinal plants and aromatic herbs in the hopes of discovering lead compounds
with purposeful antiviral medications.

Here, we used network pharmacology, metabolite analysis, and molecular simulation
to comprehend the biochemical basis of the health-boosting impact of medicinal plants.
The present study investigates the drug ability, metabolites, and potential interaction of the
title tea with genes associated with COVID-19-induced pathogenesis.

4. Conclusions

Medicinal plants of achillin, alkannin, cuminaldehyde, dillapiole, estragole, and fen-
chone are puissant to adhere the database amino acids segment of Tyr160-Met161-His162
agent as the appointive area of the COVID-19 through exhibiting the alteration in their fre-
quency and intensity spectra after approximation by “NMR” approach which is influenced
by the atomic configuration of the anti-virus macromolecule. The resistance of hydrogen
bonding between several pharmaceutical extracts of achillin, alkannin, cuminaldehyde,
dillapiole, estragole, fenchone, and COVID-19 through the constitution of anti-COVID-19
through two possibilities of [N
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H] with distinct atomic charges have been
inquired using “IR” approaches. Therefore, the thermodynamic attributes of Gibbs free
energy, enthalpy of formation, Electronic Energy, and Core–Core interaction can authorize
the consistency of anti-COVID-19 due to hydrogen bonding foundation using the drug
design framework. Moreover, the lowering of the energy gap [∆E = ELUMO –EHOMO] has
illustrated the charge transfer interactions taking place within achillin, alkannin, cuminalde-
hyde, dillapiole, estragole, and fenchone. The atomic charges have donated the proper
perception of molecular theory and the energies of fundamental molecular orbitals.
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