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Abstract: Existing direct and inverse kinematic models of planar parallel robots assume that the
robot’s active joints are all at the bases. However, this approach becomes excessively complex when
modeling a planar parallel robot in which the active joints are within one single kinematic chain. To
address this problem, our article unveils an alternative for a 3RRR symmetric planar robot modeling
technique for the derivation of the robot workspace and the analysis of its direct and inverse kinemat-
ics. The workspace was defined using a system of inequalities, and the direct and inverse kinematics
models were generated using vectorial analysis and an optimized geometrical approach, respectively.
The resulting models are systematically presented and validated. Two final model renditions are
delivered supplying a thorough equation analysis and an applicability discussion based on the
importance of the robot’s mobile platform orientation. The advantages of this model are discussed
in comparison to the traditional modeling approach: whereas conventional techniques require the
solution of complex eighth-degree polynomials for the analysis of the active joint configuration of
these robots, these models provide an efficient back-of-the-envelope analysis approach that requires
the solution of a simple second-degree polynomial.

Keywords: parallel robot model; planar robot; active joint; workspace; model optimization

1. Introduction

Kinematic models supply a practical mathematical analysis toolbox to predict robotic
operation performance. Robot kinematics can be defined as an analytical method that
describes a robot’s spatiotemporal motion by modeling the relationship between a robot’s
joint positions and its end-effector’s position and orientation coordinates [1]. Direct kine-
matic models begin with the joint position variables and yield the resulting end-effector’s
position and orientation coordinates. Moreover, direct kinematics harness geometric meth-
ods to derive models by the implementation of homogeneous transformation matrices,
the Denavit–Hartenberg algorithm, and the use of quaternions [2]. In contrast, inverse
kinematics reverse the approach starting first with a desired end-effector position and ori-
entation and then ascertains the required robot joint position values. Nonetheless, despite
being a counterpart to direct kinetics, inverse kinematic models can also be derived via geo-
metric methods; in this case, however, it is through means of homogeneous transformation
matrices, kinematic decoupling, and Screws theory [2,3].

Robot kinematic models exist to comprehend a robot’s motion and conduct an opera-
tion performance analysis. These models must facilitate the engineer’s decision making
and design the action-planning process. However, traditional modeling approaches for
3RRR parallel planar robots [3–12] do not provide simple models for robot configurations
with active joints that are all placed within one single kinematic chain. The traditional
models with the active joints located at the bases actually render the modeling of single
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kinematic chain active joint robots as a complex task that requires solving computing-
intensive calculations. Therefore, the originality of this paper is the kinematic modeling of
3RRR parallel planar robots with single kinematic chain active joints. These kinematics are
demystified by providing a simplified approach that reduces the computational task from
a burdensome eighth-degree polynomial model to a simple back-of-the-envelope solvable
mathematical model.

1.1. Planar Parallel Robots

An industrial robot is an automatically controlled, reprogrammable, and multipurpose
manipulator with at least three independent movements (degrees of freedom); for use in
manufacturing processes, this manipulator has the ability to move a variety of functional
objects through previously configured movements for the purpose of performing different
tasks [13]. Robots can be classified into open and closed kinematic chain robots. Open-chain
robots, which have links that are connected in series, have become ubiquitous in industrial
robotic applications. In the case of the 3RRR, which has three independent closed kinematic
chains, the characteristics of symmetry allow for the mathematical modeling of one of the
chains and generalization to the other two. The subset of planar robots in which the motion
is restricted to a single 2D plane is called planar parallel robots. Considering the R label
for revolute joints and P label for prismatic joints, the possible configurations for parallel
planar robots are depicted in Figure 1. The PPP configuration is not feasible due to the lack
of independence. The end effectors are situated at the centroid of the internal triangle of
the robot, enabling it to perform tasks in soft robotics [14,15], traditional pick-and-place
operations [16], and even medical applications [17].

RRR RRP RPR RPP

PRR PRP PPR

R: Revolute Joint;   P: Prismatic Joint

Figure 1. Possible parallel robots configurations.

