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Abstract: This research represents the first theoretical investigation about the vibration behavior of
circular organic solar cells. Therefore, the vibration response of asymmetric circular organic solar cells
that represent a perfect renewable energy source is demonstrated. For this purpose, the differential
quadrature method (DQM) is employed. The organic solar cell is modeled as a laminated plate
consisting of five layers of Al, P3HT:PCBM, PEDOT:PSS, ITO, and Glass. This cell is rested on a
Winkler–Pasternak elastic foundation and assumed to be exposed to various types of hygrothermal
loadings. There are three different kinds of temperature and moisture variations that are taken into
account: uniform, linear, and nonlinear distribution throughout the cell’s thickness. The displacement
field is presented based on a new inverse hyperbolic shear deformation theory considering only two
unknowns. The motion equations including hygrothermal effect and plate–foundation interaction
are established within the framework of Hamilton’s principle. The DQM is utilized to solve these
equations. In order to ensure the accuracy of the proposed theory, the present results are compared
with those reported by other higher-order theories. A comprehensive parametric illustration is
conducted on the impacts of different parameters involving the geometrical configuration, elastic
foundation parameters, temperature, and moisture concentration on the deduced eigenfrequency of
the circular organic solar cells.

Keywords: differential quadrature method; asymmetric circular organic solar cells; hygrothermal;
vibration

1. Introduction

It is well known that ample energy is essential for the development process and the
global economy and prosperity. The most common classical kind of energy-producing
materials are fossil fuels. However, they will eventually run out, may pollute the ecosystem,
and increase the fuel global warming. Therefore, moving away from fossil fuels toward
renewable energy is very important. Due to its clean, sustainable, and widespread availabil-
ity, solar energy is becoming the leading contender to address both the energy problem and
the global warming. Solar power is a clean, renewable source of energy that forms a sizable
amount of the world’s electricity [1]. A special kind of solar cells is the organic solar cells.
Their absorbing layers are based on organic semiconductors [2,3]. They have properties
such as thinness, ease of production, affordability, and compact structure. Organic solar
cells have been used in a variety of industries, including vehicles and airplanes [3]. They
have much more energy conversion efficiencies than other classical ones. To guarantee
that they operate consistently, organic solar cells must be examined in many conditions,
like solar radiation, heat, moisture, and wind. The influences of the solar irradiation and
wind speed on the stresses of the organic solar cell were discussed by Liu et al. [4]. Joodaki
and Salari [5] utilized low-frequency noise spectroscopy to study the behavior of organic
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cells under mechanical deformation. Furthermore, Duc et al. [6] developed an analytical
method to examine the nonlinear vibrational behavior of rectangular organic cells exposed
to external force. To improve the organization of the carbon black and graphite in the
carbon cathode, Zhang et al. [7] used a unique vibration approach which enhanced the
contact sites of the perovskite and carbon layer interface of perovskite solar cells. Using
AMPS software, Liao et al. [8] performed computation analysis on BaSi2-based np or nip
homo-junction solar cells with high optical absorption material. Dat et al. [9] analyzed
the nonlinear buckling of organic solar cells under axial compressive pressures based on
classical plate theory. Van Tuyen [10] illustrated the vibration and buckling of organic
nanobeams exposed to thermal load using the nonlocal theory and the sinusoidal shear
deformation theory. Liu et al. [11] used the modified couple stress theory and an effective
isogeometric analysis method to investigate the size effect on the buckling response of the
organic solar cells in thermal environment. Based on various shear strain theories and
the nonlocal theory, Tien et al. [12] explained the vibration and bending responses of the
organic nanoplates employing Navier procedure and the finite element method.

The fact that organic solar cells are naturally thin and flexible requires utilizing flexi-
bility foundations in their production. This is needed to preserve their structure and func-
tionality when they are exposed to stress or deformation. Therefore, a flexible base must be
placed beneath them during the manufacturing process to improve their stability and en-
able a related simple installation. The elastic foundations are advantageous for supporting
organic solar cells. This is because they reduce the stresses and deformations that organic
solar cells experience as a result of variations in temperature, pressure, or humidity [13].
Moreover, they improve the quality of organic solar cells and protect them from scuffing dur-
ing installation. Furthermore, they preserve cell functionality even after bending. Therefore,
it is vital to investigate the effects of elastic foundations on the behavior of the solar cells
under various conditions. The vibration and static bending of the size-dependent organic
solar cell resting on a Winkler–Pasternak elastic foundation were explored by Li et al. [14]
utilizing the modified strain gradient theory and a refined shear deformation plate theory.
Li et al. [15] employed the classical plate theory and von Karman nonlinearity to analyze
the nonlinear dynamic behavior of an organic cell resting on an elastic medium subjected
to an external excitation and thermal load. Moreover, the effects of Winkler–Pasternak
elastic foundation on the buckling behavior of the organic solar cells were demonstrated by
Li et al. [13] utilizing the refined shear deformation plate theory and the modified strain
gradient theory. Further, Van Quyen and Duc [16] studied the influences of the elastic
foundation, mechanical load, and thermal load on the nonlinear dynamic response and
vibration of the organic solar panels employing the Galerkin and Runge–Kutta methods.

