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Abstract: In this work, we formalize the effect of mechanical shaking by using various forms of an
externally exerted force, which may be constant or may be position-dependent, and we examine
the changes in the potential energy surfaces that quantify the chemical reaction. We use a simple
toy model to model the potential energy surfaces of a chemical reaction, and we study the effect
of a constant or position-dependent externally exerted force for various forms of the force. As we
demonstrate, the effect of the force can be quite dramatic on the potential energy surfaces, which
acquire new stationary points and new Newton trajectories that are distinct from the original ones
that were obtained in the absence of mechanochemical effects. We also introduce a new approach
to mechanochemical interactions, using a dynamical systems approach for the Newton trajectories.
As we show, the dynamical system attractor properties of the trajectories in the phase space are
identical to the stationary points of the potential energy surfaces, but the phase space contains much
more information regarding the possible evolution of the chemical reaction—information that is
quantified by the existence of unstable or saddle fixed points in the phase space. We also discuss how
an experimental method for a suitable symmetric liquid solution substance might formalize the effect
of shaking via various forms of external force, even in the form of an extended coordinate-dependent
force matrix. This approach may experimentally quantify the Epstein effect of shaking in chemical
solutions via mechanochemistry methods.

Keywords: mechanochemistry; shaking of solutions; Epstein effect; potential energy surfaces; New-
ton trajectories

1. Introduction

Mechanochemical reactions can be categorized into two types of reactions: isotropic
and directed ones. In the case of directed mechanochemical reactions, the external forces
are exerted in specific directions, usually aligned with the existing molecules’ symmetry
axis, and isotropic mechanochemical reactions refer to the collective application of external
forces in all directions in the chemical system [1,2]. Although mechanochemistry is not
so widespread and popular in the industry, several mechanochemical phenomena exist in
nature—for example, in living biological cells, such as in molecular motors, which convert
chemical energy into mechanical work used to contract muscles and so on; see [3].

In general, there are various ways to accelerate or enhance the chemical reaction rates—for
example, heating, light exposure, the use of catalysts or even the use of mechanochemical
techniques. The latter are known to function for some time but are less studied compared to
the other techniques, even though scientists such as Michael Faraday studied such techniques.
Recently, however, there have been some developments in the theoretical understanding of
mechanochemistry. The theoretical treatment of chemical reactions is achieved by studying the
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Born–Oppenheimer potential energy surfaces. These multidimensional surfaces incorporate
the local energy minima of the atomical systems that are involved in the chemical compounds
involved in a reaction. The chemical reaction indicates that an existing energy barrier in the
potential energy surfaces is crossed, and, if it did not exist, the reactions would take place
spontaneously. The minimum energy path between the reactant and the product goes through
a saddle point, which is known as the transition state; thus, this causes the multidimensional
problem to be reduced to the one-dimensional problem of obtaining these reaction path curves.
Mechanochemistry aims to pinpoint the locations and energies of the transition states before
and after the exertion of an external mechanical force in the chemical system. Essentially, the
mechanical force modifies the activation energy of the system and hence the reaction rate itself
is changed. It is thus vital to have knowledge of the potential energy surfaces of a chemical
system, and, to this end, the synergy between experiments and theoretical modelling can yield
interesting results for future theoretical modelling development; see, for example, ref. [4] for
several experiments in this line of research.

In mechanochemistry, it is known that the exertion of an external force along the reac-
tion coordinate(s) may enhance a chemical reaction. In fact, the theoretical description of
the above procedure is obtained by studying the potential energy surfaces of molecular sys-
tems and how these surfaces are changed or affected by the exertion of external mechanical
forces. This theoretical approach is of fundamental importance in mechanochemistry and
may reveal information at a molecular level about chemical reactions and how mechanical
forces may control chemical processes and reactions. Chemical reactions may be considered
in terms of these potential energy surfaces, or as hypersurfaces for higher-dimensional
chemical systems, since the potential energy surfaces map the saddle paths and valleys of
the molecular potential energy, as the molecules that constitute the molecular system react.
The minima, fixed points and several other structural properties of the potential energy
surfaces, and how they are changed by the exertion of external force(s), reveal the reaction
pathways of a chemical reaction [5].

Recently, the effect of shaking in solutions has been pointed out in Ref. [6], which is
referred to as the Epstein effect in this paper. As was pointed out in [6], substances, when
exposed to vibrations, acquire new structural characteristics and new physical properties.
Clearly, this means that there is some mechanochemical effect that changes the structure
of the solutions in some way. The mechanochemical effects of the shaking of aqueous
solutions have also been discussed in [7]; see also [8]. In fact, long-lived luminescence was
found to occur in deionized water, which was also saturated with atmospheric gases, after
mechanical shaking. Moreover, the effects of intense mechanical shaking enhanced the
bubbles in the solution, and it was observed that the liquid–gas interface area was signifi-
cantly enhanced. In addition, it was observed that gas nanobubbles and macromolecules
formed in the water after intense mechanical shaking, but the bubbles were absent in the
freshly prepared deaerated water. It is known that the mechanical exertion of external
forces may change the physicochemical properties of aqueous solutions, and these effects
remain for a long time after the exertion of the mechanical stress or shaking. Currently,
there is no sufficient explanation of these phenomena, and, in this work, we aim to connect
the symmetric isotropic mechanochemically induced reactions with the study of potential
energy surfaces in chemical systems. It is possible that these nanobubbles have a general
effect in the initial chemical system, by directly altering the potential energy surfaces and
the reaction paths and by lowering the energy barriers controlling the chemical reaction,
acting as virtual catalysts to some extent [7,8].