The particular 3RRR symmetric planar robot studied in this work is shown in Figure 2.
This robot contains six chain links that may be of different or equal sizes and a triangular
chain that joins the three interdependent kinematic chains and acts as the tool center point.
Moreover, this planar robot’s movement is restricted to 2D-planar motion. Generally,
parallel robots that do not exhibit singularities are isotonic. Therefore, using Grubler’s
formula, it is determined that this robot contains only three degrees of freedom: x, y, and
ϕ, where x and y describe the robot’s position with respect to the Cartesian plane and
ϕ corresponds to the orientation angle that the end-effector forms with the horizontal.
Given this robot configuration, kinematic models are required to describe the robot’s
operation motion.

The planar robots studied in this research apply the similarity law (six chains of the
same size); this means the robot has geometic symmetry [18–21]. Also, symmetry is present
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in the Jacobian matrix condition index, which can be evidenced by graphically observ-
ing the distribution of the condition index throughout the workspace [3]. Additionally,
the symmetry of parallel robots is present in the differential mathematical model, which is
represented through Jacobian matrices [18].

Figure 2. 3RRR symmetric planar robot geometry.

1.2. Existing 3RRR Symmetric Planar Robot Kinematic Models

Mathematical models exist in the literature for the analysis of articulated parallel
robots. Table 1 shows an approach comparison among the modeling methods used by
researchers, including the active joints for the mathematical modeling techniques, which
were implemented to derive direct and inverse kinematics. Geometric models have the
advantage of being more conventional, allowing the planar robot to move with speed
and precision. The main disadvantage of geometric models is the computational expense
due to the complexity of their kinematic equations. The advantage of screw theory is
that it enables the development of a simple dynamic model with which controllers can
be developed.

Table 1. Comparison of articulated 3RRR symmetric planar robot study (N/A: is not desribed in
the paper).

References Active Joints Direct Kinematics Inverse Kinematics

[3] P, Q, R N/A Geometry Method
[4] P, Q, R N/A Screws theory
[5] P, Q, R Geometry Method Geometry Method
[6] P, Q, R N/A State Variables
[7] P, Q, R N/A Geometry Method
[8] P, Q, R Transformation matrix Geometry Method
[9] P, Q, R Geometry Method Geometry Method

[10] P, Q, R N/A Geometry Method
[11] P, Q, R Numeric Method Geometry Method
[12] P, Q, R N/A Geometry Method
[22] All Joints Geometry Method N/A

Among the referenced literature, it is observed that most articles base their analyses
under the assumption that the active joints are all placed at the kinematic chain bases
in P, Q, and R in Figure 2. The only exception is [22], which studies two additional
configurations but limits its analysis to the singularities. It is also observed that the
geometric method is the most common approach to derive both direct and inverse kinematic
models. However, this approach yields eighth-degree polynomial-based models, which
must be solved via the implementation of large-scale computational resources. Moreover,
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solving these conventional mathematical models generates eight possible solutions to
configure the position angles of the robot’s active joints, which also increments workspace
robot singularities.

Non-articulated planar parallel robot modeling has also been actively studied in P,
D, and A joints [23–28] and cable-driven planar robots [29–32]. Furthermore, the applica-
tions of these planar parallel robots can range from window-washing applications [29] to
orthopedics [23,25] and even neurorehabilitation [33]. Hence, the models derived in this
paper may be applied to all the referenced literature in this section and broaden the body
of knowledge of the planar parallel robot.

1.3. 3RRR Symmetric Planar Robot Active Joints

Robotic joints are the mechanical connections between chain links. A robotic joint
can be categorized according to its kinematic design into revolute (R), prismatic (P), screw
(H), cylindrical (C) universal (U), spherical (S), or parallelogram (Pa) joints. Each of these
joints can be further classified into active or passive joints. Active joints, notated by an
underscored joint abbreviation, exert a controlled force to generate a robotic position shift.
Active joints utilize motors to control robotic motion and orientation. In contrast, passive
joints move through externally actuated forces transmitted by kinematic chains.