There has been a lot of research on the performance of organic solar cells with various
shapes under the effects of different conditions as displayed in the previous studies. How-
ever, to the best of our knowledge, neither a circle-shaped study nor one under idealized
hygrothermal circumstances have been conducted. Therefore, the vibration response of
asymmetric circular organic solar cells exposed to various types of hygrothermal loadings
is analyzed in our study. Furthermore, the novelty of our work consists in utilization
of a new inverse hyperbolic shear deformation theory to describe the displacement field
depending only on two unknowns. It is assumed that the organic solar cells are rested
on a Winkler–Pasternak elastic foundation to improve their performance. The motion
equations are developed from Hamilton’s principle and then solved using the differential
quadrature method (DQM). A comprehensive parametric illustration is conducted on the
impacts of different parameters involving the geometrical configuration, elastic foundation
parameters, temperature, and moisture concentration on the deduced eigenfrequency of
the circular organic solar cells.
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2. Refined Plate Theory for Circular Cells
2.1. Main Assumptions

The inquiry model used in this work is composed of five distinct material layers, each
with the same radius R and total thickness h, which are Al, P3HT:PCBM, PEDOT:PSS,
ITO, and Glass. Additionally, two elastic foundation layers (Winkler and shear layers)
support the cells (see, Figure 1). In the Cartesian coordinate system, Shimpi’s plate theory is
established based on a number of assumptions [17]. It is clear that the suppositions are also
suitable to use in the circular coordinate system (r, θ, z) taking into consideration that the
components of the displacement field in the r, θ, and z directions are (U, V, W), respectively.
Thus, it follows that [17]

1. Compared to the in-plane stresses σr and σθ , the tranverse normal stress σz is insignifi-
cant.

2. Because the displacements are minimal, the strains involved are very small.
3. The shear component Ws and the bending component Wb make up the lateral dis-

placement W.
4. There are two components for the in-plane displacements:

(a) Bending components Ub and Vb are, respectively, similar to the displace-
ments U and V of the classical plate theory. As a result, the expressions of Ub

and Vb are

Ub = −z
∂Wb

∂r
,

Vb =
−z
r

∂Wb

∂θ
.

(1)

(b) Shear stresses τrz and τrθ are zero at z = ± h
2 due to the parabolic variations of

shear strains γrz and γrθ that are caused by the shear components Us and Vs

of the displacements U and V.
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Figure 1. A circular organic solar cell on elastic foundations.

2.2. Displacement Field

Based on the above assumptions, the displacement field can be expressed as

U(r, θ, z, t) = Ub + Us = −z
∂Wb

∂r
− f (z)

∂Ws

∂r
,

V(r, θ, z, t) = Vb + Vs =
−z
r

∂Wb

∂θ
− f (z)

r
∂Ws

∂θ
,

W(r, θ, z, t) = Wb(r, θ, t) + Ws(r, θ, t),

(2)
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where t denotes the time, f (z) = z − f̂ (z), and

f̂ (z) =
h
2

sinh−1(2
z
h
)− 2

√
2

3h2 z3. (3)

For the third-order plate theory (TDPT) [18], sinusoidal plate theory (SDPT) [19], hyperbolic
plate theory (HDPT) [20], and exponential plate theory (EDPT) [21], the function f̂ (z) can
be given as:

f̂ (z) = z(1 − 4z2

3h2 ), for TDPT,

f̂ (z) =
h
π

sin(
πz
h
), for SDPT,

f̂ (z) = h sinh(
z
h
)− z cosh(

1
2
), for HDPT,

f̂ (z) = z exp(
−2z2

h2 ), for EDPT,

(4)

It is evident that the refined plate theory converges to the classical plate theory when
f̂ (z) = 0.

2.3. Strains and Stresses

The strain field can be calculated as follows:

er =
∂U
∂r

= −z
∂2Wb

∂r2 − f (z)
∂2Ws

∂r2 ,

eθ =
1
r

(
∂V
∂θ

+ U
)
=

−z
r

(
∂Wb

∂r
+

1
r

∂2Wb

∂θ2

)
− f (z)

r

(
∂Ws

∂r
+

1
r

∂2Ws

∂θ2

)
,

ez =
∂W
∂z

= 0,

γrθ =
∂V
∂r

+
∂U
r∂θ

− V
r
=

1
r

(
2z
r

∂Wb

∂θ
+

2 f (z)
r

∂Ws

∂θ
− 2z

∂2Wb

∂θ∂r
− 2 f (z)

∂2Ws

∂θ∂r

)
,

γrz =
∂U
∂z

+
∂W
∂r

= f̂ ′(z)
∂Ws

∂r
, f̂ ′(z) =

∂ f̂ (z)
∂z

,

γθz =
∂V
∂z

+
∂W
r∂θ

= f̂ ′(z)
∂Ws

r∂θ
,

(5)

where er and eθ are normal strains and erθ = 1
2 γrθ , erz = 1

2 γrz, and eθz = 1
2 γθz are

shear strains.
Additionally, the stresses for a circular organic cell may be expressed using constitutive

equations that consider the hygrothermal loads as follows:

σ
(m)
r =

E(m)

(1 − [ν(m)]2)
[er + ν(m)eθ − (1 + ν(m))α(m)T(z)− (1 + ν(m))β(m)C(z)],

σ
(m)
θ =

E(m)

(1 − [ν(m)]2)
[eθ + ν(m)er − (1 + ν(m))α(m)T(z)− (1 + ν(m))β(m)C(z)],

σ
(m)
z = 0,

σ
(m)
rθ =

E(m)

1 + ν(m)
erθ ,

σ
(m)
rz =

E(m)

1 + ν(m)
erz,

σ
(m)
θz =

E(m)

1 + ν(m)
eθz, m = 1, 2, · · · , 5,

(6)



Symmetry 2024, 16, 577 5 of 16

where E(m) and ν(m) are Young’s modulus and Poisson’s ratio of the mth layer, respec-
tively. α(m) stands for the coefficient of thermal expansion, while β(m) denotes the co-
efficient of moisture expansion. T(z) and C(z) denote the applied temperature and
moisture, respectively.

