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Abstract: This investigation focuses on the construction of novel dark and singular soliton solutions
for the Hirota equation, which models the propagation of ultrashort light pulses in optical fibers.
Initially, we employ a wave variable transformation to convert the physical model into ordinary
differential equations. Utilizing extended rational sinh–cosh and sine–cosine techniques, we derive an
abundant soliton solution for the transformed system. By plugging these explicit solutions back into
the wave transformation, we obtain dark and singular soliton solutions for the Hirota equation. The
dynamic evolution of dark soliton profiles is then demonstrated, with a focus on varying physically
significant parameters such as wave frequency, strength of third-order dispersion, and wave number.
Furthermore, a comprehensive analysis is examined to elucidate how the dark and singular soliton
profiles undergo deformation in the background influenced by these arbitrary parameters. The
findings presented in this study offer valuable insights that could potentially guide experimental
manipulation of dark solitons in optical fibers.

Keywords: optical soliton; Hirota equation; nonlinear Schrödinger equation; optical fibers; wave
transformation

1. Introduction

Optical fibers can give rise to envelope solitons when the self-phase modulation
precisely counteracts the group velocity dispersion. Solitons, characterized as shape-
preserving wave packets, can propagate through nonlinear dispersive media without
undergoing spreading. The investigation of these particle-like excitations has attracted
considerable interest owing to their promising applications in high-capacity fiber optical
communications and all-optical switching. They are particularly regarded as strong candi-
dates for enabling high-bandwidth, high-speed, and long-distance optical communication
systems. This is attributed to their ability to maintain a stable shape in the time domain
throughout extended optical fiber transmissions, highlighting their potential robustness
and efficacy in practical communication scenarios [1–5].

In recent years, the study of dark soliton propagation in nonlinear media has gar-
nered considerable attention through both theoretical and experimental investigations.
This localized wave has been discerned across various nonlinear systems, encompassing
Bose–Einstein condensates, nonlocal media characterized by competing nonlinearities,
photovoltaic photorefractive materials, nematic liquid crystals, and optical fibers. Their
manifestation in such diverse settings underscores their fundamental nature and their
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relevance in elucidating nonlinear phenomena across different scientific domains [6–9].
In the context of optical fibers, the inception of dark solitons under normal dispersion
conditions was first anticipated by Hasegawa and Tappert [10], as well as by Zakharov
and Shabat [11]. Dark solitons exhibit intriguing properties, such as heightened resilience
to perturbations compared to their bright counterparts, including those arising from loss
and amplified spontaneous emission noise. Experimental evidence for their existence
was provided by Emplit et al. [12], who characterized them as nontrivial phase-profiled
localized intensity dips on a continuous wave background. Subsequently, dark soliton
generation in fiber lasers [8,13–16] has been observed experimentally in fiber lasers, and the
formation mechanism is currently being studied, along with the development of systems to
measure the narrow dark pulses as they form in the laser. In an interesting experimental
demonstration, Zhang et al. [8] demonstrated the emission of dark localized pulses from
an erbium-doped fiber laser with all-normal dispersion. According to their research, fiber
lasers can emit single or multiple dark pulses under appropriate operating conditions.
Furthermore, Tang et al. [17] showcased the presence of dark solitons within all-normal-
dispersion fiber lasers, emphasizing their intrinsic formation. Remarkably, these dark
solitons can be generated without a threshold value in the input-pulse power. The practical
utility of these phenomena extends to various applications, including optical logic devices,
all-optical switches, and waveguide optics.

In the realm of picosecond dynamics, the behavior of solitons in single-mode fibers
is classically described by the cubic nonlinear Schrödinger (NLS) equation, a scalar field
model often derived using the slowly-varying envelope approximation. However, when
injecting ultrashort light pulses, with durations less than 100 fs, it becomes imperative to
account for higher-order nonlinear properties such as self-steepening and delayed nonlinear
response [7,18,19]. These effects are crucial as they profoundly impact the nonlinear
optical system. In addition to this, the introduction of extremely short pulses, typically
around 50 fs in width, into optical wave-guiding media accentuates the significance of
third-order dispersion, demanding meticulous attention. This inclusion of higher-order
dispersion not only induces pulse asymmetry but also precipitates radiation phenomena.
To comprehensively capture these complex physical phenomena, the NLS equation is
extended to incorporate additional higher-order phenomena [20–23]. This refined model,
denoted as the higher-order NLS equation, enables a more precise portrayal of wave
dynamics in practical materials, particularly concerning light propagation in optical fibers.
The imperative for the higher-order NLS equation stems from the intrinsic necessity to
accommodate the impacts of higher-order nonlinear and dispersive phenomena inherent
in optical fibers. While incorporating these significant effects complicates both theoretical
analyses and experimental observations of optical solitons, the optical solitons generated
under such conditions hold promise for unveiling novel nonlinear phenomena and offering
deeper insights into basic nonlinear mechanisms [14,24–27].