In this work, we aim to formalize the effect of shaking by using various forms of
externally exerted force, which may be constant or position-dependent. We use a simple
toy model to model the potential energy surfaces of a chemical solution, and we study
the effect of the constant or position-dependent force for various forms of the force. As
we demonstrate, the effect of the force can be dramatic on the potential energy surfaces,
which acquire new stationary points and Newton trajectories. We also introduce a new
approach to mechanochemical interactions, using a dynamical systems study approach for
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the Newton trajectories. As we show, the dynamical system attractor properties are identical
to the stationary points of the potential energy surfaces, but the phase space contains much
more information regarding the evolution of the chemical reaction—information that is
quantified by the existence of unstable or saddle fixed points.

2. Potential Energy Surfaces and Mechanochemical Reactions: A Detailed Approach

The potential energy surface is of fundamental importance in theoretical chemistry,
along with the reaction paths imagined on them. The reaction paths are essentially one-
dimensional descriptions of a chemical reaction embedded in an N-dimensional configu-
ration space of N molecules that take part in the reaction. The potential energy surfaces
are effective surfaces that can be deformed due to externally exerted mechanical stress in
a specific direction on the molecules, or even in many directions. The potential energy
surfaces can be deformed due to this external mechanical stress and thus new minima and
saddle points might arise in the new effective potential energy surface. The changes in the
minima and the saddle points due to the exertion of the mechanical stress are described by
the Newton trajectories in the original potential energy surface. Moreover, the barrier of a
reaction is crossed when the norm of the gradient of the potential energy surface along a
Newton trajectory is the maximum—a critical point that is known as the barrier breaking
point. The importance of the Newtonian trajectories in identifying the reaction path is
fundamental since, on a Newtonian curve, the gradient of the potential energy surface
points in the same direction for every point on the curve [9].

A mechanochemical reaction is a chemical reaction that is generated or triggered by
mechanical stress or energy, according to the IUPAC terminology. The formulation of a
mechanochemical reaction is usually materialized by the first-order perturbations of the
molecular system due to the exertion of an external force on the system, of the form [9]

Vf (⃗r) = V (⃗r)− f T δ⃗r , (1)

where Vf (⃗r) describes the effective potential of the molecules’ interactions, including the
exertion of the perturbation of the external constant force f⃗ . The linear perturbation is a
simplified approach and generalizations may apply [9]. In the case of a constant force, the
direction of the force stays the same, and the new stationary points are located in different
positions on the effective potential energy surfaces, where it holds that

∇rVf (⃗r) = 0 = g⃗ − f⃗ = 0 , (2)

where g⃗ = ∇rV (⃗r). Essentially, the condition (2) is the condition that the internal forces of
the system are equal to the external forces of the system, and it is a vector equation, so it can
be analyzed in components. Essentially, the perturbation caused by the external force in the
potential energy surfaces is assumed to generate a potential term f T δ⃗r, so the force acting
on the system is essentially generated by the potential term f T δ⃗r, and we have the condition
of equal forces (2), which yields the stationary points of the effective potential surfaces.
One, however, may consider the holistic or collective effect of an external mechanical action
to have some functional space-dependent form F(⃗r), and then the effective potential energy
surfaces are given by

Vf (⃗r) = V (⃗r)− F(⃗r) , (3)

and the new stationary points of the effective potential surfaces are given by the condition

∇rVf (⃗r) = 0 = g⃗ −∇rF(⃗r) = 0 . (4)

The generalized collective action potential may capture and quantify the initial idea of
the supramolecular concept of Epstein and reflect extensive shaking, which is the abrupt
exertion of an external force in the chemical system [6]. The exact form of F(⃗r) for a specific
chemical system can be obtained only via simulations, where the synergy of simulations
and theoretical modelling may be needed.
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Note that the conditions (2) and (4) are the conditions of equilibrium internal and
external forces; thus, the external force is assumed to be generated by a potential of the form
f T δ⃗r. It is this form that we aim to generalize by using a general potential F(⃗r) in order to
model external shaking, which is the external exertion of an extreme mechanical force.