2.4. Hygrothermal Field

The following distinct temperature and moisture distributions through the thick-
ness are taken into consideration in the current analysis for a precise description of the
temperature and moisture influences:

Θ(z) =


∆Θ, Uniform;
∆Θ
(

z
h + 1

2

)
+ Θb, Linear;

∆Θ
{

1 − cos
[

π
2

(
z
h + 1

2

)]}
+ Θb, Nonlinear.

∆Θ = Θt − Θb, Θ = T, C,

(7)

where Tt and Ct stand for the temperature and moisture at the top surface, respectively,
while Tb and Cb stand for the temperature and moisture at the bottom surface, respectively.

3. Governing Equations

Hamilton’s principle [22] is applied to derive the governing differential equations; it is
expressed as ∫ t

0
(δS + δK − δW f )dt = 0, (8)

where δS, δK, and δW f are, respectively, the strain energy, kinetic energy, and external
energy variations, which can be expressed as

δS =
5

∑
m=1

∫ 2π

0

∫ R

0

∫ hm

hm−1

(σ
(m)
r δer + σ

(m)
θ δeθ + 2σ

(m)
rθ δerθ + 2σ

(m)
rz δerz + 2σ

(m)
θz δeθz)rdzdrdθ, (9)

δK =
5

∑
m=1

∫ 2π

0

∫ R

0

∫ hm

hm−1

ρ(m)(ÜδU + V̈δV + ẄδW)rdzdrdθ, (10)

δW f =
∫ 2π

0

∫ R

0
(N0 − R f )δWrdrdθ, (11)

where Θ̈ = ∂2Θ/∂t2, ρ is density and (h1, h2, h3, h4) are the coordinates among the lay-
ers, while h0 = −h/2 and h5 = h/2. Also, N0 is the in-plane external force due to the
hygrothermal load and R f is the foundation reaction per unit area, which is given as

R f = J1(Wb + Ws)− J2

(
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
(Wb + Ws)

N0 = (NT + NC)

(
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
(Wb + Ws)

(12)

in which Winkler’s spring stiffness is represented by J1, the stiffness of the shear layer is
represented by J2, NT indicates heat force, and NC denotes humidity force. Forces NT and
NC are defined as [23]



Symmetry 2024, 16, 577 6 of 16

NT = −
5

∑
m=1

∫ hm

hm−1

E(m)

1 − ν(m)
α(m)T(z)dz

NC = −
5

∑
m=1

∫ hm

hm−1

E(m)

1 − ν(m)
β(m)C(z)dz

(13)

The governing equations can be obtained by inserting Equations (9)–(11) into
Equation (8) as

δWb :
2
r

∂Nr

∂r
+

∂2Nr

∂r2 − ∂Nθ

r∂r
+

1
r2

∂2Nθ

∂θ2 +
2
r2

∂Nrθ

∂θ
+

2
r

∂2Nrθ

∂θ∂r
+ I1∇2Ẅb + I2∇2Ẅs

− I4(Ẅb + Ẅs) + N0 − R f = 0,

δWs :
2
r

∂Mr

∂r
+

∂2Mr

∂r2 − 1
r

∂Mθ

∂r
+

1
r2

∂2Mθ

∂θ2 +
2
r2

∂Mrθ

∂θ
+

2
r

∂2Mrθ

∂θ∂r

+
Mrz

r
+

∂Mrz

∂r
+

1
r

∂Mθz
∂θ

+ I2∇2Ẅb + I3∇2Ẅs − I4(Ẅb + Ẅs) + N0 − R f = 0,

(14)

where

{Nr, Nθ , Nrθ} =
5

∑
m=1

∫ hm

hm−1

{
σ
(m)
r , σ

(m)
θ , σ

(m)
rθ

}
zdz,

{Mr, Mθ , Mrθ} =
5

∑
m=1

∫ hm

hm−1

{
σ
(m)
r , σ

(m)
θ , σ

(m)
rθ

}
f (z)dz,

{Mrz, Mθz} =
5

∑
m=1

∫ hm

hm−1

{
σ
(m)
rz , σ

(m)
θz

}
f̂ ′(z)dz,

{I1, I2, I3, I4} =
5

∑
m=1

∫ hm

hm−1

ρ(m)
{

z2, z f (z), f 2(z), 1
}

dz.

(15)

By inserting Equation (6) into Equation (15) with the aid of Equation (5), we obtain

Nr = −k1
∂2Wb

∂r2 − k2
∂2Ws

∂r2 − k̄1

r

(
∂Wb

∂r
+

1
r

∂2Wb

∂θ2

)
− k̄2

r

(
∂Ws

∂r
+

1
r

∂2Ws

∂θ2

)
− k3,

Nθ = − k1

r

(
∂Wb

∂r
+

1
r

∂2Wb

∂θ2

)
− k2

r

(
∂Ws

∂r
+

1
r

∂2Ws

∂θ2

)
− k̄1

∂2Wb

∂r2 − k̄2
∂2Ws

∂r2 − k3,

Nrθ =
k7

r2
∂Wb

∂θ
+

k8

r2
∂Ws

∂θ
− k7

r
∂2Wb

∂θ∂r
− k8

r
∂2Ws

∂θ∂r
,

(16)