Inspired by advancements in higher-order NLS equations, we delve into the explo-
ration of dark and singular (bright) soliton solutions by considering the third-order NLS
equation, also known as the Hirota equation. Through this investigation, we aim to an-
alyze the notable characteristics associated with these soliton solutions by adjusting the
system parameters. Exploring solitary wave solutions for nonlinear equations is pivotal in
unraveling various nonlinear physical phenomena [28–35]. Nonlinear wave phenomena
manifest across a spectrum of engineering and scientific domains, encompassing fluid
dynamics, plasma physics, optics, biology, condensed matter physics, and beyond [1,9].
To understand the nonlinear wave phenomena and construct the solitary wave solutions
in the nonlinear partial differential equations, endeavors have been attempted to utilize
the various techniques, one may refer [36–41]. In particular, in ref. [42], the rational sine–
cosine method and rational sinh–cosh method have been extended to construct new exact
solutions of the nonlinear perturbed Schrödinger equation with Kerr law nonlinearity. This
approach yields a wealth of new exact traveling wave solutions, expressed in various forms
including hyperbolic functions, trigonometric functions, and complex functions [43–45]. In
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this work, we also utilize the extended rational sinh–cosh method and extended rational
Sin–Cosine method, renowned for their simplicity and effectiveness, to construct dark
and singular soliton solutions for the Hirota equation under consideration. Moreover, we
analyze the dynamic properties of dark solitons by systematically varying parameters such
as the strength of the third-order dispersion, wave speed, and wave frequency. Our findings
unveil intriguing dynamics, including variations in the intensity of dark soliton profiles,
enhancements, and suppression of amplitudes, as well as alterations in their orientations.

The motivation of this work is to investigate the impact of physical parameter strengths
on the dynamics of solitons and to bring out their salient features through explicit solutions
and graphical demonstrations. To achieve these, we design the manuscript in the following
manner: In Section 2, we recall the solution techniques such as extended rational sinh–
cosh and sine–cosine methods. In Section 3, we take into account the Hirota equation for
deriving the explicit soliton solutions and explore the various dynamical behaviors by
changing physically significant parameters. The final section, Section 4, contains a brief
discussion of the conclusions derived from this work.

2. Solution Technique

We outline the first stage of newly extended rational methods aimed at identifying
exact solutions for partial differential equations, as follows:

F
(

g,
∂g
∂t

,
∂g
∂x

,
∂2g
∂x

,
∂2g
∂x2 , ...

)
= 0. (1)

In Equation (1), the variable g = g(x, t) represents an unspecified function, and F denotes
a polynomial in g as well as its diverse partial derivatives. This equation encapsulates a
relationship where the function g and its derivatives, as manipulated within the polynomial
F, collectively contribute to the overall solution. Let us consider g(x, t) as a traveling wave
solution of Equation (1). By substituting the following transformation:

ψ(x, t) = g(η), η = x − νt, (2)

into Equation (1), it can be transformed into an ordinary differential equation of the form

P(g, g′, g′′, g′′′, ...), where prime indicates
∂

∂η
.

2.1. Extended Rational Sinh–Cosh Approach

Step 1: Let us consider Equation (2) and propose a solution in the form as described
in [42–44]

g(η) =
p0 sinh(µη)

p2 + p1cosh(µη)
, cosh(µη) ̸= − p2

p1
, (3)

or

g(η) =
p0 cosh(µη)

p2 + p1sinh(µη)
, sinh(µη) ̸= − p2

p1
, (4)

where p0, p1, and p2 are parameters yet to be determined, and µ represents the wave number.
Step 2: To determine the unknown constants, we insert Equation (3) or Equation (4) into

Equation (1). We gather expressions with the same power of cosh(µη)m or sinh(µη)m and
equate the coefficients of these terms to zero. This process yields a set of algebraic equations,
the solution of which enables us to determine the values of the unknown parameters.

Step 3: Once the constants p0, p1, p2, and µ are, we proceed to derive the solution of
Equation (1) by substituting these determined values into either Equation (3) or Equation (4).
This step completes the process, providing us with the solution of the given equation.
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2.2. Extended Rational Sin–Cosine Approach

Step 1: Let us commence with the assumption that Equation (2) admits a solution to
the following form [42–44]:

g(η) =
p0 sin(µη)

p2 + p1cos(µη)
, cos(µη) ̸= − p2

p1
, (5)

or

g(η) =
p0 cos(µη)

p2 + p1sin(µη)
, sin(µη) ̸= − p2

p1
, (6)

where p0, p1, and p2 are parameters to be determined.
Step 2: In order to determine the unknown constants, we substitute Equation (5) or

Equation (6) into Equation (1). By consolidating terms with the same powers of cos(µη)m or
sin(µη)m and setting the coefficients of these terms to zero, we derive a system of algebraic
equations. The solutions to these equations unveil the values of the unknown parameters.

Step 3: With the constants p0, p1, p2, c, and µ discerned, we proceed to uncover the
solution of Equation (1) by substituting these values into Equation (5) or Equation (6). This
final step completes the process, furnishing us with the solution to the given equation.

3. Third-Order NLS Equation and Dark/Singular Soliton Solutions

Dark solitons, observed experimentally in various physically significant systems, often
exhibit intricate dynamics, particularly when their formation results from a delicate balance
among higher-order effects. Although features like power for dark soliton formation, pulse
width, and soliton velocity can be experimentally measured, the rapid changes in these char-
acteristics and the complex dynamics of dark pulses pose challenges for a comprehensive
understanding based solely on experimentation. To delve deeper into these phenomena, a
theoretical description of the propagation features of these localized nonlinear structures
becomes crucial. This necessitates a detailed analytical analysis founded on models fea-
turing a more general form of the intensity-dependent refractive index, especially when
studying soliton behavior in non-Kerr materials. Such theoretical exploration is essential
for unraveling the nuanced behavior of dark solitons and gaining insights into various asso-
ciated phenomena [14,24–27]. Motivated by these developments, in this work, we consider
the higher-order NLS equation, namely third-order NLS or the Hirota equation [22–24] for
investigating the dynamical features of dark soliton solutions, as follows:

iψt + α2

(
ψxx + 2|ψ|2ψ

)
+ iα3

(
ψxxx + 6|ψ|2ψx

)
= 0. (7)