The second issue that we will address in this work is related to the force-displaced
stationary points. For constant forces, the reaction path is obtained by following the
force-displaced stationary points, which are found in the solution of the following differen-
tial equation:

d⃗r
dt

= ±A(⃗r)g(⃗r) , (5)

where A(⃗r) = det(H)H−1. H is the Hessian of the initial potential energy surface H =
∂2V (⃗r)
∂xi∂xj

, i, j = 1, . . . , N and N is the dimension of the configuration space of the chemical
molecular system under consideration. The curves satisfying the differential Equation (5)
are called Newtonian trajectories. Essentially, the differential Equation (5) is an autonomous
dynamical system, so the study of the fixed points and trajectories of this dynamical system
may reveal the Newtonian trajectories of the potential energy surfaces. Recall that the
changes in the minima and the saddle points caused by the external stress are described
by the Newtonian trajectories in the original potential energy surface, and this is the
information contained in the dynamical system (5). The stationary points for the above
dynamical system are apparently the points in which g(⃗r) = 0, but there are further fixed
points in which A(⃗r)g(⃗r) = 0, and these can easily be found, as we show for some toy model
potential energy surfaces. An important feature to notice is that the disturbance of the
stationary points of the effective potential energy surfaces is described by the Newtonian
trajectories, in the case that only the magnitude of the external force changes but not its

direction I = f⃗
| f | , for the linear perturbation models [5]. In the case of a non-constant

force-induced potential, this scenario is described when the magnitude of the force ∇rF(⃗r)
has a norm that varies continuously, i.e., |∇rF(⃗r)| varies continuously, but the direction of
the unit vector I = ∇r F(⃗r)

|∇r F(⃗r)| in the direction of the force ∇rF(⃗r) remains constant. We shall
consider an example of this type in a later section. Then, the Newton trajectories connect the
stationary points of the potential energy surface [10]. Regarding the unperturbed molecular
system, the reaction paths’ bifurcations are indicated by the existence of valley–ridge
inflection points, and these are determined by using the reduced gradient method, which
is utilized on the potential energy surfaces of the molecular system. The reduced gradient
analysis has similarities with the Newtonian trajectories in the unperturbed system [10].

The minimum energy path is inherently connected to the reaction path of the potential
energy surfaces, and this constitutes the main approach to the kinetics of chemical molec-
ular systems. The reaction path is essentially the curve in the configuration space of the
molecular system that connects the reactant and the product minimum, passing through
the saddle point of a potential energy surface. The saddle points and the minima of the
potential energy surface constitute the stationary points of a potential energy surface.

It is possible that reaction path branching may occur during a reaction. The points
where this phenomenon occurs are called bifurcation points. These bifurcations of the
reaction path may lead to equivalent final states and are related to the valley–ridge in-
flection points, which, by definition, are those points in the configuration space of the
chemical system in which one main curvature of the potential energy surface becomes zero,
orthogonally to the gradient. The reduced gradient method yields a family of curves that
contain the stationary points of the potential energy surface, and the branching points of
these curves are the valley–ridge inflection points of the potential energy surface; thus,
the valley–ridge inflection points may be determined by the reduced gradient curves. The
reduced gradient curves are obtained by solving the differential equation

∇rV (⃗r) = 0 , (6)
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for all dimensions of the configuration space of the molecular system. Finally, it is worth
noting that the reduced gradient technique is strongly related to the Newtonian trajectories
approach of Equation (5). Specifically, the reduced gradient approach yields the curves
∂V(xi)

∂xi
= 0, i = 1, . . . , N, which are related to the Newtonian trajectories, because the

stationary points of the potential energy surface (which are found by solving ∂V(xi)
∂xi

= 0,
i = 1, . . . , N) are limiting points of the Newtonian trajectories obtained by the differential
Equation (5) for g(⃗r) = 0. Of course, the Newtonian trajectories structure contains more
stationary points, which are obtained for A(⃗r)g(⃗r) = 0 with g(⃗r) ̸= 0. In fact, these fixed
points are the optimal bond breaking points [11].

Now, let us materialize the above formalism and the mechanically induced changes in
the potential energy surfaces, by using a test surface for a model, instead of a real molecular
potential energy surface. For example, consider a potential energy surface of the form

V(x, y) = 2y + y2 + (y + 0.4x2)x2 . (7)

Note that the above potential is a toy model and thus different choices might yield dif-
ferent results in the phase space. We choose this model as it is also used in the relevant
literature [10], and it is simply a toy model used to demonstrate our ideas. Moreover, the
forces are chosen in such a way as to cover most general scenarios. Our aim and motivation
is to create sufficient scientific interest in our approach among experimentalists, who will
perform experiments to find the potentials of some easy-to-handle substances and also
to model and simulate the external forces. Thus, our approach is not an experimentally
verified one but serves as a theoretical model in order to highlight the importance of our
methods. These can be used by experimentalists to materialize our proposal; see also the
discussion in a later section on this.