Mrz = k6
∂Ws

∂r
,

Mθz =
k6

r
∂Ws

∂θ
,

Mr = −k2
∂2Wb

∂r2 − k4
∂2Ws

∂r2 − k̄2

r

(
∂Wb

∂r
+

1
r

∂2Wb

∂θ2

)
− k̄4

r

(
∂Ws

∂r
+

1
r

∂2Ws

∂θ2

)
− k5,

Mθ = − k2

r

(
∂Wb

∂r
+

1
r

∂2Wb

∂θ2

)
− k4

r

(
∂Ws

∂r
+

1
r

∂2Ws

∂θ2

)
− k̄2

∂2Wb

∂r2 − k̄4
∂2Ws

∂r2 − k5,

Mrθ =
k8

r2
∂Wb

∂θ
+

k9

r2
∂Ws

∂θ
− k8

r
∂2Wb

∂θ∂r
− k9

r
∂2Ws

∂θ∂r
,

(17)
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where

{k1, k2, k4} =
5

∑
m=1

∫ hm

hm−1

E(m)

1 − [ν(m)]2
{z2, z f (z), f 2(z)}dz,

{k̄1, k̄2, k̄4} =
5

∑
m=1

∫ hm

hm−1

ν(m)E(m)

1 − [ν(m)]2
{z2, z f (z), f 2(z)}dz,

{k3, k5} =
5

∑
m=1

∫ hm

hm−1

E(m)

1 − [ν(m)]2
{z, f (z)}

(
1 + ν(m)

)(
α(m)∆T + β(m)∆C

)
dz,

{k6, k7, k8, k9} =
5

∑
m=1

∫ hm

hm−1

E(m)

2
(
1 + ν(m)

){[ f̂ ′(z)]2, 2z2, 2z f (z), 2 f 2(z)
}

dz.

(18)

To establish the governing Equation (14) in terms of the displacement components,
we can insert Equations (16) and (17) into Equation (14) to obtain

− k1
∂4Wb

∂r4 − k2
∂4Ws

∂r4 − k1

r4
∂4Wb

∂θ4 − k2

r4
∂4Ws

∂θ4 +

(
−2k7 − 2k̄1

r2

)
∂4Wb

∂r2∂θ2

+

(
−2k8 − 2k̄2

r2

)
∂4Ws

∂r2θ2 − 2k1

r
∂3Wb

∂r3 − 2k2

r
∂3Ws

∂r3 +

(
2k7 − 6k̄1

r3

)
∂3Wb

∂rθ2

+

(
2k8 − 6k̄2

r3

)
∂3Ws

∂rθ2 +

(
k1 − 4k̄1

r2 + NT + NC + J2

)
∂2Wb

r2

+

(
k2 − 4k̄2

r2 + NT + NC + J2

)
∂2Ws

r2 +

(
−2k1 − 2k̄1 − 2k7

r4 +
NT + NC + J2

r2

)
∂2Wb

θ2

+

(
−2k2 − 2k̄2 − 2k8

r4 +
NT + NC + J2

r2

)
∂2Ws

θ2 +

(
−k1

r3 +
NT + NC + J2

r

)
∂Wb

r(
−k2

r3 +
NT + NC + J2

r

)
∂Ws

r
+ (J2 − J1)Wb + (J2 − J1)Ws + I1

∂2Ẅb

∂r2

+ I2
∂2Ẅs

∂r2 +
I1

r2
∂2Ẅb

∂θ2 +
I2

r2
∂2Ẅs

∂θ2 +
2I1

r
∂Ẅb

∂r
+

2I2

r
∂Ẅs

∂r
− I4Ẅb − I4Ẅs = 0,

(19)

− k2
∂4Wb

∂r4 − k4
∂4Ws

∂r4 − k2

r4
∂4Wb

∂θ4 − k4

r4
∂4Ws

∂θ4 +

(
−2k8 − 2k̄2

r2

)
∂4Wb

∂r2∂θ2

+

(
−2k9 − 2k̄4

r2

)
∂4Ws

∂r2θ2 − 2k2

r
∂3Wb

∂r3 − 2k4

r
∂3Ws

∂r3 +

(
2k8 − 6k̄2

r3

)
∂3Wb

∂rθ2

+

(
2k9 − 6k̄4

r3

)
∂3Ws

∂rθ2 +

(
k2 − 4k̄2

r2 + NT + NC + J2

)
∂2Wb

r2

+

(
k4 − 4k̄4

r2 + NT + NC + J2 +
k6

2

)
∂2Ws

r2 +

(
−2k2 − 2k̄2 − 2k8

r4 +
NT + NC + J2

r2

)
∂2Wb

θ2

+

(
−2k4 − 2k̄4 − 2k9

r4 +
NT + NC + J2

r2 +
k6

2r

)
∂2Ws

θ2 +

(
−k2

r3 +
NT + NC + J2

r

)
∂Wb

r(
−k4

r3 +
NT + NC + J2 +

k6
2

r

)
∂Ws

r
+ (J2 − J1)Wb + (J2 − J1)Ws + I2

∂2Ẅb

∂r2

+ I3
∂2Ẅs

∂r2 +
I2

r2
∂2Ẅb

∂θ2 +
I3

r2
∂2Ẅs

∂θ2 +
2I2

r
∂Ẅb

∂r
+

2I3

r
∂Ẅs

∂r
− I4Ẅb − I4Ẅs = 0.

(20)
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The displacements of the circular plate are assumed to be represented by the succeed-
ing trigonometric Fourier series [24]. Therefore, the displacements are given as

Wb =
∞

∑
n=1

ub(r) sin(µnθ)eiωt,

Ws =
∞

∑
n=1

us(r) sin(µnθ)eiωt,
(21)

in which ub(r) and us(r) are functions in r, ω is the eigenfrequency,
i =

√
−1 and µn = 1, 2, 3, · · · .