In Equation (7), the complex wave envelope is represented by the function ψ(x, t), where α2 and
α3 serve as arbitrary parameters. The subscripts t and x signify partial derivatives concerning
temporal and spatial variables, respectively. The Hirota Equation (7) provides a framework for
describing the propagation of ultrashort light pulses in optical fibers [25,26]. It is intriguing
to observe that the Hirota Equation (7) exhibits a composite nature, comprising elements
from both the NLS equation and the complex variant of the modified Korteweg–de Vries
equation. Specifically, when considering the parameter values α2 = 1 and α3 = 0, the
Hirota equation reduces to the NLS equation, i.e., iψt + ψxx + 2|ψ|2ψ = 0. Conversely,
with α2 = 0 and α3 = 1, the Hirota equation corresponds to the complex version of the
modified Korteweg–de Vries equation, i.e., ψt + ψxxx + 6|ψ|2ψx = 0. This amalgamation of
equations reflects the intricate interplay between different physical phenomena, offering
deeper insights into the dynamics of wave propagation in various systems. In the past
two decades, extensive research efforts have been directed toward the construction and
analysis of localized solutions in the Hirota equation [22,23,26,46,47]. For instance, periodic
solutions have been derived by Crabb et al. [22], while Sinthuja et al. [23] focused on
constructing rogue wave solutions over the double periodic wave backgrounds for the
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Hirota Equation (7). Ankie et al. [46] tackled the problem by constructing a hierarchy
of rational solutions using a modified Darboux transformation technique. In another
study by Zhang et al. [26], dark soliton solutions of the de-focusing Hirota equation were
investigated via the binary Darboux transformation technique. Additionally, Shi et al. [47]
explored higher-order rogue waves and interactions between solitons and rogue waves
using the long wave limit in multi-soliton scenarios. Furthermore, diverse methodologies
have been applied to produce multi-solitons, rogue waves, and breather solutions within
the framework of the Hirota equation [20,21,26,48]. Inspired by these advancements, our
work aims to contribute to this field by employing extended rational sinh–cosh and sine–
cosine methods to derive new dark and singular soliton solutions for the Hirota equation.

To explore the solitary wave solutions of the Hirota Equation (7), we assume the wave
transformation as follows:

ψ(x, t) = g(η)ei(kx−ct), η = x − νt, (8)

where k, ν, and c are constants to be determined later. Upon substituting this wave solution in
Equation (7), we collect the real and imaginary parts of the expressions given by the following:

g′′(η) + 2g3(η) + r1g(η) =0, (9)

g′′′(η) + 6g2(η)g′(η)− r2g′(η) =0, (10)

where r1 = c+k2(−α2+kα3)
(α2−3kα3)

, and r2 = ν−2kα2+3k2α3
α3

. In the following subsections, we construct
solitary wave solutions for a class of Equations (9) and (10). Rigorously speaking, until
we can demonstrate their elastic scattering, the solutions should be referred to as “solitary
waves”. Nevertheless, given our focus on integrable soliton equations, these solitary wave
solutions are anticipated to indeed evolve into solitons eventually. For the sake of simplicity,
we consistently label them as solitons throughout our discussion.

3.1. The Implementation of the Extended Rational Sinh–Cosh Technique

To begin with, we attempt to construct a solitary wave solution for the Hirota Equa-
tion (7). For this purpose, we choose the following form of solutions for Equations (9) and (10)
as follows:

g(η) =
p0 sinh(µη)

p2 + p1 cosh(µη)
, (11)

where p0, p1 and p2 are already mentioned. Plugging Equation (11) into Equations (9) and (10),
we congregate the coefficients of cosh(µη), as follows:

cosh2(µη) : 2p2
1r1 + 4p2

0 = 0,

cosh1(µη) : 4p1 p2r1 − 2µ2 p1 p2 = 0,

cosh0(µη) : − 4µ2 p2
1 + 2µ2 p2

2 + 2p2
2r1 − 4p2

0 = 0, (12a)

&

cosh3(µη) : p2
1

(
µ2 − r2

)
+ 6p2

0 = 0,

cosh2(µη) : p2
1

(
r2 − 4µ2

)
+ 2p2

2

(
2µ2 + r2

)
− 6p2

0 = 0,

cosh1(µη) : 2p2
1

(
2µ2 + r2

)
+ p2

2

(
r2 − µ2

)
+ 6p2

0 = 0,

cosh0(µη) : 6µ2 p2
1 + p2

2

(
r2 − 4µ2

)
+ 6p2

0 = 0. (12b)
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By solving these algebraic Equation (12), the different sets of values p0, p1, p2, and µ
are obtained.
Set 1:

p0 = ± p1
√

3α3k2 − 2α2k + ν√
2α3

, µ = −
√

2
√
−3α3k2 + 2α2k − ν√

α3
,

p2 = p1, c =
8α2

3k3 − 8α2α3k2 + 2α2
2k + 3α3kν − α2ν

α3
. (13)

Substituting these values (13) into (8) along with (11), we obtain the following dark
soliton solution:

ψ(x, t) = ±


p1
√

3α3k2−2α2k+ν√
2α3

sinh
(
−

√
2
√

−3α3k2+2α2k−ν√
α3

(x − νt)
)

p2 + p1 cosh
(
−

√
2
√

−3α3k2+2α2k−ν√
α3

(x − νt)
)

 exp(i(kx − ct)). (14)