Now, let us analyze the valley–ridge inflection points and bifurcation points of this
toy potential energy surface. Moreover, we shall consider several forms of external force
applied in the chemical system and how it deforms the potential energy surfaces and the
Newtonian trajectories. Regarding the Newtonian trajectories, we shall adopt an approach
in which the dynamical system corresponding to the Newtonian trajectories is studied,
using several linearization techniques. We shall reveal the fixed points in the phase space
and we shall consider their stability and the connection of the dynamical system’s fixed
points with the extremal points of the potential energy surfaces. Let us start with the
stationary points and the form of the potential energy surfaces without any external force
applied for the potential (7). The stationary points can be found by solving Equation (6),
and these are the following, which can be compared to the ones obtained after the exertion
of force is also taken into account:

Φ1
0 : (x, y) = (−1.82574,−2.66667), Φ2

0 : (x, y) = (0,−1), Φ3
0 : (x, y) = (1.82574,−2.66667) . (8)

We can also easily find the Newtonian trajectories by drawing the curves corresponding to
∂V(x,y)

∂x = 0 ∂V(x,y)
∂y = 0. The potential energy surfaces, the stationary points and the fixed

points for the potential (7) are presented in Figure 1.
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Figure 1. The potential energy surfaces, the stationary points and the Newton trajectories for the
potential (7), i.e., in the case that there are no external forces. The horizontal axis is the x-axis, while
the vertical one is y.

Now, let us proceed to examine in some detail the deformation of the potential energy
surfaces and the corresponding stationary points and Newton trajectories in the case that
some external force is applied, with the direction of the force being constant, even though
the magnitude of the force may change. We start with a simple linear perturbation of the
potential (7), in which case the potential has the following form

V(x, y) = x2
(

0.4x2 + y
)
− 25x + y2 − 23y , (9)

in which case the stationary points are

Φ1
∗ : (x, y) = (1.05622, 10.9422) , (10)

so the deformation of the new center of the interaction is apparent, by comparing the
stationary point (10) with the stationary points of the unperturbed potential (8). In this
case, the external force has the form

f⃗ = −25⃗i − 25⃗j , (11)

and it has a constant direction. Moreover, in Figure 2 we plot the potential energy surfaces,
the stationary points and the Newton trajectories of the deformed potential (9).
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Figure 2. The potential energy surfaces, the stationary points and the Newton trajectories for the
potential (9), i.e., in the case that there are no external forces. The horizontal axis is the x-axis, while
the vertical one is y.

Thus, we can see how the exertion of an external force deforms the potential energy
surfaces and the stationary points. Thus, the chemical reaction is deformed due to a
mechanochemical external effect. Let us quote several more examples to see the effect of
various forms of the external force. At the end, we shall also consider forces that have no
constant direction in space. Consider the following perturbation of the potential (7), in
which case the potential has the following form

V(x, y) = x2
(

0.4x2 + y
)
− 0.25x + y2 + 1.75y , (12)

which is a rescaled form of the previously used potential. In this case, the stationary
points are

Φ1
∗ : (x, y) = (−1.63133,−2.20563), Φ2

∗ : (x, y) = (−0.143878,−0.88535), Φ3
∗ : (x, y) = (1.77521,−2.45069) , (13)

so the deformation of the new center of the interaction is apparent, by comparing the
stationary point (13) with the stationary points of the unperturbed potential (8). In this
case, the external force has the form

f⃗ = −0.25⃗i − 0.25⃗j , (14)

and it has a constant direction. It is apparent that, in this case, the simple rescaling of
the external force has a quite distinct effect, different from the one in which the force is
given by (11). In this case, we have three distinct stationary points; thus, simple rescaling
has a profound effect on the potential energy surfaces. Moreover, in Figure 3, we plot the
corresponding potential energy surfaces, the stationary points and the Newton trajectories
for this case.
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Figure 3. The potential energy surfaces, the stationary points and the Newton trajectories for the
potential (12), i.e., in the case that there are no external forces. The horizontal axis is the x-axis, while
the vertical one is y.

Thus, we can see how the exertion of an external force deforms the potential energy
surfaces and the stationary points. It is worth noting that the simple deformation of the
external force, i.e., rescaling, results in three different stationary points in the deformed
potential energy surface. Consider now a subcase of the potential (9) perturbation of the
potential (7), in which case the potential has the following form

V(x, y) = x2
(

0.4x2 + y
)
− 25x + y2 + 2y , (15)

in which case the stationary points are

Φ1
∗ : (x, y) = (3.78648,−8.1687) , (16)

so the deformation of the new center of the interaction is apparent, by comparing the
stationary point (16) with the stationary points of the unperturbed potential (8). In this
case, the external force has the form

f⃗ = −25⃗i , (17)

and it has a constant direction. Moreover, in Figure 4, we plot the potential energy surfaces,
the stationary points and the Newton trajectories of the deformed potential (15).
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Figure 4. The potential energy surfaces, the stationary points and the Newton trajectories for the
potential (15), i.e., in the case that there are no external forces. The horizontal axis is the x-axis, while
the vertical one is y.

