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Abstract: In biomedicine, the critical task is to decode Drug–Drug Interactions (DDIs) from complex
biomedical texts. The scientific community employs Knowledge Graph Embedding (KGE) meth-
ods, enhanced with advanced neural network technologies, including capsule networks. However,
existing methodologies primarily focus on the structural details of individual entities or relations
within Biomedical Knowledge Graphs (BioKGs), overlooking the overall structural context of BioKGs,
molecular structures, positional features of drug pairs, and their critical Relational Mapping Proper-
ties. To tackle the challenges identified, this study presents HSTrHouse an innovative hierarchical
self-attention BioKGs embedding framework. This architecture integrates self-attention mechanisms
with advanced neural network technologies, including Convolutional Neural Network (CNN) and
Graph Neural Network (GNN), for enhanced computational modeling in biomedical contexts. The
model bifurcates the BioKGs into entity and relation layers for structural analysis. It employs self-
attention across these layers, utilizing PubMedBERT and CNN for position feature extraction, and
a GNN for drug pair molecular structure analysis. Then, we connect the position and molecular
structure features to integrate them into the self-attention calculation of entity and relation. After that,
the output of the self-attention layer is combined with the connected vectors of the position feature
and molecular structure feature to obtain the final representation vector, and finally, to model the Re-
lational Mapping Properties (RMPs), the representation vector is embedded into the complex vector
space using Householder projections to obtain the BioKGs model. The paper validates HSTrHouse’s
efficacy by comparing it with advanced models on three standard BioKGs for DDIs research.

Keywords: drug–drug interaction; BioKGs; GNN; CNN

1. Introduction

Drug–Drug Interactions (DDIs), a consequence of concurrent multiple medication
administration, may lead to severe or life-threatening Adverse Drug Reactions (ADRs). The
recent surge in medical literature has led to an extensive yet unexplored corpus of potential
DDIs, significantly influencing the medical co-medication landscape. This presents a
substantial challenge in pharmaceutical management and development. Accurate DDI
prediction, which enhances the structure of Biomedical Knowledge Graphs (BioKGs), is
vital for improving patient welfare and advancing public health.

Amidst the dynamic evolution of computational paradigms, a varied array of method-
ologies have been utilized to tackle the complexities inherent in DDIs, leading to notable
experimental successes. Sridhar et al. [1] ingeniously approached DDIs prediction by
integrating a probabilistic planning framework with drug similarity analysis, identifying
drug pairs with a heightened interaction likelihood. However, the predominant reliance
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on similarity-based methods, despite their commendable performance, is constrained by
their limited capacity to address complex data structures like drug interaction networks
and their inability to capture higher-order connectivity features, necessitating an alterna-
tive approach.

Additionally, the emergence of neural network paradigms, especially the Bidirectional
Encoder Representations from Transformers (BERT) [2], has spurred research in DDI
extraction. Key to this trend are pre-trained biomedical language models like BioBERT [3],
SciBERT [4], BlueBERT [5], and PubMedBERT [6]. While these methods have advanced the
field, they primarily focus on structural connectivities between nodes, often overlooking
the subtleties within node attributes and edge typologies [7].

To mitigate limitations in existing algorithms, Knowledge Graph (KG)-based methods,
as detailed in [8], have garnered attention for their ability to represent multiple potential
relationships between two entities, thus addressing misclassification issues. However, these
prevalent KG frameworks often overlook crucial factors such as the molecular structure
and positional attributes of drug pairs, along with other significant elements that influence
drug interactions. This oversight can impact the comprehensive modeling of drug relation-
ships within these systems. Additionally, the complex dynamics of Relational Mapping
Properties (RMPs) in the BioKG realm as depicted in Figure 1 pose further challenges. Most
models, except for KG2ECapsule [9], fail to address these aspects. KG2ECapsule [9] uses a
Bernoulli distribution-based sampling method, enhancing effectiveness, and employs cap-
sule networks, leading to impressive predictive results. However, this approach increases
training complexity and computational demands, limiting its use to smaller BioKG datasets.

Figure 1. RMPs (N-N) relationship in BioKG. The image clearly shows that there is an “advise”
relationship pattern between “ZETIA” and “fibrates”, forming the triplet (ZETIA, advise, fibrates).
Similarly, the relationship pattern “advise” also exists between “mazindol” and “insulin”, forming the
triplet (mazindol, advise, insulin). Other triplets with the “advise” relationship can also be formed.
These types of triplets possess RMP (N-N) relationships in the BioKG.