Set 2:

p0 = ± p1
√

3α3k2 − 2α2k + ν√
2α3

, µ =

√
2
√
−3α3k2 + 2α2k − ν√

α3
,

p2 = p1, c =
8α2

3k3 − 8α2α3k2 + 2α2
2k + 3α3kν − α2ν

α3
. (15)

Inserting the above expressions in (8) with (11), we obtain the following:

ψ(x, t) = ±


p1
√

3α3k2−2α2k+ν√
2α3

sinh
(√

2
√

−3α3k2+2α2k−ν√
α3

(x − νt)
)

p2 + p1 cosh
(√

2
√

−3α3k2+2α2k−ν√
α3

(x − νt)
)

 exp(i(kx − ct)). (16)

Set 3:

p0 = ± p1
√

3α3k2 − 2α2k + ν√
2α3

, µ = −
√
−3α3k2 + 2α2k − ν√

2α3
,

p2 = 0, c =
8α2

3k3 − 8α2α3k2 + 2α2
2k + 3α3kv − α2ν

α3
. (17)

The corresponding solitary wave solution is given by the following:

ψ(x, t) = ±
√

3α3k2 − 2α2k + ν√
2α3

tanh

(
−
√
−3α3k2 + 2α2k − ν√

2α3
(x − νt)

)
exp(i(kx − ct)). (18)

Set 4:

p0 = ± p1
√

3α3k2 − 2α2k + ν√
2α3

, µ =

√
−3α3k2 + 2α2k − ν√

2α3
,

p2 = 0, c =
8α2

3k3 − 8α2α3k2 + 2α2
2k + 3α3kν − α2ν

α3
. (19)

Plugging the above expressions (19) into (8) with (11), we find the following:
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ψ(x, t) = ±
√

3α3k2 − 2α2k + ν√
2α3

tanh

(√
−3α3k2 + 2α2k − ν√

2α3
(x − νt)

)
exp(i(kx − ct)). (20)

Figure 1 illustrates the qualitative nature of the intensity profile of a dark soliton,
utilizing the solution (14) for the considered Hirota Equation (7). Employing parameters
p1 = 1, ν = 0.01, k = 0.25, α2 = 1, and α3 = 0.05, we present the intensity profile of the
dark soliton in Figure 1a, revealing its fundamental features. Upon modifying the value
of α3 to 0.2, the intensity profile reduces, and its width slightly increases, as depicted in
Figure 1b. Additionally, there is a noticeable decrease in intensity. Subsequently, with an
increase in the value of ν to 0.25, Figure 1c demonstrates a change in the orientation of the
dark soliton profile, accompanied by a decrease in amplitude. Further adjustments in the
value of k to 0.75 lead to an increase in the amplitude of the dark soliton profile, along with
a more compressed width, as illustrated in Figure 1d.

(a) (b)

(c) (d)

Figure 1. Intensity of dark soliton profiles for the third-order NLS Equation (7) using the solution (14).
The parameters are (a) p1 = 1, v = 0.01, k = 0.25, α2 = 1, α3 = 0.05; (b) α3 = 0.2; (c) ν = 0.25;
(d) k = 0.75. In (b–d), we vary the specified parameters while maintaining all other parameters at the
same values as in (a).

To gain a comprehensive insight, we plotted the soliton’s amplitude against x at
t = 0.01, while manipulating various parameters, such as α3, ν, and k. These results are
depicted in Figure 2. In Figure 2a, we observe different profiles resulting from varying α3.
Specifically, when α3 takes values of 0.05, 0.1, and 0.85, the amplitude of the dark soliton
profile diminishes, and its width expands noticeably. Moving to Figure 2b, we witness
a nuanced behavior as the parameter ν changes. Initially, as ν increases from 0.1 to 0.4,
the amplitude of the dark soliton profile decreases while its width expands. Subsequently,
selecting ν = 0.6 transforms the dark soliton profile into a periodic form with heightened
amplitude. Furthermore, in Figure 2c, we explore the impact of the wave number k with
values of 0.1, 0.5, and 1.25. Here, we observe a consistent trend: as k varies, the amplitude
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of the dark soliton diminishes, and its width broadens. These findings, as illustrated in
Figure 2, provide valuable insights into the behavior of solitons under parameter variations.

(a) (b)

(c)

Figure 2. The magnitude variation in the amplitude of dark soliton due to the influence of (a) α3,
(b) ν, and (c) k at t = 0.01. The other parameters are the same in Figure 1a.

In Figures 1 and 2, we present the formation and explore the intriguing features
of dark solitons in our considered physical system (7). In the context of optics, these
solitons emerge from the intricate interplay among nonlinear effects, dispersion, and
attenuation [2,3,49]. The temporal evolution of the intensity profile, as depicted in Figure 1a,
unveils the intricate journey of the optical pulse through the fiber. Initially, dispersion
effects may induce broadening and distortion of the pulse. However, as it traverses,
nonlinear effects stimulate the emergence of the dark soliton, preserving its shape and
velocity over considerable distances despite challenges posed by dispersion and attenuation.
Furthermore, our investigation reveals variations in the width, orientation, and amplitude
of dark solitons by finely tuning the parameters present in their solutions. This fine-
tuning is facilitated by leveraging the nonlinear dependence of the refractive index on
intensity, offering insights into the versatile behavior of dark solitons. These meticulous
investigations not only enable precise measurements of the temporal and spectral properties
of optical pulses but also facilitate the detection and study of dark solitons and their
propagation dynamics [50,51]. Moreover, the theoretical insights presented in this work,
combined with complementary studies in the literature, establish a robust framework that
guides experimentalists in exploring and validating the intriguing phenomena of dark
solitons in optical fibers.