Thus, a simple subcase of the initially exerted external force leads to quite different
potential energy surfaces. In addition, let us simply change the direction of the force, to see
the effects of this action on the potential energy surfaces. In this case, the potential has the
following form

V(x, y) = x2
(

0.4x2 + y
)
+ 25x + y2 + 27y , (18)

in which case the stationary points are

Φ1
∗ : (x, y) = (−7.13046,−38.9217), Φ2

∗ : (x, y) = (0.944659,−13.9462), Φ3
∗ : (x, y) = (6.1858,−32.6321) , (19)

so the deformation of the new center of the interaction is apparent, by comparing the
stationary points (19) with the stationary points of the unperturbed potential (8). In this
case, the external force has the form

f⃗ = 25⃗i + 25⃗j , (20)

and it has a constant direction opposite the one appearing in Equation (11). Moreover, in
Figure 5, we plot the potential energy surfaces, the stationary points and the Newton
trajectories of the deformed potential (18).
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Figure 5. The potential energy surfaces, the stationary points and the Newton trajectories for the
potential (18), i.e., in the case that there are no external forces. The horizontal axis is the x-axis, while
the vertical one is y.

Let us present another interesting case before proceeding to the more generalized
forms of the potential. In this case, we increase the magnitude of the force in the y-direction.
In this case, the potential has the following form

V(x, y) = x2
(

0.4x2 + y
)
− 25x + y2 − 998y , (21)

in which case the stationary point is

Φ1
∗ : (x, y) = (0.025, 498.999) , (22)

so the deformation of the new center of the interaction is apparent, by comparing the
stationary point (22) with the stationary points of the unperturbed potential (8). In this
case, the external force has the form

f⃗ = −25⃗i − 1000⃗j , (23)

and it has a constant direction. Moreover, in Figure 6, we plot the potential energy surfaces,
the stationary points and the Newton trajectories of the deformed potential (21).
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Figure 6. The potential energy surfaces, the stationary points and the Newton trajectories for the
potential (21), i.e., in the case that there are no external forces. The horizontal axis is the x-axis, while
the vertical one is y.

It apparent that the exertion of an external force that is stronger in the y-direction
has a significant impact on the potential energy surfaces’ structure. Now, let us adopt an
entirely different approach, in which the external force has no linear perturbation effect
on the potential but is more general. Consider the case in which the potential has the
following form

V(x, y) = x2
(

0.4x2 + y
)
− x4 − 2.5x2 − y4 − 1.5y2 + 2y , (24)

in which case the stationary point is

Φ1
∗ : (x, y) = (0, 0.5) , (25)

so the deformation of the new center of the interaction is apparent, by comparing the
stationary point (25) with the stationary points of the unperturbed potential (8). In this
case, the external force has the non-constant magnitude form

f⃗ = (−4x3 − 5x)⃗i + (−4y3 − 5y)⃗j . (26)

Moreover, in Figure 7, we plot the potential energy surfaces, the stationary points and the
generalized Newton trajectories of the deformed potential (24).
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Figure 7. The potential energy surfaces, the stationary points and the Newton trajectories for the
potential (24), i.e., in the case that there are no external forces. The horizontal axis is the x-axis, while
the vertical one is y.

Now, consider a slightly different form of the potential (24), i.e., the following

V(x, y) = x2
(

0.4x2 + y
)
− x4 + 2.5x2 − y4 − 1.5y2 + 2y , (27)

in which case the stationary points are greater in number than in the previous case, includ-
ing the previous stationary point, and these are

Φ1
∗ : (x, y) = (0, 0.5), Φ2

∗ : (x, y) = (−1.66578, 0.829794), Φ3
∗ : (x, y) = (1.66578, 0.829794) , (28)

so the deformation of the new center of the interaction is apparent in this case too,
by comparing the stationary point (28) with the stationary points of the unperturbed
potential (8). In addition, a slight change in the potential produces more stationary points,
as is apparent. In this case, the external force has the form

f⃗ = (5x − 4x3 )⃗i + (−4y3 − 5y)⃗j , (29)

so it is the same in the y-direction as in the previous case, but different in the x-direction.
Moreover, in Figure 8, we plot the potential energy surfaces, the stationary points and the
Newton trajectories of the deformed potential (27).
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Figure 8. The potential energy surfaces, the stationary points and the Newton trajectories for the
potential (27), i.e., in the case that there are no external forces. The horizontal axis is the x-axis, while
the vertical one is y.

Now, consider another slightly different form from the potential (24), in which case
the potential has the following form

V(x, y) = x2
(

0.4x2 + y
)
− x4 + 2.5x2 − y4 + 3.5y2 + 2y , (30)

in which case the stationary points are quite numerous and are the following

Φ1
∗ : (x, y) = (0,−1.1462), Φ2

∗ : (x, y) = (−1.14614,−0.923631), Φ3
∗ : (x, y) = (1.14614,−0.923631), (31)

Φ4
∗ : (x, y) = (−1.22935,−0.68645), Φ5

∗ : (x, y) = (1.22935,−0.68645), Φ6
∗ : (x, y) = (0,−0.301352),

Φ7
∗ : (x, y) = (0, 1.44755), Φ8

∗ : (x, y) = (−1.85069, 1.61008), Φ9
∗ : (x, y) = (1.85069, 1.61008) ,

so the deformation of the new center of the interaction is apparent, by comparing the
stationary point (31) with the stationary points of the unperturbed potential (8). A simple
comparison with the fixed points (25) also reveals great differences, caused by the slight
deformation of the potential for the two cases. In this case, the external force has the form

f⃗ = (5x − 4x3 )⃗i + (5y − 4y3 )⃗j . (32)

Moreover, in Figure 9, we plot the potential energy surfaces, the stationary points and the
generalized Newton trajectories of the deformed potential (30).
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Figure 9. The potential energy surfaces, the stationary points and the Newton trajectories for the
potential (30), i.e., in the case that there are no external forces. The horizontal axis is the x-axis, while
the vertical one is y.