To address these challenges, this paper proposes an advanced hierarchical self-attention
BioKGs embedding model, named HSTrHouse. This model innovatively combines the
Transformer architecture with KG-based frameworks. It integrates self-attention mecha-
nisms along with sophisticated neural network technologies like Convolutional Neural
Network (CNN) and Graph Neural Network (GNN), thereby enhancing the model’s capa-
bility to encapsulate complex biomedical relationships and features effectively. As depicted
in Figure 2, this study delineates the structural information of the entire BioKGs by segre-
gating it into two distinct layers: the entity layer and the relation layer. Initially, within the
entity layer, drug pairs acquire entity embeddings through an Encoder layer. Concurrently,
drug pair-specific position and molecular structure features are extracted utilizing tech-
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nologies such as PubMedBERT [6], CNN, and GNN. These features are then amalgamated.
Subsequently, the integrated features, in conjunction with entity embeddings, are employed
to construct a matrix space. The relation matrix is then mapped into this space, serving
as the input for the relation layer. Through the Encoder layer, relation embeddings are
obtained. Finally, to model the RMPs, both entity and relation embeddings are projected
into a complex vector space using Householder projections. To sum up, our contributions
are as follows:

• In this paper, we combine the self-attention mechanism and KG-based models to
construct a model HSTrHouse that can consider the entire BioKG structure information
by using Householder projections in complex vector space to model complex relation
patterns, such as RMPs and hierarchies.

• Our model integrates PubMedBERT [6], CNN, and GNN to capture the position
feature and molecular structure features in the abstract description, increasing the
interpretability of the properties and relations of the entities.

• We have conducted extensive experiments on three BioKGs to demonstrate the effec-
tiveness of HSTrHouse in predicting DDIs and their interpretability.

Figure 2. Overview of our method. The illustration demonstrates the sentence “The vasodilating
effects of nitroglycerin may be additive with those of other vasodilators”, identifying “nitroglycerin”
and “vasodilators” as drug entities. Initially, within the entity layer, drug pairs u acquire entity
embeddings ϑ̂ through an Encoder layer. Concurrently, drug pair-specific position Fi and molecular
structure features Me are extracted utilizing technologies such as PubMedBERT, CNN, and GNN.
Subsequently, the position feature and the molecular structure are concatenated, resulting in the
formation of Ni. Subsequently, the integrated features ϑ̂, in conjunction with entity embeddings,
are employed to construct a matrix space Remp. The relation matrix er

i is then mapped into this
space, serving as the input for the relation layer. Through the Encoder layer, relation embeddings r̂
are obtained. Finally, to model the RMPs, both entity and relation embeddings are projected into a
complex vector space using Householder projections.

2. Related Work

The work of Li et al. [10] predicted potential DDIs based on the pharmacokinetics (PK)
model, one of the first computational DDIs prediction approaches. After that, the earliest
techniques for DDIs were based on traditional feature-based machine learning methods;
Chowdhury et al. [11] used kernel methods to extract DDIs, and Thomas et al. [12] used
majority voting methods to extract DDIs. After this, many researchers improved the
results by using more feature types, such as relative position features, syntactic structure
features, and phrasal auxiliary verb features [13–15]. However, these methods usually
rely heavily on manually performed feature engineering and feature selection, which
limits their effectiveness and leads to some possible patterns that need to be noticed.
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Since then, deep neural network-based models have been widely used, which can mine
knowledge in high-dimensional spaces. They can be broadly classified into three categories:
(I) matrix factorization (MF)-based [16,17], (II) random walk (RW)-based [18,19], and
(III) neural network (NN)-based [20,21]. They are comparable to traditional machine
learning-based models, and achieved better performance compared to traditional machine
learning-based models.

Since the powerful BERT [2] achieved the best results on many natural language
processing tasks, many researchers have applied it to the task of extracting DDIs from
biomedical language models, such as BioBERT [3], and SciBERT [4]. Zhu et al. proposed
a BioBERT-based model [22] incorporating external entity information to provide a new
baseline for DDIs extraction. Asada et al. used drug description and molecular struc-
ture information to improve the SciBERT [23] model’s performance for DDIs extraction.
EGFI [24] combined BioBERT and Bio-GPT2 to construct the model’s classification part and
generation part and used a multi-headed self-focus mechanism to fuse multiple semantic
information to achieve strict contextual modeling and improve the performance of DDIs
extraction. However, this class of models can only represent a few potential relationships
between two entities and only focuses on the connections between nodes while ignoring
node attributes and edge types.

With the development of KGE techniques, KGEs have been applied to the DDIs
prediction task, enabling the automatic drug-to-entity capture of features required for
inference. KGE methods have been shown to provide competitive performance in the
DDIs prediction task. Among others, Tiresias [25] first integrated various drug-related
variables into a BioKG, which was then used to compute several similarity measures
among all drugs and predict potential DDIs using a logistic regression classifier. Celebi
et al. [26] applied several classical KGE models, such as TransE [27] and TransD [28], to
predict potential interactions between drugs, and BERTKG-DDIs [29] based on the classical
KGE models, which combines the interactions of drug embeddings with other biomedical
entities and the domain-specific BioBERT embedding-based Relation Classification (RC)
architecture in combination. However, the above methods use addition, subtraction, or
simple multiplication operators. Thus, they can only capture linear relationships between
entities. Ma et al. [30] used a multi-view graph self-encoder to integrate multiple types of
drug-related information. They added an attention mechanism to calculate the weights
corresponding to each view for better interpretability.