In summary, the experimental verification of dark solitons in optical fibers necessitates
a comprehensive approach integrating pulse shaping techniques, nonlinear optical effects,
and theoretical modeling. By harmonizing these methodologies, researchers can elucidate
the fundamental properties and dynamics of dark solitons, advancing our understanding
of nonlinear optics and optical communication technologies [49–54].
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3.2. The Implementation of Extended Rational Cosh–Sinh Technique

Next, we choose the following form of solutions for Equations (9) and (10), as follows:

g(η) =
p0 cosh(µη)

p2 + p1 sinh(µη)
, (21)

where p0, p1, and p2 are parameters that need to be established. Plugging Equation (21)
into Equations (9) and (10), we collect the coefficients of sinh(µη) as follows:

sinh2(µη) : p2
1r1 + 2p2

0 = 0,

sinh1(µη) : 2r1 − µ2 = 0,

sinh0(µη) : 2µ2 p2
1 + µ2 p2

2 + p2
2r1 + 2p2

0 = 0, (22a)

&

sinh3(µη) : p2
1

(
µ2 − r2

)
+ 6p2

0 = 0,

sinh2(µη) : p2
1

(
r2 − 4µ2

)
− 2p2

2

(
2µ2 + r2

)
− 6p2

0 = 0,

sinh1(µη) : 2p2
1

(
2µ2 + r2

)
+ p2

2

(
µ2 − r2

)
+ 6p2

0 = 0,

sinh0(µη) : 2µ2 p1

(
3p2

1 + 2p2
2

)
− p1 p2

2r2 + 6p2
0 p1 = 0. (22b)

By solving these algebraic sets in Equation (22), we determine the different sets of values
p0, p1, p2, and µ given by the following:
Set 1:

c =
8α2

3k3 − 8α2α3k2 + 2α2
2k + 3α3kν − α2ν

α3
, p2 =

√
−p1

√
p1,

p0 = ± p1
√

3α3k2 − 2α2k + ν√
2α3

, µ = −
√

2
√
−3α3k2 + 2α2k − ν√

α3
. (23)

Inserting these values into (8) with (21), we derive the following:

ψ(x, t) = ±


p1
√

3α3k2−2α2k+ν√
2α3

cosh
(
−

√
2
√

−3α3k2+2α2k−ν√
α3

(x − νt)
)

p2 + p1 sinh
(
−

√
2
√

−3α3k2+2α2k−ν√
α3

(x − νt)
)

 exp(i(kx − ct)). (24)

Set 2:

c =
8α2

3k3 − 8α2α3k2 + 2α2
2k + 3α3kν − α2ν

α3
, p2 = −

√
−p1

√
p1,

p0 = ± p1
√

3α3k2 − 2α2k + ν√
2α3

, µ = −
√

2
√
−3α3k2 + 2α2k − ν√

α3
. (25)

Substituting the above-obtained values into (8) along with (21), the associated soliton
solution is determined by the following:

ψ(x, t) = ±


p1
√

3α3k2−2α2k+ν√
2α3

cosh
(
−

√
2
√

−3α3k2+2α2k−ν√
α3

(x − νt)
)

p2 + p1 sinh
(
−

√
2
√

−3α3k2+2α2k−ν√
α3

(x − νt)
)

 exp(i(kx − ct)). (26)
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Set 3:

c =
8α2

3k3 − 8α2α3k2 + 2α2
2k + 3α3kν − α2ν

α3
, p2 =

√
−p1

√
p1,

p0 = ± p1
√

3α3k2 − 2α2k + ν√
2α3

, µ = −
√

2
√
−3α3k2 + 2α2k − nu√

α3
. (27)

Substituting these values into (8) with (21), the soliton solution is found by the following:

ψ(x, t) = ±


p1
√

3α3k2−2α2k+ν√
2α3

cosh
(
−

√
2
√

−3α3k2+2α2k−ν√
α3

(x − νt)
)

p2 + p1 sinh
(
−

√
2
√

−3α3k2+2α2k−ν√
α3

(x − νt)
)

 exp(i(kx − ct)). (28)

Set 4:

c =
8α2

3k3 − 8α2α3k2 + 2α2
2k + 3α3kν − α2ν

α3
, p2 =

√
−p1

√
p1,

p0 = ± p1
√

3α3k2 − 2α2k + ν√
2α3

, µ =

√
2
√
−3α3k2 + 2α2k − ν√

α3
, (29)

Plugging these set of values into (8) with (21), we obtain the following:

ψ(x, t) = ±

 (
p1
√

3α3k2−2α2k+ν√
2α3

) cosh
(√

2
√

−3α3k2+2α2k−ν√
α3

(x − νt)
)

p2 + p1 sinh
(√

2
√

−3α3k2+2α2k−ν√
α3

(x − νt)
)

 exp(i(kx − ct)). (30)

The intensity profile of the singular soliton, described by solution (28), is generated
through plotting. This profile is obtained with the following parameters: p1 = 0.5, ν = 0.05,
k = 0.005, α2 = 1, and α3 = 0.5, as depicted in Figure 3a. For our convenience, we
restrict the |ψ|2 range to [0, 250]. In this representation, the singular soliton is observed
to move toward the right side intensity as α3 varies to 4, as shown in Figure 3b. Upon
increasing the value of v to 0.25, the profile of the singular soliton undergoes a notable
transformation, transitioning into a periodically varying soliton structure. This shift is
visualized in Figure 3c. Additionally, altering the value of k to 0.02 results in a rightward
shift of the plane of the singular soliton, as illustrated in Figure 3d.