In conclusion, all examples considered point out one aspect: the mechanochemical
disturbance of a molecular system can significantly affect the chemical reaction, since it
significantly affects the potential energy surfaces, the stationary points and the Newton
trajectories connecting the stationary points. Now, the challenge is to model, in an optimal
way, the mechanochemical effect of shaking in order to quantify the Epstein effect of shaking.
This could be a challenge, because the form of the force would probably be space-dependent
and could potentially have the form studied in the above three examples. It is also notable
that, in the three cases studied, the number of stationary points is significantly altered by a
slight sign change in the external space-dependent force. This is quite interesting from a
phenomenological point of view, since the actual mechanochemical external effect might
actually change its sign along various directions. It is a challenge to model such effects as
the Epstein effect; in this section, we saw qualitatively, in terms of some simple models, the
strength of the effects of mechanical forces on the potential energy surfaces of a chemical
system. Thus, the synergy between experiments and theory can yield some information
about the actual mechanochemical effect of shaking in some molecular solutions. We shall
discuss this issue further in the Discussion section.

3. Newton Trajectories, Study of the Dynamical System and Proven Equivalence of the
Two Approaches

In this section, we shall use a novel approach to study the Newton trajectories in
the potential energy surfaces, and we shall demonstrate that the stationary points of the
potential energy surfaces are essentially stable fixed points of the dynamical system that
describes the Newton trajectories, namely the dynamical system of Equation (5). Thus,
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using a standard phase space analysis for the dynamical system (5), we shall provide some
new insights into the structure of the potential energy surfaces. Regarding the dynamical
system study, we shall explore the phase space using standard linearization techniques,
which we will review shortly. The dynamical system (5) can take the following form for a
two-dimensional space

dx
dt

= f1(x, y) , (33)

dy
dt

= f2(x, y) ,

where A(⃗r)g(⃗r) = ( f1(x, y), f2(x, y))T . Thus, we shall calculate the resulting vector
A(⃗r)g(⃗r) for each case of combined potential and applied force considered in the pre-
vious section, and we shall find the fixed points of the resulting dynamical system. Then,
we shall investigate the stability of the fixed points and the behavior of the trajectories in
the phase space; thus, we shall reveal the actual Newton trajectories in the phase space.
Moreover, we shall show the strong relation of the stationary points of the potential energy
surface and the corresponding stable fixed points of the phase space of the dynamical
system of Equation (5), or equivalently that of Equation (33).

To start with, let us review in brief the linearization techniques that we shall consider.
With the stability theory of the phase space of dynamical systems, one in fact reveals the
stability of the fixed points and finds the attractors of the trajectories of the dynamical
system. Specifically, the actual stability of the trajectories studies the behavior of these
trajectories, subject to small perturbations in the initial conditions. In addition, one useful
piece of information for the convergence of the solutions to the fixed point values is offered
by the time variable, but we shall not consider this issue in detail here because it is out
of context and would heavily rely on the specific model used. In all cases, the question
posed is how the phase space orbits and trajectories behave in relation to the fixed points
and whether they converge towards the stable fixed point, if any. Another question is
whether some trajectories pass through unstable fixed points before they reach the stable
fixed points, which we shall call attractors. Moreover, it is important to examine the above
questions for various choices of initial conditions of the phase space variables. The fixed
points of a dynamical system provide a concrete criterion that determines the structural
stability of a given dynamical system. The only way to reliably reveal the stability of a
fixed point of a dynamical system is to directly apply the Hartman–Grobman theorem,
by appropriately linearizing the autonomous non-linear dynamical system. Then, by
calculating the eigenvalues of the linearization matrix, which are real negative numbers
at the fixed points or even complex numbers with negative real parts, the fixed point
is deemed stable, and thus it is an attractor in the phase space. If the eigenvalues are
positive and negative, the fixed point is a saddle; finally, if the eigenvalues are positive,
the fixed point is unstable. We shall consider only hyperbolic fixed points, which means
that the eigenvalues of these points have only non-zero values. As we will show, this is
the case for all combinations of potential energy surfaces and applied forces. Now, let us
briefly review the Hartman–Grobman theorem, which is a linearization theorem and in fact
determines the stability and the phase space structures when only hyperbolic fixed points
are considered. Let Φ(t) ϵ Rn satisfy the following flow equation

dΦ
dt

= g(Φ(t)) , (34)

where g(Φ(t)) is a continuous map that is also locally Lipschitz g : Rn → Rn. Let ϕ∗ be all
the fixed points of the dynamical system (34), and also the corresponding Jacobian matrix
J (g) is defined to be equal to