With KGNN [31], in order to extract the higher-order structure and semantic relations
of KG, the idea of the neural network is used to learn the neighborhood of each entity in
KG as their local receptive domain. Then, the neighborhood information is integrated with
the deviation of the current entity representation. Xin [15] integrated the neural network
and knowledge graph, considered different levels of text features in the neural network
part, used RotatE [32] in the KG part, and achieved excellent performance. However,
most of the existing network-based methods for this class of models usually consider the
prediction of DDIs as a binary classification problem, which does not correspond to the
actual problem, where there are more relational correspondence properties (1-N, N-1, N-N)
between the drug pairs problem. For this reason, KG2ECapsule [9] combines the idea of the
Bernoulli distribution with a capsule network to model the relationship pattern between
drug pairs. However, the high complexity of the Bernoulli distribution method model
effect needs to be improved. Meanwhile, the model uses a capsule network. It achieves
good results but only applies to small BioKG datasets due to its complex training process,
significant computational overhead, and large data requirements for capsule network
applications. For this reason, this paper combines the self-attention mechanism with a
KG-based model. It constructs HSTrHouse, a hierarchical self-attentive embedding model
based on a self-attentive mechanism and Convolutional Neural Network.
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3. Model Building

As illustrated in Figure 2, we derive word-level position features using PubMed-
BERT [6] combined with a convolutional neural network, and molecular structure features
through a graph neural network (GNN). These features are amalgamated into a composite
feature vector. Simultaneously, vectors representing drug pairs are processed through
an Encoder to obtain embeddings for these pairs. These embeddings and the composite
feature are used to establish a matrix space where a relation matrix is introduced as the
input to the relation layer. This layer utilizes the Encoder to generate relation embeddings.
Ultimately, for modeling relational metabolic pathways (RMPs), both entity and relation
embeddings are transformed into a complex vector space using Householder projections.

3.1. Position Feature

In this study, textual descriptions of drug pairs are parsed using the WordPiece
algorithm [33]. This algorithm splits the text into word pieces, creating a sequence
S = [w1, w2, · · · , wn], with n as the count of word pieces. Each word piece wi is processed
through PubMedBERT [6] to achieve its contextualized vector ei ∈ Cd. Additionally, we
generate paired relative position embeddings for each word piece, represented as el

i ∈ Cd

and er
i ∈ Cd, which are then merged with the word embeddings and supplied to a CNN

layer. The CNN layer’s computation is defined by:

Ci = GELU
(

W ⊙
[
ei:i+k−1; el

i:i+k−1; er
i:i+k−1

]
+ b

)
, (1)

where GELU(·) is the Gaussian Error Linear Unit activation function [34], W ∈ Cdc×3d×k

indicates the convolutional weights, k the window size, and ⊙ denotes element-wise
multiplication, with b as the bias vector. Different window sizes are utilized to provide
multiple perspectives. The resultant position feature Fi consolidates the output from each
CNN filter into a standardized vector, achieved by the following max-pooling step:

Fi = max(Ci). (2)

3.2. Molecular Structure

The analysis of drug molecular structures is efficiently performed using a Graph
Neural Network (GNN) that adeptly handles the complex graph structures of molecules.
In this graph-based model, atoms are represented as nodes and bonds as edges within the
molecular graph G. According to the framework by Tsubaki et al. [35], we adopt a neural
GNN approach that utilizes extensive molecular fragments, or r-radius subgraphs, which
are akin to molecular fingerprints. These subgraphs effectively encapsulate the atomic
details and their relational context within the molecule.

In this method, the fingerprint vectors act as stand-ins for atomic representations
and are initially randomized. These vectors undergo iterative refinement influenced by
the graph structure of the molecule. For example, the vector for the i-th atom in a drug
molecule is represented as ai, with Ni indicating the set of adjacent atoms. The refinement
of vector ai during the ℓ-th iteration is captured by:

aℓi = aℓ−1
i + ∑

j∈Ni

f
(

Wℓ−1
b bℓ−1

j + bℓ−1
b

)
, (3)

where f (·) is the ReLU activation function, and Wb, bb represent the weight and bias
parameters, respectively. Following this, the atomic vectors are consolidated to form a
molecular representation, which then passes through a linear transformation as follows:

Me = f

(
Wout

m

∑
i=1

bL
i + bout

)
, (4)
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where m denotes the total number of atomic fingerprints, and Wout and bout are the weight
and bias of the output layer, respectively. The combined structure and position features are
then merged to yield:

Ni =
1
2
(Fi + Me). (5)

3.3. Encoder Module

In this research, we incorporate a self-attention mechanism within our model to
robustly capture the sequential dependencies and interactions, thus producing enriched
feature representations. The embedding of a drug entity u ∈ Cd is fed into the Entity Self-
Attention layer, where it is divided into three components for the transformer architecture
as detailed in [14]: the query Q = uWq, the key K = uWk, and the value V = uWv. Each
of Q, K, V has dimensions C1×d, and the weight matrices Wq, Wk, Wv are dimensioned
Cd×dk ,Cd×dk ,Cd×dv respectively. Using a single-head attention model for simplicity, we
calculate the attention coefficients ϑ via the softmax normalization as shown:

ϑ = Softmax
(

QKT
√

d

)
. (6)

The value vectors are then aggregated using the calculated attention weights to pro-
duce the attention mechanism’s output:

ϑ′ =
n

∑
i=0

ϑVi. (7)

For the entity-level self-attention schema, the outputs from the attention mechanism
are concatenated to generate the final vector:

ϑ′′ =
K⊕

k=1

ϑ′, (8)

with
⊕

representing concatenation, and K the count of distinct attention heads. This
concatenated vector ϑ′′ is then passed into the Encoder’s subsequent stage, the Feed-
Forward Network (FFN). This network includes a two-layer setup with ReLU and linear
activations respectively:

ϑ̂ = FFN(ϑ′′) = ReLU(ϑ′′W1 + b1)W2 + b2, (9)

where ReLU(·) indicates the Rectified Linear Unit function, W1 ∈ Cd×dn , b1 ∈ Cdn , W2 ∈
Cdn×d, and b2 ∈ Cd serve as the trainable parameters.

Following this, a spatial model is constructed that integrates the entity features with
relation vectors:

Repm = Ni ⊙ ϑ̂, R′ = Repm ⊙ er
i , (10)

where ⊙ denotes the Hadamard product, facilitating the combination of entity and rela-
tional features. This vector Repm is further processed through a relation-level self-attention
layer and an FFN to produce the final integrated output r̂. Ultimately, the output vector
from the Entity Self-Attention layer is amalgamated with its position feature and molecular
structure as follows:

ê =
1
3
(ϑ̂ + Fi + Me). (11)

3.4. Decoder Module
3.4.1. Knowledge Graph

In the realm of KGE models, substantial advancements have been made, with numer-
ous models being developed to enhance our understanding and representation of complex
relationships. The pioneering model in this domain, TransE [36], introduced a translational
distance-based approach, embedding entities h and o, along with the relation r, and em-
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ployed the functional mapping h + r ≈ o. Despite its groundbreaking nature, TransE [36]
encountered limitations in accurately learning 1-n relations, leading to the development of
several extensions [37,38] to address these deficiencies. Further expanding on the concept,
RotatE [39] proposed an adaptation of TransE [36] into the complex vector space, enabling
the representation of asymmetric relation patterns. Similarly, QuatE [40] advanced the
model into quaternion vectors to facilitate 3D space rotation. DualE [41] innovated by incor-
porating dual quaternions into the embedding of relational entities, successfully capturing
non-combinatorial and multiple relation patterns. Additionally, some scholars have ex-
plored embedding vectors in hyperbolic geometric spaces to articulate hierarchical relations
as demonstrated in models like [42,43]. To express deeper interactions between entities and
relations, others have integrated deep learning into KGE model construction. This includes
the ConvKB [44], which utilizes one-dimensional convolution, and the ConvR [45], which
employs adaptive convolution. CapsE [46] leverages the capabilities of capsule neural
networks, while RSN [47] applies Recurrent Neural Network (RNN) methodologies.

In a recent innovative approach, BiQUE [48] introduced the use of biquaternions in
KGE models, combining rotation and hyperbolic geometry to model a variety of relation
patterns. HousE [49], based on dual Householder transformations, models chain and
RMPs relationship patterns. In this paper, we primarily employ HousE’s Householder
Projections to implement transformations within the complex vector space, aiming to model
the relational pattern of the BioKG dataset.

3.4.2. Householder Projections

In the realm of vector transformations, the adjusted Householder matrix M(p, τ) is
central. This matrix, associated with a unit vector p ∈ Ck and a scalar τ ∈ R, is defined for
a k × k dimension as:

M(p, τ) = I − τpp⊤, (12)

where I represents the identity matrix of size k × k, and the condition ∥p∥2
2 = 1 confirms p

as a unit vector. The eigenvalues of M(p, τ) mostly equal 1, except for one which is 1 − τ,
making M(p, τ) invertible when τ ̸= 1.

The function of the adjusted Householder matrix in transforming a vector x into a
modified form x is demonstrated geometrically as follows:

x = M(p, τ)x − τ⟨x, p⟩p, (13)

where τ adjusts the transformation magnitude along the axis defined by vector p.
Further extending this framework, with a collection of real scalars T = {τc}m

c=1 and
matching unit vectors P = {pc}m

c=1, where m denotes the number of transformations and
each pc ∈ Ck, the overall mapping process can be depicted as:

Pro(P, T) =
m

∏
c=1

M(pc, τc). (14)

The resultant matrix Pro(P, T) is inherently invertible, stemming from the principle
that the product of invertible matrices remains invertible. Such a composite of m modified
Householder reflections is termed as Householder projections. Unlike the conventional
Householder rotations, which strictly preserve distances, Householder projections intro-
duce reversible alterations in the relative distances between points. This characteristic
renders them especially suitable for temporal modeling, without compromising their
capability to represent complex relational patterns.