In Figure 4a, we explore the intriguing dynamics of singular solitons under the influ-
ence of varying α3, shedding light on their spatial movement. Initially, with α3 = 0.25 and
k = 0.005, the singular soliton exhibits nuanced changes. Remarkably, as α3 is increased to
2.5, the soliton’s profile undergoes a perceptible shift, relocating from the central region
towards the right side. Conversely, when α3 is further increased to 4.5, the soliton profile
experiences further displacement, illustrating the sensitivity of the soliton’s behavior to
variations in α3. Now, we vary the parameter k to analyze the spatial displacement phe-
nomena in the singular soliton profiles. This outcome is depicted in Figure 4b. Expanding
our investigation, Figure 4c explores the consequences of modifying ν on the singular
soliton’s characteristics. Enhancing ν from 0.06 to 0.15, we observe a remarkable change in
the soliton’s orientation. Moreover, this progression induces a transition towards a periodic
structure in the soliton profile, showcasing the profound impact of parameter adjustments
on the soliton’s spatial dynamics. The periodicity increases with further increments in the
value of ν. In essence, the findings depicted in Figure 4 unveil the intricate behavior of
singular solitons, highlighting their sensitivity to variations in parameters such as α3, k,
and ν. Such insights not only deepen our understanding of solitonic phenomena but also
offer avenues for manipulating soliton characteristics in diverse physical systems.



Symmetry 2024, 16, 561 11 of 20

(a) (b)

(c) (d)

Figure 3. Intensity of singular soliton profiles for the third-order NLS Equation (7) using the so-
lution (28). The parameters are (a) p1 = 0.5, ν = 0.05, k = 0.005, α2 = 1, α3 = 0.5; (b) α3 = 4;
(c) ν = 0.25; (d) k = 0.02. In (b–d), we vary the specified parameters while maintaining all other
parameters at the same values as in (a).

(a) (b)

(c)

Figure 4. The variation in the profile of a singular soliton due to the influence of (a) α3 with
k = 0.05 − 0.02i, (b) α3 with k = 0.05 + 0.02i, and (c) ν at t = 0.01. The other parameters are the same
in Figure 3a.
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3.3. The Implementation of the Extended Rational Sin–Cos Approach

In this section, we construct exact soliton solutions of the considered third-order
NLS model (7) and explore their propagation as well as interaction dynamics in detail for
different choices of parameters. To study this, we take into account the following forms of
solutions for Equations (9) and (10):

g(η) =
p0 sin(µη)

p2 + p1 cos(µη)
, (31)

where p0, p1, and p2 are parameters. Plugging Equation (31) into Equations (9) and (10),
we collect the coefficients of cos(µη), as follows:

cos2(µη) : 2p2
0 − p2

1r1 = 0,

cos1(µη) : µ2 + 2r1 = 0,

cos0(µη) : − µ2 p2
2 + 2µ2 p2

1 + p2
2r1 + 2p2

0 = 0, (32a)

&

cos3(µη) : p2
1

(
µ2 + r2

)
+ 6p2

0 = 0,

cos2(µη) : p2
1

(
4µ2 + r2

)
+ 2p2

2

(
r2 − 2µ2

)
+ 6p2

0 = 0,

cos1(µη) : 2p2
1

(
r2 − 2µ2

)
+ p2

2

(
µ2 + r2

)
− 6p2

0 = 0,

cos0(µη) : 6µ2 p2
1 − p2

2

(
4µ2 + r2

)
+ 6p2

0 = 0. (32b)

By solving the algebraic Equation (32), the different sets of values p0, p1, p2, and µ are obtained.
Set 1:

c =
8α2

3k3 − 8α2α3k2 + 2α2
2k + 3α3kν − α2ν

α3
, p2 = 0,

p0 = ±
√−p1

√
p1
√

3α3k2 − 2α2k + ν
√

2α3
, µ = −

√
3α3k2 − 2α2k + ν√

2α3
. (33)

Plugging these sets of values into (8) along with (31), we obtain the following:

ψ(x, t) = ±


√−p1

√
p1
√

3α3k2−2α2k+ν√
2α3

sin
(
−
√

3α3k2−2α2k+ν√
2α3

(x − νt)
)

p2 + p1 cos
(
−
√

3α3k2−2α2k+ν√
2α3

(x − νt)
)

 exp(i(kx − ct)). (34)

Set 2:

c =
8α2

3k3 − 8α2α3k2 + 2α2
2k + 3α3kν − α2ν

α3
, p2 = 0,

p0 = ±
√−p1

√
p1
√

3α3k2 − 2α2k + ν
√

2α3
, µ =

√
3α3k2 − 2α2k + ν√

2α3
. (35)

Inserting the obtained values of c, p0, p2, and µ in Equation (8) with Equation (31), one can
derive the following soliton solution:

ψ(x, t) = ±


√−p1

√
p1
√

3α3k2−2α2k+ν√
2α3

sin
(√

3α3k2−2α2k+ν√
2α3

(x − νt)
)

p2 + p1 cos
(√

3α3k2−2α2k+ν√
2α3

(x − νt)
)

 exp(i(kx − ct)). (36)
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Set 3:

c =
8α2

3k3 − 8α2α3k2 + 2α2
2k + 3α3kν − α2v

α3
, p2 = p1,

p0 = ±
√−p1

√
p1
√

3α3k2 − 2α2k + ν
√

2α3
, µ = −

√
2
√

3α3k2 − 2α2k + ν√
α3

. (37)

Substituting these forms into Equation (8) along with Equation (31), we acquire the following:

ψ(x, t) = ±


√−p1

√
p1
√

3α3k2−2α2k+ν√
2α3

sin
(
−

√
2
√

3α3k2−2α2k+v√
α3

(x − νt)
)

p2 + p1 cos
(
−

√
2
√

3α3k2−2α2k+v√
α3

(x − νt)
)

 exp(i(kx − ct)). (38)

Set 4:

c =
8α2

3k3 − 8α2α3k2 + 2α2
2k + 3α3kν − α2ν

α3
, p2 = p1,

p0 = ±
√−p1

√
p1
√

3α3k2 − 2α2k + ν
√

2α3
, µ =

√
2
√

3α3k2 − 2α2k + ν√
α3

. (39)

Plugging the above-obtained values into Equation (8) along with Equation (31), we obtain
the following:

ψ(x, t) = ±


√−p1

√
p1
√

3α3k2−2α2k+ν√
2α3

sin
(√

2
√

3α3k2−2α2k+ν√
α3

(x − νt)
)

p2 + p1 cos
(√

2
√

3α3k2−2α2k+ν√
α3

(x − νt)
)

 exp(i(kx − ct)). (40)

Utilizing the parameters p1 = 1, ν = 0.01, k = 0.35, α2 = 1, and α3 = 0.1, we generate an
intensity profile corresponding to the dark soliton solution (34). This profile is visually
represented in Figure 5a. Subsequently, as α3 is adjusted to 0.5, a discernible shift occurs
in the profile’s characteristics: the amplitude decreases, accompanied by a slight increase
in width, as depicted in Figure 5b. Continuing our exploration, we investigate the impact
of altering the parameter ν, initially set at 0.01. As demonstrated in Figure 5c, when we
increase ν to 0.45, we see a change in the direction of the dark soliton profile along with a
decrease in amplitude. Furthermore, modifying the value of k to 0.85 leads to noteworthy
changes in the dark soliton profile. Specifically, in Figure 5d, we witness an enhancement
in the amplitude of the dark soliton profile, concomitant with a reduction in its width.

For different values of α2, a two-dimensional plot of the dark soliton profile is produced
between its amplitude and x, as Figure 6a illustrates. The dark soliton profile amplitude
diminishes and the profile width flattens at α3 = 0.1, 0.25, and 1.05. Figure 6b shows
that the profile of dark soliton amplitude compresses as k increases (0.2, 0.7, and 1.5).
Furthermore, extending the center region reduces the amplitude of the dark soliton form
by increasing v from 0.1 to 0.35, as seen in Figure 6c. Subsequently, by selecting ν = 0.7, the
dark soliton profile is transformed into a periodic form.
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(a) (b)

(c) (d)

Figure 5. Intensity of dark soliton profiles for the third-order NLS Equation (7) using the solution (34).
The parameters are (a) p1 = 1, ν = 0.01, k = 0.35, α2 = 1, α3 = 0.1; (b) α3 = 0.5; (c) ν = 0.45;
(d) k = 0.85. In (b–d), we vary the specified parameters while maintaining all other parameters at the
same values as in (a).

(a) (b)

(c)

Figure 6. The magnitude variation in the amplitude of dark soliton due to the influence of (a) α3,
(b) k, and (c) ν at t = 0.01. The other parameters are the same as in Figure 5a.
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3.4. The Implementation of the Extended Rational Cos–Sin Approach

To investigate the dynamical features of singular solitons in the considered
Equation (7), we adopt the solution for Equations (9) and (10) as follows:

g(η) =
p0 cos(µη)

p2 + p1 sin(µη)
, (41)

where p0, p1, and p2 are parameters that are to be calculated. Plugging Equation (41) into
Equations (9) and (10), we congregate the coefficients of sin(µη), namely the following:

sin2(µη) : 2p2
0 − p2

1r1 = 0,

sin1(µη) : µ2 + 2r1 = 0,

sin0(µη) : − µ2 p2
2 + 2µ2 p2

1 + p2
2r1 + 2p2

0 = 0, (42a)

&

sin3(µη) : p2
1

(
µ2 + r2

)
+ 6p2

0 = 0,

sin2(µη) : 2p2
1

(
r2 − 2µ2

)
+ p2

2

(
µ2 + r2

)
− 6p2

0 = 0,

sin1(µη) : 2p2
1

(
r2 − 2µ2

)
+ p2

2

(
µ2 + r2

)
− 6p2

0 = 0,

sin0(µη) : 6µ2 p2
1 − p2

2

(
4µ2 + r2

)
+ 6p2

0 = 0. (42b)

By solving these algebraic system of Equations (42), one can deduce the different sets of
values p0, p1, p2, and µ as follows:
Set 1:

c =
8α2

3k3 − 8α2α3k2 + 2α2
2k + 3α3kν − α2ν

α3
, p2 = 0,

p0 = ±
√−p1

√
p1
√

3α3k2 − 2α2k + ν
√

2
√

α3
, µ = −

√
3α3k2 − 2α2k + ν√

2
√

α3
. (43)

We construct the following dark soliton solution by substituting the above-mentioned
expression into Equation (8) along with the Equation (41), namely the following:

ψ(x, t) = ±


√−p1

√
p1
√

3α3k2−2α2k+ν√
2α3

cos
(
−
√

3α3k2−2α2k+ν√
2α3

(x − νt)
)

p2 + p1 sin
(
−
√

3α3k2−2α2k+ν√
2α3

(x − νt)
)

 exp(i(kx − ct)). (44)