J = ∑
i

∑
j

[ ∂fi

∂xj

]
. (35)
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The Jacobian needs to be evaluated at all hyperbolic fixed points, and the eigenvalues ei
must satisfy Re(ei) ̸= 0. Let the spectrum of the eigenvalues of a matrix A be denoted as
σ(A); hence, a hyperbolic fixed point must satisfy Re(σ((J))) ̸= 0. The Hartman–Grobman
theorem guarantees the existence of the homeomorphism F : U → Rn, with U being
an open neighborhood of ϕ∗, which satisfies F (ϕ∗). The homeomorphism generates a
non-trivial flow dh(u)

dt , which satisfies

dh(u)
dt

= J h(u) , (36)

and this is a topologically conjugate flow of the flow in Equation (34). Note that the
Hartman–Grobman theorem is applied only to autonomous dynamical systems, and this
is the case studied in this paper. Thus, in view of the Hartman–Grobman theorem, the
dynamical system of Equation (34) can be written in the following way

dΦ
dt

= J (g)(Φ)
∣∣∣
Φ=ϕ∗

(Φ − ϕ∗) + S(ϕ∗, t) , (37)

with S(ϕ, t) being a smooth map [0, ∞)×Rn. Therefore, if the Jacobian matrix J (g) satisfies
the relation Re(σ(J (g))) < 0 and, in addition, if

lim
Φ→ϕ∗

|S(ϕ, t)|
|Φ − ϕ∗|

→ 0 , (38)

the fixed point ϕ∗ of the dynamical flow dΦ
dt = J (g)(Φ)

∣∣∣
Φ=ϕ∗

(Φ − ϕ∗) is also a fixed

point of the flow in Equation (37), and it is asymptotically stable. Now, let us apply the
Hartman–Grobman theorem for the dynamical system (33) for each of the combination
of forces and potentials studied in the previous section. In all cases, the potential energy
surface before the application of the external force is that of Equation (9).

For the purposes of this work, the choices for the dynamical system study are again
based on a toy model approach. We choose two cases, a force-free case and a case in
which a force is applied, for simplicity. Our aim is to show that there exist structures in
the phase space and that important information can be gained by this type of study. It is
notable that an actual model derived from experiments is needed, so our approach is purely
demonstrational, aiming to motivate studies by experimentalists in this line of research.
Let us consider first the force-free case, so the functions f1(x, y) and f2(x, y) appearing in
Equation (33) are

f1 = 1.2x3 − 4x , (39)

f2 = x2(7.6y + 9.6) + 1.6x4 + y(4y + 4.) ,

and thus the matrix J = ∑i ∑j

[
∂fi
∂xj

]
in this case equals

J =

(
3.6x2 − 4. 0

6.4x3 + 2x(7.6y + 9.6) 7.6x2 + 8y + 4.

)
. (40)

The fixed points of the dynamical system (33), for the case at hand, are

ϕ1
∗ = (−1.82574,−4.66667), ϕ2

∗ = (−1.82574,−2.66667), ϕ3
∗ = (0,−1), (41)

ϕ4
∗ = (0, 0), ϕ5

∗ = (1.82574,−4.66667), ϕ6
∗ = (1.82574,−2.66667) .
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Note that the fixed point ϕ3
∗ is a stationary point on the potential energy surface, appearing

in Equation (8), denoted as Φ2
0. Now, regarding the stability of the fixed points, the

eigenvalues of the linearization matrix evaluated for each fixed point are

ϕ1
∗ → (8,−8), (42)

ϕ2
∗ → (8, 8),

ϕ3
∗ → (−4,−4),

ϕ4
∗ → (−4, 4),

ϕ5
∗ → (8,−8),

ϕ6
∗ → (8, 8),

thus, ϕ2
∗ and ϕ6

∗ are unstable, ϕ3
∗ is stable and the rest are saddles. We can easily evaluate

numerically the trajectories in the phase space for various initial conditions. The result of
our numerical analysis for the case at hand is depicted in Figure 10. The stable fixed points
are denoted with magenta dots, the saddles with red dots and the unstable fixed points
with blue dots.
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Figure 10. The phase space trajectories for the dynamical system (39). The horizontal axis is the
x-axis, while the vertical one is y.

As can be seen in Figure 10, all trajectories are attracted to the stable fixed point of the
dynamical system (39), which is identical to the stationary point of the potential energy
surface.

Now, let us consider the case in which the force is given by Equation (14), so the
functions f1(x, y) and f2(x, y) appearing in Equation (33) are

f1 =

(
0.214286x3 − 0.625x − 0.0892857

)(
5.6x2 + 4y + 0.

)
1x2 + 0.714286y + 0.

, (43)

f2 =
(

5.6x2 + 4y
)((x2 + 2y + 1.75

)(
4.8x2 + 2y

)
5.6x2 + 4y

−
0.571429x

(
1x3 + 1.25xy − 0.15625

)
1x2 + 0.714286y

)
.