In our model architecture, the Decoder Module plays a crucial role in handling com-
plexRMPs. It accomplishes this by performing Householder projections between drug–
entity pairs (êh ∈ Cd, êt ∈ Cd) obtained from the Encoder Module. These drug–entity
vectors are then rotated in the complex vector space to establish the relationship vectors,
thereby modeling the intricate relational patterns between drug entities. For each temporal
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aspect t, we define two parameter types, the axes Pt ∈ Cd×m and the scalars Tt ∈ Cd×m,
with m being a positive integer. Each row Pt[i] ∈ Cm consists of m k-dimensional unit
vectors (projection axes), i.e., Pr[i][j] ∈ C satisfying ∥Pt[i][j]∥2

2 = 1. Similarly, each row Tt[i]
comprises m real values (projection scalars). The embedding of relation r is denoted as
Ur ∈ Cd×2n, where n =

⌊ 2
2
⌋
. Each row Ur[i] ∈ C2n is composed of 2n k-dimensional unit

vectors, with Ur[i][j] ∈ C and ∥Ur[i][j]∥2
2 = 1, j ∈ {1, 2}.

For each drug–entity pair, HSTrHouse transforms the head entity êh and tail entity êt
with r-specific Householder projections:

hr = Pro(Pt, Tt)êh =
m

∏
j=1

M(Pt[j], Tt[j])êh,

tr = Pro(Pt, Tt)êt =
m

∏
j=1

M(Pt[j], Tt[j])êt.
(15)

Subsequently, HSTrHouse applies r-specific Householder rotations to the projected
head point ht, formulated as:

f (h, r, t) = ∥hr − tr∥. (16)

To optimize distance-based models effectively, a loss function akin to the negative
sampling loss [27] is employed, described as follows:

L = − log σ(γ − f (h, r, t))− 1
k

n

∑
i=1

log σ( f (hi
′, r, ti

′)− γ), (17)

where σ(·) is the sigmoid function, γ denotes a fixed margin, and (hi
′, r, ti

′) represents the
i-th negative quadruple, with n being the number of negative samples.

Employing self-adversarial negative sampling as per [32], negative quadruples are
sampled from the following distribution:

p(hj
′, r, tj

′ | {(hi, ri, ti)}) =
exp α f (hj

′, r, tj
′)

∑i exp α f (hi
′, r, ti

′)
, (18)

where α is the temperature parameter. Thus, the final loss function is formulated as:

L = − log σ(γ − f (h, r, t))−
n

∑
i=1

p(hi
′, r, ti

′) log σ( f (hi
′, r, ti

′)− γ). (19)

4. Experiments
4.1. Datasets

To rigorously evaluate the effectiveness of our proposed framework, we conduct a
detailed link prediction analysis using three principal BioKG benchmark datasets. These
datasets, specifically OGB-Biokg [50], DrugBank [51], and KEGG [52], are recognized for
their academic and scientific merit and are instrumental in benchmarking computational
approaches within the intricate field of biomedical knowledge. Detailed characteristics
of these datasets, encompassing their structural complexities and unique features, are
provided in Table 1.

Table 1. Statistics for the various experimental datasets.

Datasets #Drugs #Interactions #Entities #Relations #Triples

OGB-biokg 10,533 1,195,972 93,773 51 5,088,434
DrugBank 3797 1,236,361 2,116,569 74 7,740,864

KEGG 1925 56,983 129,910 168 362,870

When depicting a drug molecule graphically, the primary input comes from SMILES
string encoding, which is gathered from various datasets. We apply preprocessing scripts to
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derive molecular fingerprints from these graphical representations, following the methods
described by Tsubaki et al. [35].

The OGB-Biokg, carefully assembled by Stanford University, stands as an extensive
Biomedical Knowledge Graph. This graph is structured with five unique categories of
entities and is linked by 51 directed relationships, showcasing the complex interconnections
present in biomedical data.

The DrugBank database is an essential hub that compiles comprehensive data on drugs
and their biological targets. It integrates bioinformatics and cheminformatics, providing
exhaustive details on drugs including their chemical, pharmacological, and pharmaceutical
attributes alongside rich target data that includes sequence, structure, and pathway details.

KEGG is recognized as a pivotal resource for understanding complex functions and
interactions in biological systems, extending from the cellular level to entire ecosystems. It
offers molecular-level details, encompassing interactions, reactions, and pathways across
diverse areas such as metabolism, genetic and environmental information processing,
cellular processes, organismal systems, and human diseases, thus delivering a holistic
perspective on life sciences.

4.2. Baselines and Metrics

In our study, we conducted a thorough comparative analysis of our models against
a diverse array of baseline methodologies. To assess the efficacy of traditional network
representation learning techniques, we incorporated several benchmark models: matrix
factorization-based (Laplacian [17]), random walk-based (DeepWalk [19]), and neural
network-based (LINE [21]). Furthermore, our evaluation also encompasses a variety of
knowledge graph-based models, specifically KGNN [31], KGAT [53], R-GCN [54], BERTKG-
DDIs [29], Xin [15], and KG2ECapsule [9].