The governing equations are obtained by substituting the displacements (21) into
Equations (19) and (20) as follows:

a1
d4ub(r)

dr4 + a2
d4us(r)

dr4 +
a3

r
d3ub(r)

dr3 +
a4

r
d3us(r)

dr3 +
(

a5 +
a6

r2

)d2ub(r)
dr2

+
(

a7 +
a8

r2

)d2us(r)
dr2 +

( a5

r
− a6

r3

)dub(r)
dr

+
( a7

r
− a8

r3

)dus(r)
dr

+
(

a9 +
a10

r2 +
a11

r4

)
ub(r) +

(
a9 +

a12

r2 +
a13

r4

)
us(r) = 0,

(22)

b1
d4ub(r)

dr4 + b2
d4us(r)

dr4 +
b3

r
d3ub(r)

dr3 +
b4

r
d3us(r)

dr3 +

(
b5 +

b6

r2

)
d2ub(r)

dr2

+

(
b7 +

b8

r2

)
d2us(r)

dr2 +

(
b5

r
− b6

r3

)
dub(r)

dr
+

(
b7

r
− b8

r3

)
dus(r)

dr

+

(
b9 +

b10

r2 +
b11

r4

)
ub(r) +

(
b9 +

b12

r2 +
b13

r4

)
us(r) = 0,

(23)

where

{a1, a2, a3, a4} = {−k1,−k2, 2a1, 2a2}, {b1, b2, b3, b3} = {a2,−k4, a4, 2b2},

a5 = −I1ω2 + NT + NC + J2, b5 = a7,

a6 = 2k7µ2
n + 2k̄1µ2

n + k1, b6 = a8,

a7 = −I2ω2 + NT + NC + J2, b7 = −I3ω2 + NT + NC + J2 + k6,

a8 = 2k8µ2
n + 2k̄2µ2

n + k2, b8 = 2k9µ2
n + 2k̄4µ2

n + k4,

a9 = I4ω2 − J1, b9 = a9,

a10 = I1µ2
nω2 −

(
NT + NC

)
µ2

n − J2µ2
n, b10 = a12,

a11 = −k1µ4
n + 2k1µ2

n + 2k7µ2
n + 2k̄1µ2

n, b11 = a13,

a12 = I2µ2
nω2 −

(
NT + NC

)
µ2

n − J2µ2
n, b12 = I3µ2

nω2 −
(

Nt + Nc)µ2
n − J2µ2

n − k6µ2
n,

a13 = −k2µ4
n + 2k2µ2

n + 2k8µ2
n + 2k̄2µ2

n, b13 = −k4µ4
n + 2k4µ2

n + 2k9µ2
n + 2k̄4µ2

n.

(24)

In the current study, the edge of the organic solar cell (r = R) is assumed to be clamped.
Therefore, we have

ub = us = 0. (25)

Additionally, the conditions at the center of the solid circular cell (r = 0) are shown
as [24,25]

dub

dr
=

dus

dr
= 0. (26)
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4. Solution Methods

This section uses the DQM, which is used along the radial direction, to solve the
motion Equations (22) and (23). Many researchers have used the DQM extensively to
solve the governing equations of structures [26–28]. This is because it provides simple
formulations and requires less computational effort than other numerical techniques. The
current circular cell is discretized by n grid points in domain (0 ≤ r ≤ R). The displacement
derivatives are roughly represented as a weighted linear sum of function values at each
discrete position in accordance with the DQM as [29]

dqub

drq =
n

∑
j=1

C(q)
ij ub

j ,

dqus

drq =
n

∑
j=1

C(q)
ij us

j , i = 1, 2, · · · , n,
(27)

where ub
i = ub(ri) and us

i = us(ri), while the weighting coefficients for the qth-order

derivative are represented by C(q)
ij . These are given as [29]

C(1)
ij =

K(ri)

(ri − rj)K(rj)
, i, j = 1, 2, · · · , n, i ̸= j,

C(1)
ii = −

n

∑
i=1

C(1)
li , i = 1, 2, · · · , n, i ̸= l,

K(ri) =
n

∏
i=1

(ri − rj), i ̸= j,

(28)

Moreover, weighting coefficients C(q)
ij (q > 1) for the higher-order derivatives are computed

as follows [29]:

C(q)
ij =

n

∑
l=1

C(1)
il C(q−1)

l j , i, j = 1, 2, · · · , n. (29)

Additionally, the mesh points ri are estimated using th Gauss–Chebyshev–Lobatto tech-
nique as [29]

ri =
R
2

[
1 − cos

(
π

i − 1
n − 1

)]
. (30)

The governing equations can be discretized by applying Equation (27) to Equations (22)
and (23) as follows:

a1

n

∑
j=1

C(4)
ij ub

j + a2

n

∑
j=1

C(4)
ij us

j +
a3

ri

n

∑
j=1

C(3)
ij ub

j +
a4

ri

n

∑
j=1

C(3)
ij us

j +

(
a5 +

a6

r2
i

)
n

∑
j=1

C(2)
ij ub

j

+

(
a7 +

a8

r2
i

)
n

∑
j=1

C(2)
ij us

j +

(
a5

ri
− a6

r3
i

)
n

∑
j=1

C(1)
ij ub

j +

(
a7

ri
− a8

r3
i

)
n

∑
j=1

C(1)
ij us

j

+

(
a9 +

a10

r2
i
+

a11

r4
i

)
ub

j (r) +

(
a9 +

a12

r2
i
+

a13

r4
i

)
us

j (r) = 0,

(31)
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b1

n

∑
j=1

C(4)
ij ub

j + b2

n

∑
j=1

C(4)
ij us

j +
b3

ri

n

∑
j=1

C(3)
ij ub

j +
b4

ri

n

∑
j=1

C(3)
ij us

j +

(
b5 +

b6

r2
i

)
n

∑
j=1

C(2)
ij ub

j

+

(
b7 +

b8

r2
i

)
n

∑
j=1

C(2)
ij us

j +

(
b5

ri
− b6

r3
i

)
n

∑
j=1

C(1)
ij ub

j +

(
b7

ri
− b8

r3
i

)
n

∑
j=1

C(1)
ij us

j

+

(
b9 +

b10

r2
i
+

b11

r4
i

)
ub

j (r) +

(
b9 +

b12

r2
i
+

b13

r4
i

)
us

j (r) = 0, i = 2 . . . (n − 1).

(32)

Additionally, the discretization form of the boundary conditions can be expressed
as follows:

ub
i = us

i = 0, at r = R,
n

∑
j=1

C(1)
ij ub

j =
n

∑
j=1

C(1)
ij us

j = 0, at r = 0, i = 1, n.
(33)

Equations (31) and (32) represent an eigenvalue problem. By solving this problem with
Boundary conditions (33), we can obtain the lowest eigenfrequency ω.

5. Numerical Results

In order to examine the effects of various factors on the vibration of circular organic
solar cells exposed to hygrothermal conditions sitting on an elastic basis, we present here
a number of numerical examples. The following data are used (unless otherwise stated):
R/h = 10, Ĵ1 = 15, Ĵ2 = 100, T = 150 K, C = 1.5%. The current analysis uses the following
dimensionless values:

ω∗ = 100hω

√
ρ(1)

E(1)
, Ĵ1 =

R4 J1

D(1)
, Ĵ2 =

R2 J2

D(1)
, D(1) =

h3E(1)

12(1 − [ν(1)]2)
. (34)

The thickness and properties of each layer are provided in Table 1.

Table 1. Thickness and properties of the cell layers [15].

Layer Material Thickness (m) E (GPa) ν ρ (g/cm3) α (K−1) β (wt.%H2O)−1

5 Glass 0.55 × 10−3 69 0.23 2.4 9 × 10−6 0.014
4 ITO 0.12 × 10−6 116 0.35 7.12 6 × 10−6 0.002
3 PEDOT:PSS 0.5 × 10−7 2.3 0.4 1 70 × 10−6 0.07
2 P3HT:PCBM 0.17 × 10−6 6 0.23 1.2 120 × 10−6 0.9
1 Aluminum 0.1 × 10−6 70 0.35 2.601 23 × 10−6 0.44

It is necessary to ascertain the minimum number of discrete points for the DQM’s
convergent solution. As a result, a convergence analysis of the DQM for circular organic
solar cells sitting on elastic foundations is shown in Table 2. It is seen that the findings
converge around 15 grid points.
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Table 2. DQM convergence analysis for fundamental frequency ω∗ of circular organic solar cells for
various temperatures.

n
ω∗

∆T = 0 K ∆T = 100 K ∆T = 200 K ∆T = 300 K ∆T = 400 K ∆T = 500 K

9 1.30054 1.29443 1.28828 1.29443 1.27584 1.26955
11 1.73167 1.72709 1.72251 1.72709 1.71329 1.70867
13 1.95136 1.94668 1.94200 1.94668 1.93259 1.92788
15 2.05020 2.04445 2.03869 2.04445 2.02707 2.02122
17 2.05268 2.04396 2.03513 2.04396 2.01712 2.00793

In order to confirm the accuracy of the proposed theory, the fundamental frequency ω∗

of clamped organic solar cells obtained by the present theory is compared with that obtained
by the TDPT [18], the SDPT [19], the HDPT [20], and the EDPT [21] for various values
of the radius-to-thickness ratio R/h, as indicated in Table 3. The present theory predicts
results in excellent agreement with the results of other higher-order shear deformation
theories, especially for large values of the ratio R/h. Further, it is clear that with increasing
the radius-to-thickness ratio R/h, the cells become weaker, so the eigenfrequency decreases
as ratio R/h increases. In addition, it should be noted that as the circular solar cell expands,
the humidity reduces the effect of the temperature on the cells.

Table 3. Comparing the fundamental frequency ω∗ of circular organic solar cells with simple support.

Theory
ω∗

R/h = 10 R/h = 15 R/h = 20 R/h = 25 R/h = 30 R/h = 35

Hygrothermal TDPT [18] 4.914390 0.435898 0.223034 0.205136 0.181341 0.151995
SDPT [19] 4.920000 0.435888 0.223039 0.205133 0.181344 0.151997
HDPT [20] 4.914060 0.435898 0.223034 0.205136 0.181341 0.151995
EDPT [21] 4.935520 0.435858 0.223054 0.205122 0.181354 0.152001

Present 4.917470 0.435894 0.223037 0.205135 0.181342 0.151996

Thermal TDPT [18] 5.024970 0.704606 0.323740 0.179265 0.108809 0.072579
SDPT [19] 5.028610 0.704371 0.323709 0.179259 0.108809 0.072580
HDPT [20] 5.024710 0.704600 0.323740 0.179265 0.108809 0.072579
EDPT [21] 5.038180 0.703559 0.323607 0.179239 0.108806 0.072581

Present 5.027050 0.704516 0.323727 0.179262 0.108809 0.072579

Tables 4–6 display the effects of the temperature and moisture changes (∆T, ∆C) on
the fundamental frequency ω∗ of the circular organic solar cells under uniform (Table 4),
linear (Table 5), nonlinear (Table 6) hygrothermal distributions through the thickness. Also,
the effects of the thickness-to-radius ratios R/h is taken into consideration. As mentioned
above, we see that the result values decrease with increasing radius. Regardless of the
hygrothermal distribution type, the increase in the moisture change has a negative effect
on the vibration of cells with small radius, while it has a positive effect on the cells that
have a large radius. For large cells (R/h = 30), as the temperature increases, the cell
stiffness reduces, so vibration decreases, while this sense is reversed when the moisture is
included because the humidity reduces the effect of the temperature on the expanded cells
(R/h = 30).