The fixed points of the dynamical system (33), for the case at hand, are

ϕ1
∗ = (−1.63133,−3.72575), ϕ2

∗ = (−1.63133,−2.20563), ϕ3
∗ = (−0.143878,−0.88535), (44)

ϕ4
∗ = (−0.143878,−0.0289814), ϕ5

∗ = (1.77521,−4.41193), ϕ6
∗ = (1.77521,−2.45069) .
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Note that the fixed point ϕ3
∗ is a stationary point on the potential energy surface, appearing

in Equation (12), denoted as Φ2
∗, and ϕ2

∗ corresponds to Φ1
∗ and ϕ6

∗ to Φ3
∗. Now, regarding

the stability of the fixed points, the eigenvalues of the linearization matrix evaluated for
each fixed point are

ϕ1
∗ → (5.58051,−5.58051), (45)

ϕ2
∗ → (6.58051, 5.58051),

ϕ3
∗ → (−3.92548,−2.92548),

ϕ4
∗ → (−3.92548, 3.92548),

ϕ5
∗ → (7.34497,−7.34497),

ϕ6
∗ → (8.34497, 7.34497),

thus, ϕ2
∗ and ϕ6

∗ are unstable, ϕ3
∗ is stable and the rest are saddles. We can easily evaluate

numerically the trajectories in the phase space for various initial conditions. The result of
our numerical analysis for the case at hand is depicted in Figure 11. The stable fixed points
are denoted with magenta dots, the saddles with red dots and the unstable fixed points
with blue dots.
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Figure 11. The phase space trajectories for the dynamical system (39).

As can be seen in Figure 11, all trajectories are attracted to the stable fixed point of the
dynamical system (43), which is identical to the stationary point of the potential energy
surface. As is apparent, the phase space structure is richer in structures in comparison to
the potential energy surface, and thus might provide interesting new insights regarding
the direction of the chemical reaction and how it is affected by the external force.

4. Proposal for an Experimental Method

Now, the mechanochemistry approach for shaking in aqueous chemical solutions
might be used to theoretically explain the Epstein effect. In fact, the synergy between
suitably chosen experiments for suitably chosen substances and theoretical modelling in
terms of mechanochemistry may provide a force matrix that can model the Epstein effect of
extensive shaking in those substances under consideration. Indeed, consider that the effect
of shaking is not the simple exertion of an external force in the symmetry axis of a substance,
but that it might be the exertion of multiple forces in various directions of the substance,
and, in some cases, this effect can be position-dependent. Thus, if a suitable substance with
a high degree of symmetry in its molecules, and at a specific low temperature, is shaken
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considerably in a specific way, several molecular experimental techniques may reveal the
ways in which shaking acts on the molecules of the substance. From this procedure, the
overall force matrix may be revealed for this specific substance. Thus, with the initial
potential energy surface, one can use the force matrix obtained and calculate in detail the
new stationary points of the potential energy surfaces with the inclusion of the force matrix.
This procedure is feasible, although technically demanding, but we discuss this issue here
given the importance of the synergy between theory and experiments in the above research
context. Note that, from the cases studied, it is evident that these are parts of a toy model.
We have revealed, for very simple cases, the rich structure of the phase space and the
potential energy surfaces; however, for experiments, one needs a realistic potential and
realistic forms of the forces. Then, one can obtain true and realistic information about
several substances and their behavior after external forces are applied in the molecules in
an aqueous solution. Thus, experiments are needed to provide the realistic potential and
the forms of the forces.

5. Conclusions

There are many studies to be done at multiple levels, both theoretical and experimental,
regarding the effects of mechanical shaking in liquid solutions and the effects of shaking on
the reactions and physical properties of the solutions. Apart from modelling mechanical
shaking using a supramolecular matrix approach for the isotropic exertion of external
forces, one must also obtain deeper knowledge of how liquids function, and this is not a
simple task. For example, it is known that liquids support solid-like modes of vibration
with wavelengths that extend to the shortest distance, which is comparable to interatomic
separation [12]. The way that collective excitations propagate in liquids is not yet fully
understood, and these in fact propagate to the smallest wavelengths and do not decay
or even become damped. This is a remarkable property of liquids that is also found in
solids, and, recently, it has been pointed out that liquids and solids are of a dual nature [12].
Liquids behave similarly to gases as they also flow, but they also behave as solids as
the intermolecular forces are strong and displacements are large [12]. It is surprising
that the specific heat problem for liquids is not addressed even in standard textbooks.
Thus, regarding liquid solutions, future work can model the propagation of the external
vibrations caused by shaking, which is essentially the isotropic exertion of external forces
in the system. The question of how these collective exertions of external forces propagate
in a liquid solution may be answered by studying the effective potential energy surfaces,
but this is not an easy task. A synergy between experiments and theory is required in
order to first quantitatively model, in a collective way, the effect of shaking by using a
supramolecular force matrix [6], probably by modelling the exertion of a force in multiple
directions, and to study the effects on the molecules of the liquid solution. Future research
in the above areas would certainly provide us with several surprising results.
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