To rigorously validate the effectiveness of the proposed Householder projections
within our framework, we designed two variants of HSTrHouse. These variants involve
substituting the Householder projections with the earlier non-reversible prediction method-
ologies utilized in TransH and TransR, resulting in two distinct models named HSTrTH
and HSTrTR, respectively.

The effectiveness of the model was quantified using a diverse array of metrics, each
designed to shed light on different aspects of its predictive capabilities and reliability. These
measures are detailed as follows:

• Accuracy (Acc.): This essential metric assesses the overall rate of correct predictions
made by the model.

Accuracy =
TP + TN

TP + TN + FP + FN

where TP stands for True Positives, TN for True Negatives, FP for False Positives, and
FN for False Negatives. It provides a snapshot of how well the model performs across
all categories.

• Precision (Pre.): This metric measures the accuracy of the model in identifying only
relevant instances as positive.

Precision =
TP

TP + FP

It gains importance in situations where the implications of false positives are severe.
• Recall (Rec.): Also known as Sensitivity, this metric assesses the model’s ability to

detect all actual positives.

Recall =
TP

TP + FN

It is essential in applications where failing to identify a positive instance could be
detrimental.
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• F1 Score (F1): Balances Precision and Recall, providing a single score that gauges
the accuracy of the model’s positive predictions and its thoroughness in capturing
positive instances.

F1 = 2 × Precision × Recall
Precision + Recall

This metric is particularly valuable in situations where classes are imbalanced.
• Area Under the ROC Curve (AUC): This metric measures the area beneath the Re-

ceiver Operating Characteristic (ROC) curve, which plots the True Positive Rate (TPR,
or Recall) against the False Positive Rate (FPR). An AUC near 1 signifies superior
model performance. The ROC curve’s area is usually calculated through a graphical
method rather than a direct formula.

• Area Under the Precision–Recall Curve (AUPR): The AUPR metric quantifies the
area under the Precision–Recall curve, which is crucial for evaluating models on
imbalanced datasets. Like the AUC, the precise value of AUPR is typically derived
through graphical analysis rather than a straightforward mathematical formula.

4.3. Implementation Details

In the training phase of our model, we meticulously define and optimize several hyper-
parameters. The batch size b is set at 512 for uniformity across all datasets. We explore a range
of embedding dimensions d, specifically tuning it within the set {100, 200, 500, 1000, 1500}.
The learning rate r is varied between 0.01 and 1 to identify the optimal rate for convergence.
Additionally, we select a fixed margin γ from the set {6, 9, 12, 24, 30}, crucial for the stability
and performance of the model. The dropout rate, an important factor in preventing overfit-
ting, is experimented with among the values 0.0, 0.2, and 0.4. For the number of modified
Householder reflections m used in the Householder projections, we consider values within
{1, 2, 3, 4, 6, 8}. The regularization coefficient λ, an integral component for model general-
ization, is tuned between the values {0, 0.3}. In the context of the attention mechanism, the
number of attention heads is optimized across {20, 30, 40, 50, 64}, while the dimensions of
keys dk and values dv are varied within {32, 50, 64} and the dimension of heads dh is chosen
from {100, 512, 1024, 2048}.

4.4. Experimental Results and Analysis

The empirical results obtained from three distinguished BioKG datasets, presented in
Table 2, emphatically affirm the exceptional effectiveness of our novel HSTrHouse model.
This model demonstrates superior performance across a range of evaluative metrics, posi-
tioning it as a leading contender in the field. The results distinctly illustrate the enhanced
capabilities of our biomedical model, which is predicated upon the KG structure. Addition-
ally, our research illuminates the impressive efficacy of the HSTrTH and HSTrTR variants.
While these models exhibit slightly lower performance metrics compared to those based
on the Bernoulli distribution, such as KG2ECapsule [9], and our newly introduced HSTr-
House model, their results are nonetheless notable. Specifically, the approach focusing on
projection for modeling RMPs demonstrates tangible outcomes. However, it is important
to recognize that, despite their promising nature, the results of the HSTrTH and HSTrTR
models do not quite reach the level of those achieved by methodologies incorporating
the Bernoulli distribution and Householder projection techniques. These findings under-
score the potential for further refinement and optimization in projection-based modeling
approaches within the realm of BioKGs.
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Table 2. Experimental results of HSTrHouse and baseline models on three datasets.