To explain the influences of the uniform, linear, and nonlinear temperature and mois-
ture changes (∆T, ∆C) on the fundamental frequency ω∗ in graphical form, Figure 2 is
presented (R/h = 10). Since the increment in the humidity and temperature leads to a
weakening of structures, the frequency of the circular organic solar cells decreases as the
temperature and moisture increase.
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Table 4. The fundamental frequency ω∗ of a circular organic solar cell under uniform hygrothermal rise.

R/h ∆C(%)
ω∗

∆T = 0 K ∆T = 100 K ∆T = 200 K ∆T = 300 K ∆T = 400 K ∆T = 500 K

10 0 5.06359 5.05314 5.04280 5.03257 5.02244 5.01243
1 4.91207 4.90327 4.89457 4.88598 4.87748 4.86908
2 1.08622 1.05971 1.03495 1.01181 0.99018 0.97000
3 0.83459 0.82893 0.82442 0.82105 0.81880 0.81767
4 0.86837 0.87825 0.88885 0.90013 0.91206 0.92460
5 1.08499 1.10139 1.11783 1.13424 1.15056 1.16674

20 0 0.40882 0.38455 0.36136 0.33937 0.31870 0.29946
1 0.22459 0.23185 0.24100 0.25170 0.26362 0.27643
2 0.38907 0.39328 0.39694 0.40036 0.40380 0.40746
3 0.43876 1.59023 0.54061 0.51228 0.51028 0.51255
4 0.56135 0.56569 0.56988 0.57386 0.57759 0.58097
5 0.65593 0.65689 0.65894 0.66160 0.66463 0.66790

30 0 0.16871 0.15026 0.13299 0.11795 0.10627 0.09909
1 0.18233 0.18605 0.19014 0.19480 0.19986 0.20491
2 0.26686 0.27101 0.27488 0.27832 0.28089 0.28106
3 0.33597 0.33948 0.34296 0.34641 0.34983 0.35319
4 0.83529 0.41018 0.40642 0.40695 0.40871 0.41098
5 0.44066 0.44349 0.44630 0.44910 0.45188 0.45466

Table 5. The fundamental frequency ω∗ of a circular organic solar cell under linear hygrothermal rise.

R/h ∆C(%)
ω∗

∆T = 0 K ∆T = 100 K ∆T = 200 K ∆T = 300 K ∆T = 400 K ∆T = 500 K

10 0 5.03257 5.02749 5.02245 5.01743 5.01244 5.00747
1 4.95666 4.95200 4.94736 4.94275 4.93817 4.93361
2 4.88704 4.88278 4.87854 4.87433 4.87014 1.61646
3 1.25400 1.23394 1.21481 1.19652 1.17900 1.16218
4 1.01745 1.00627 0.99546 0.98502 0.97494 0.96520
5 0.88241 0.87638 0.87065 0.86522 0.86009 0.85526

20 0 0.33937 0.32886 0.31870 0.30890 0.29947 0.290432
1 0.22434 0.22144 0.21920 0.21764 0.21677 0.21657
2 0.25029 0.25604 0.26207 0.26833 0.27478 0.28138
3 0.35001 0.35546 0.36058 0.36535 0.36976 0.37381
4 0.39951 0.40121 0.40292 0.40469 0.40651 0.40841
5 0.43303 0.43555 0.43801 0.44039 0.44263 0.44466

30 0 0.11795 0.11162 0.10627 0.10206 0.09910 0.09749
1 0.14296 0.14931 0.15529 0.16078 0.16565 0.16985
2 0.19419 0.19666 0.19921 0.20178 0.20430 0.20665
3 0.24398 0.24626 0.24858 0.25092 0.25326 0.25558
4 0.27752 0.27907 0.28037 0.28128 0.28146 0.28007
5 0.31861 0.32011 0.32169 0.32333 0.32501 0.32672

Table 6. The fundamental frequency ω∗ of a circular organic solar cell under nonlinear hygrothermal rise.

R/h ∆C(%)
ω∗

∆T = 0 K ∆T = 100 K ∆T = 200 K ∆T = 300 K ∆T = 400 K ∆T = 500 K

10 0 5.03257 5.02888 5.02520 5.02154 5.01789 5.01426
1 4.97677 4.97329 4.96984 4.96639 4.96296 4.95955
2 4.92432 4.92106 4.91782 4.91458 4.91137 4.90816
3 4.87515 4.87210 4.86906 1.61790 1.56341 1.52307
4 1.28489 1.26907 1.25384 1.23917 1.22501 1.21132
5 1.08890 1.07899 1.06933 1.05991 1.05071 1.04174
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Table 6. Cont.