Set 2:

c =
8α2

3k3 − 8α2α3k2 + 2α2
2k + 3α3kν − α2ν

α3
, p2 = −p1,

p0 = ±
√−p1

√
p1
√

3α3k2 − 2α2k + ν
√

2α3
, µ =

√
2
√

3α3k2 − 2α2k + ν√
α3

. (45)

Inserting these forms in (8) along with Equation (41), we have the following:

ψ(x, t) = ±


√−p1

√
p1
√

3α3k2−2α2k+ν√
2α3

cos
(√

2
√

3α3k2−2α2k+ν√
α3

(x − νt)
)

p2 + p1 sin
(√

2
√

3α3k2−2α2k+ν√
α3

(x − νt)
)

 exp(i(kx − ct)). (46)
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Set 3:

c =
8α2

3k3 − 8α2α3k2 + 2α2
2k + 3α3kν − α2ν

α3
, p2 = p1,

p0 = ±
√−p1

√
p1
√

3α3k2 − 2α2k + ν
√

2α3
, µ = −

√
2
√

3α3k2 − 2α2k + ν√
α3

. (47)

Plugging these expressions into Equation (8) with (41), one obtains the following soliton
solution of (7):

ψ(x, t) = ±


√−p1

√
p1
√

3α3k2−2α2k+ν√
2α3

cos
(
−

√
2
√

3α3k2−2α2k+ν√
α3

(x − νt)
)

p2 + p1 sin
(
−

√
2
√

3α3k2−2α2k+ν√
α3

(x − νt)
)

 exp(i(kx − ct)). (48)

Set 4:

c =
8α2

3k3 − 8α2α3k2 + 2α2
2k + 3α3kν − α2ν

α3
, p2 = p1,

p0 = ±
√−p1

√
p1
√

3α3k2 − 2α2k + ν
√

2
√

α3
, µ =

√
2
√

3α3k2 − 2α2k + ν√
α3

. (49)

Substituting the above-mentioned forms in Equation (8) with (41), we obtain the following:

ψ(x, t) = ±


√−p1

√
p1
√

3α3k2−2α2k+ν√
2α3

cos
(√

2
√

3α3k2−2α2k+ν√
α3

(x − νt)
)

p2 + p1 sin
(√

2
√

3α3k2−2α2k+ν√
α3

(x − νt)
)

 exp(i(kx − ct)). (50)

The singular soliton solution, characterized by spatial shift and periodicity, is described
by the following parameters: p1 = 1, ν = 0.01, k = 0.001, α2 = 1, and α3 = 0.1. This
solution is depicted using the solution (50), as demonstrated in Figure 7a. Upon varying
the parameter α3 to 1.25, depicted in Figure 7b, the singular soliton’s profile shifts towards
the left. In Figure 7c, it is observed that as the parameter ν is increased to 0.2, the profile of
the singular soliton transforms into a periodically varying pattern. Additionally, modifying
the parameter k to 0.0045 induces a spatial change in the profile, as illustrated in Figure 7d.

The two-dimensional representation of the singular soliton, with varying parameters
α3, k, and ν, is illustrated in Figure 8. Further exploration involves manipulating α3 to
higher values, such as α3 = 0.5 and α3 = 1.05, resulting in a leftward shift of the soliton
profile from its central position. This effect is visually depicted in Figure 8a. Increasing
the values of k to 0.0001 and 0.004 causes a leftward shift of its profile from the center, as
illustrated in Figure 8b. Further alterations are observed when adjusting the parameter ν,
where increasing its value from 0.005 to 0.02, and subsequently to 0.25, leads to periodic
changes in the singular soliton profile. Additionally, a periodic structure emerges in the
profile with higher values of ν. These variations are represented in Figure 8c.
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(a) (b)

(c) (d)

Figure 7. Intensity of singular soliton profiles for the third-order NLS Equation (7) using the so-
lution (50). The parameters are (a) p1 = 1, ν = 0.01, k = 0.001, α2 = 1, α3 = 0.1; (b) α3 = 1.25;
(c) ν = 0.2; (d) k = 0.0045. In (b–d), we vary the specified parameters while maintaining all other
parameters at the same values as in (a).

(a) (b)

(c)

Figure 8. The variation in the profile of the singular soliton due to the influence of (a) α3, (b) k, and
(c) ν at t = 0.01. The other parameters are the same as in Figure 7a.
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4. Conclusions

In this work, we explored the third-order NLS equation, a pivotal model that eluci-
dates the intricate dynamics governing the propagation of ultrashort pulses within optical
fibers. We employed the extended rational sinh–cosh method and the extended rational
sine–cosine method to derive exact solutions, encompassing both dark and singular solitons,
for the third-order NLS equation. These methods, noted for their efficacy and widespread
applicability, are instrumental in constructing solutions that offer profound insights into the
dynamics of optical pulse propagation. Through our investigations, we unveil a plethora of
new exact traveling wave solutions, characterized by expressions involving hyperbolic func-
tions, trigonometric functions, and complex functions. These solutions not only contribute
to the theoretical understanding of nonlinear wave phenomena but also hold practical
significance in optical fiber communication systems. Furthermore, by carefully selecting
specific parameter values, we visualize the physical structures corresponding to these
solutions, elucidating their intrinsic nature and characteristics. Notably, our observations
reveal intriguing behaviors: the intensity of soliton profiles escalates with variations in the
parameter k, while adjustments to the parameters ν and α3 lead to a decrease in soliton
intensity profiles. These findings provide valuable insights into the controllability and
manipulation of soliton dynamics in optical fiber systems, with implications for a wide
range of applications in nonlinear optics and photonics.
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