Datasets Methods ACC. Pre. Rec. F1 Auc AUPR

OGB-Biokg

Laplacian 0.5710 ± 0.003 0.5296 ± 0.005 0.5934 ± 0.004 0.5597 ± 0.005 0.5692 ± 0.0002 0.5861 ± 0.0004
DeepWalk 0.5681 ± 0.004 0.5473 ± 0.007 0.5223 ± 0.006 0.5345 ± 0.005 0.5419 ± 0.0002 0.5325 ± 0.0003
LINE 0.5786 ± 0.007 0.5534 ± 0.011 0.5386 ± 0.013 0.5459 ± 0.011 0.5418 ± 0.0002 0.5374 ± 0.0003
KGNN 0.7389 ± 0.002 0.7541 ± 0.006 0.7245 ± 0.010 0.7390 ± 0.009 0.7849 ± 0.0008 0.7378 ± 0.0005
KGAT 0.7489 ± 0.002 0.7559 ± 0.006 0.7191 ± 0.006 0.7370 ± 0.006 0.7962 ± 0.0004 0.8011 ± 0.0004
RGCN 0.8467 ± 0.004 0.8773 ± 0.006 0.8063 ± 0.004 0.8403 ± 0.005 0.9172 ± 0.0006 0.9268 ± 0.0005
BERTKG-DDIs 0.8326 ± 0.003 0.8835 ± 0.004 0.8243 ± 0.005 0.8529 ± 0.006 0.8967 ± 0.0004 0.9167 ± 0.0004
Xin et al. [15] 0.8627 ± 0.002 0.9105 ± 0.008 0.8467 ± 0.007 0.8774 ± 0.005 0.9276 ± 0.0004 0.9341 ± 0.0005
KG2ECapsule 0.9078 ± 0.002 0.9219 ± 0.004 0.8914 ± 0.003 0.9064 ± 0.003 0.9656 ± 0.0002 0.9672 ± 0.0002

HSTrTH 0.8737 ± 0.003 0.9130 ± 0.011 0.8407 ± 0.005 0.8754 ± 0.003 0.9295 ± 0.0012 0.9359 ± 0.0004
HSTrTR 0.8826 ± 0.003 0.9169 ± 0.012 0.8517 ± 0.005 0.8831 ± 0.006 0.9314 ± 0.0012 0.9527 ± 0.0007
HSTrHouse 0.9101 ± 0.003 0.9271 ± 0.004 0.8941 ± 0.007 0.9103 ± 0.005 0.9693 ± 0.0004 0.9704 ± 0.0008

DrugBank

Laplacian 0.5923 ± 0.004 0.4455 ± 0.006 0.3372 ± 0.010 0.3838 ± 0.009 0.6724 ± 0.0002 0.4782 ± 0.0002
DeepWalk 0.6163 ± 0.004 0.6059 ± 0.003 0.5904 ± 0.005 0.5980 ± 0.008 0.6501 ± 0.0002 0.4782 ± 0.0002
LINE 0.6374 ± 0.005 0.6283 ± 0.006 0.6189 ± 0.013 0.6236 ± 0.005 0.6926 ± 0.0002 0.4923 ± 0.0003
KGNN 0.7947 ± 0.003 0.7959 ± 0.004 0.7931 ± 0.004 0.7945 ± 0.004 0.8602 ± 0.0005 0.8587 ± 0.0005
BERTKG-DDIs 0.8469 ± 0.002 0.8524 ± 0.005 0.5681 ± 0.002 0.6817 ± 0.004 0.8925 ± 0.0006 0.8726 ± 0.0004
Xin et al. [15] 0.87364 ± 0.004 0.8672 ± 0.005 0.8620 ± 0.005 0.8646 ± 0.002 0.9224 ± 0.0004 0.9341 ± 0.0003
KG2ECapsule 0.9078 ± 0.002 0.9219 ± 0.004 0.8914 ± 0.003 0.9064 ± 0.003 0.9656 ± 0.0002 0.9672 ± 0.0002

HSTrTH 0.8806 ± 0.004 0.8692 ± 0.006 0.8827 ± 0.004 0.8759 ± 0.006 0.9247 ± 0.0008 0.9384 ± 0.0003
HSTrTR 0.8859 ± 0.003 0.8943 ± 0.004 0.8795 ± 0.007 0.8868 ± 0.006 0.9304 ± 0.0008 0.9372 ± 0.0006
HSTrHouse 0.9067 ± 0.004 0.9251 ± 0.003 0.8929 ± 0.005 0.9087 ± 0.005 0.9667 ± 0.0008 0.9685 ± 0.0011

KEGG

Laplacian 0.5694 ± 0.010 0.3683 ± 0.021 0.3781 ± 0.016 0.3731 ± 0.016 0.5608 ± 0.010 0.2916 ± 0.013
DeepWalk 0.5800 ± 0.008 0.3801 ± 0.008 0.3762 ± 0.011 0.3781 ± 0.009 0.5751 ± 0.009 0.3005 ± 0.012
LINE 0.5528 ± 0.006 0.3546 ± 0.010 0.3390 ± 0.016 0.3466 ± 0.013 0.5462 ± 0.013 0.2810 ± 0.015
KGNN 0.7282 ± 0.008 0.4790 ± 0.024 0.4237 ± 0.013 0.4497 ± 0.018 0.8314 ± 0.009 0.4484 ± 0.013
KGAT 0.7798 ± 0.008 0.5340 ± 0.015 0.4185 ± 0.015 0.4692 ± 0.015 0.8202 ± 0.010 0.5382 ± 0.011
RGCN 0.8330 ± 0.005 0.4969 ± 0.012 0.4392 ± 0.018 0.4663 ± 0.015 0.8358 ± 0.006 0.4590 ± 0.010
BERTKG-DDIs 0.8216 ± 0.007 0.5773 ± 0.008 0.4587 ± 0.015 0.5112 ± 0.007 0.8267 ± 0.004 0.4937 ± 0.009
Xin et al. [15] 0.8367 ± 0.006 0.5837 ± 0.012 0.4592 ± 0.017 0.5140 ± 0.011 0.8426 ± 0.015 0.5887 ± 0.009
KG2ECapsule 0.8348 ± 0.003 0.6278 ± 0.008 0.4794 ± 0.011 0.5437 ± 0.009 0.8505 ± 0.004 0.6644 ± 0.007