R/h ∆C(%)
ω∗

∆T = 0 K ∆T = 100 K ∆T = 200 K ∆T = 300 K ∆T = 400 K ∆T = 500 K

20 0 0.33937 0.33170 0.32421 0.31691 0.30980 0.30288
1 0.24372 0.23964 0.23587 0.23240 0.22926 0.22645
2 0.21824 0.21948 0.22104 0.22292 0.22509 0.22755
3 0.26709 0.27173 0.27647 0.28128 0.28615 0.29106
4 0.34161 0.34590 0.35005 0.35404 0.35786 0.36150
5 0.38862 0.39027 0.39181 0.39326 0.39463 0.39595

30 0 0.11795 0.11325 0.10906 0.10542 0.10240 0.10003
1 0.11585 0.12017 0.12471 0.12940 0.13416 0.13895
2 0.17643 0.17822 0.17981 0.18126 0.18263 0.18397
3 0.20128 0.20313 0.20493 0.20662 0.20813 0.20930
4 0.24090 0.24240 0.24400 0.24565 0.24733 0.24902
5 0.26644 0.26798 0.26949 0.27098 0.27242 0.27383

∆T (K)
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ω
∗

4.86
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4.9
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4.94
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4.98

5
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5.04

5.06

Uniform hygrothermal rise

∆C = 0.1%
∆C = 0.5%
∆C = 0.8%
∆C = 1.0%

∆T (K)
0 100 200 300 400 500

ω
∗

4.92

4.94

4.96

4.98

5

5.02

5.04

Linear hygrothermal rise

∆C = 0.1%
∆C = 0.5%
∆C = 0.8%
∆C = 1.0%

(a) (b)

∆T (K)
0 100 200 300 400 500

ω
∗

4.95

4.96

4.97

4.98

4.99

5

5.01

5.02

5.03

Nonlinear hygrothermal rise

∆C = 0.1%
∆C = 0.5%
∆C = 0.8%
∆C = 1.0%

(c)

Figure 2. Effects of temperature and moisture on the fundamental frequency ω∗ of a circular
organic solar cell under (a) uniform hygrothermal rise, (b) linear hygrothermal rise, and (c) nonlinear
hygrothermal rise.
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Table 7 shows how the fundamental frequency ω∗ of circular organic solar cells is
affected by the elastic foundation stiffness ( Ĵ1, Ĵ2). It is evident that when the shear elastic
foundation coefficient Ĵ2 rises, the fundamental frequency rises as well. When the shear
foundation is not considered, the increase in the Winkler foundation coefficient leads to an
increment in the vibration, while this is reversed with the presence of the shear layer. It
should also be noted that the effects of the elastic foundation coefficient on the vibration
are more pronounced for the hygrothermal load. In general, the presence of Winkler or
shear elastic foundation boosts the cell strength; therefore, the frequencies increase when
considering the elastic foundations.

Table 7. Fundamental frequency ω∗ of different kinds of circular organic solar cells with varying
foundation stiffness values in thermal and hygrothermal environments.

Load Ĵ2
ω∗

Ĵ1 = 0 Ĵ1 = 200 Ĵ1 = 400 Ĵ1 = 600 Ĵ1 = 800 Ĵ1 = 1000

∆T = ∆C = 0 0 4.94110 4.94279 4.94429 4.94561 4.94678 4.94779
20 5.10778 5.10778 5.10766 5.10742 5.10708 5.10663
40 5.30476 5.30335 5.30187 5.30031 5.29869 5.29699
60 5.53539 5.53280 5.53016 5.52748 5.52474 5.52196
80 5.80475 5.80113 5.79747 5.79377 5.79005 5.78630
100 6.12064 6.11605 6.11143 6.10679 6.10213 6.09745

Thermal 0 4.90736 4.90946 4.91137 4.91309 4.91463 4.91600
(∆T = 200 K 20 5.06754 5.06789 5.06810 5.06820 5.06818 5.06804

∆C = 0%) 40 5.25741 5.25630 5.25510 5.25383 5.25247 5.25105
60 5.48006 5.47773 5.47533 5.47289 5.47039 5.46785
80 5.74010 5.73670 5.73326 5.72979 5.72629 5.72275
100 6.04458 6.04021 6.03580 6.03138 6.02693 6.02246

Hygrothermal 0 1.26959 1.15219 1.01976 0.86528 0.67357 0.39326
(∆T = 200 K 20 4.95464 4.95616 4.95750 4.95868 4.95970 4.96057

∆C = 2%) 40 5.12388 5.12374 5.12349 5.12313 5.12266 5.12210
60 5.32366 5.32214 5.32055 5.31889 5.31716 5.31536
80 5.55748 5.55479 5.55206 5.54928 5.54645 5.54358
100 5.83057 5.82685 5.82311 5.81933 5.81552 5.81169

6. Conclusions

In this work, the free vibration of circular organic solar cells resting on an elastic
foundation and exposed to temperature and moisture conditions is analyzed for the first
time. Within the framework of a new inverse hyperbolic two-variable shear deformation
plate theory, the displacement field is modeled. Accordingly, two equations of motion are
developed employing Hamilton’s principle. These equations are homogeneous with vari-
able coefficients. It is difficult to solve this system analytically, so the differential quadrature
method is utilized here to deal with it numerically. In order to verify the correctness of
the suggested theory, the current findings are compared with those documented by other
higher-order theories. In addition, the impacts of different parameters, including geometri-
cal configuration, elastic foundation parameters, temperature, and moisture concentration,
on the vibration of the circular organic solar cells are discussed. It can be concluded that
the eigenfrequency reduces as the radius of the cell increases. For a small cell radius,
the increment in the temperature and humidity leads to a noticeable reduction in the
eigenfrequency, while this behavior is reversed for a large radius. As expected, the elastic
foundation enhances the organic cells, so the eigenfrequency increases as the foundation
parameters increase.
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