HSTrTH 0.8359 ± 0.003 0.5852 ± 0.012 0.4601 ± 0.012 0.4795 ± 0.006 0.8439 ± 0.008 0.6102 ± 0.003
RotatECap 0.8397 ± 0.004 0.5934 ± 0.006 0.4639 ± 0.006 0.5207 ± 0.012 0.8407 ± 0.004 0.6207 ± 0.012
HSTrHouse 0.8397 ± 0.004 0.6361 ± 0.006 0.4821 ± 0.009 0.5485 ± 0.005 0.8541 ± 0.0004 0.6702 ± 0.003
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4.4.1. Different Features

To meticulously investigate the salient attributes of the position feature and the dis-
cernible influence exerted by the molecular structure features on the performance dynamics
of the model, we conducted a structured study. Informed by the foundational model, we
iteratively undertook an exclusion process, explicitly targeting the position and molecular
structure features. This yielded two distinct model instances, denoted as HSTrHP and
HSTrHM. These instances were subjected to an exhaustive array of experiments conducted
on the BioKG dataset OGB-Biokg.

The outcomes of these systematic experiments are succinctly presented in Figure 3.
The findings incontrovertibly manifest that both the omission of the position feature and
the absence of the molecular structure features invariably contribute to a degradation in the
performance metrics exhibited by the model. Notably, the discernible disparity between
HSTrHP and HSTrHM across the three performance indicators is an insightful inference
gleaned from the results. This incongruity serves as an indirect yet cogent validation,
establishing that the position feature harbors a substantively more profound impact on the
model’s performance than the molecular structure feature.

Figure 3. Ablation experiments were performed on the OGB-Biokg dataset.

4.4.2. The Numbers of Modified Householder Matrices

We investigate the impact of m on the performance (F1) of HousE. The results are
shown in Figure 4. With the increase in m on both datasets, the model’s performance
increases first and then decreases. Moreover, the values of m for the best performance on
the two datasets are different (m = 6 on OGB-Biokg, m = 3 on KEGG), mainly because it can
be seen from Table 1 that the thoroughness of the OGB-Biokg dataset is significantly higher
than that of the KEGG dataset.

(a) F1 vs. m on OGB-Biokg (b) F1 vs. m on KEGG

Figure 4. (a,b) show the F1 results of HSTrHouse with different numbers of modified Householder
matrices on OGB-Biokg and KEGG.
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4.5. Extended Applications

Beyond routine Relation Extraction (RE) tasks, the purview of Biomedical Natural
Language Processing (NLP) research encapsulates an array of intricate undertakings. These
include, but are not limited to, Question Answering (QA), Named Entity Recognition (NER),
Evidence-Based Medical Information Extraction (PICO), and Document Classification (DC),
among other distinctive tasks.

In order to rigorously evaluate the robustness and adaptability of the HSTrHouse
model within the complex domain of Biomedical NLP, an extensive validation process was
conducted utilizing three distinct datasets: BC5-Chemical, PubMedQA, and BioASQ. The
empirical results, detailed in Figure 5, unequivocally demonstrate the model’s superior
performance compared to existing approaches, particularly in Question Answering (QA)
tasks across these varied datasets. This comprehensive assessment not only confirms the
effectiveness of HSTrHouse but also highlights its broad applicability and utility in the
extensive field of Biomedical NLP research.

Figure 5. Comparison of the proposed model with previous methods on the test datasets of BC5-
Chemical, PubMedQA, and BioASQ.

However, it is pertinent to note that while the model exhibits performance improve-
ments, the magnitude of these enhancements warrants a closer examination. This observa-
tion opens avenues for future research, indicating a fertile ground for continued academic
investigation and enhancement of the model. Such scrutiny is vital for advancing the field
of Biomedical NLP and unlocking further potential of models like HSTrHouse.

5. Conclusions

This study presents a hierarchical self-attention embedding model that integrates a
self-attention mechanism with a Convolutional Neural Network architecture. The proposed
model employs PubMedBERT for contextual embeddings, coupled with CNN and GNN
layers to extract positional features and molecular structure characteristics of drug entities,
respectively. Furthermore, the model leverages the rotation of Householder projections in
complex vector space to effectively capture and model the interaction patterns between
pairs of drugs. The utility and efficacy of the developed model are substantiated through
comprehensive correlation and ablation studies performed on three benchmark BioKG.
These experiments confirm the model’s robustness and its ability to provide significant
insights into drug interactions, thereby highlighting its potential applications in the field of
drug discovery and development.
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read and agreed to the published version of the manuscript.
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