This study focuses on the 3RRR symmetric planar robot shown in Figure 2. Existing
literature models [3–12] position active joints at the base joints, i.e., P, Q, and R, whereas
passive joints are at points A, B, C, D, E, and F. This study proposes a mathematical model
of a planar parallel robot where the active joints are rather located at joints P, D, and A, all
of which belong to a single kinematic chain. The kinematic models derived in this work are
then compared and contrasted to the conventional models in Table 1, and a discussion of
the advantages of our derived models is provided.

2. Methods

This work aims to develop the forward kinematics and inverse kinematics of a 3RRR
planar robot with its active joints in a kinematic chain. To achieve this, several concepts
are developed, starting with the definition of the workspace and followed by orientation
points, inverse kinematics, and finally forward kinematics, which validate all previous
models as shown in Figure 3.

Figure 3. Phases of the kinematic model.

Also, some assumptions and methods are taken for the kinematic model derivation, in-
cluding the following:

1. The location of the robot’s active joints was taken at joints P, D, and A, as shown in
Figure 2.

2. Joints Q, E, B, C, F, and R in Figure 2 are all passive joints.
3. The mathematical methods implemented for model derivation are the law of cosines,

trigonometric properties, geometric relations, the Pythagoras theorem, derivatives,
vectors, and matrices.
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4. The mathematical models obtained are the workspace, the direct kinematics models,
and the inverse kinematics models.

5. The workspace is defined using a system of inequalities provided by the constraints
from the lengths of the fully extended kinematic chains.

6. The derivation of the direct kinematics model is approached via vectorial analysis.
7. The inverse kinematic model is derived through the geometric method and optimiza-

tion techniques.
8. Model validation is achieved using MATLAB-based software corroboration.

The following parameter definitions were also conducted for model derivation:
Take H as the distance between the base joints in the planar robot, i.e., the length

of segments ¯PQ, Q̄R, and P̄R. Moreover, to reduce the robot singularities, all chains
are assumed to be of equal length l and the end-effector is assumed to have the fixed
dimensions of an equilateral triangle platform [3]. Hence, the dimensions of the chains and
the end-effector sides can be calculated by (1) and (2):

h =
1

10
H (1)

l =
2
5

H (2)

where l is the length of each of the robot’s six chains and h is the length of the three sides of
the mobile platform’s end-effector [3]. Furthermore, the distance from vertex point A to the
centroid point G of the end-effector (as shown in Figure 4) must also be considered.

Figure 4. Planar parallel robot’s mobile platform end-effector [32].

Given that point G is the centroid of the equilateral-triangle-shaped end-effector,
∆ABC, let segment ĀG be equal to m, as shown in Figure 4. Furthermore, when the
segment C̄G is extended, it bisects segment ĀB at point A′. Moreover, given that the
orthocenter, incenter, and centroid of an equilateral triangle are all the same point, then

¯AA′ = ¯A′B = h
2 , ∠CA′A = π

2 , and ∠GAA′ = π
6 . Furthermore, since ∆AGA′ is a right

triangle, the definition of the cosine trigonometric function (3) is used to find m in (4):

cos
(π

6

)
=

¯AA′

ĀG
(3)

Given that cos
(

π
6
)
=

√
3

2 , ¯AA′ = h
2 , and ĀG = m, isolating m leads to

m =
h√
3

(4)
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Then, using Equation (1) and rationalizing, m becomes a function of H:

m =
1
10

H ∗ 1√
3

(5)

m =
1

10
√

3
H (6)

m =

√
3

30
H (7)

This method is applicable to symmetric 3RRR planar robots, which use parameters
H, h, and l as design parameters, where l and h depend on H at the moment of designing
the robot. Additionally, the active joints are located in one of the robot’s kinematic chains.
To perform the calculations, MATLAB was used, in which functions were developed for
both the direct kinematics and the inverse kinematics of the robot.

3. Results
3.1. Workspace Definition

Taking each of the robot’s kinematic chains with a specific position in a Cartesian
reference plane [34], let point G with coordinates (Px, Py) be the final position of the end-
effector’s centroid. Then, to derive the robot’s workspace, consider the delimitations given
by the kinematic chain constraints.

3.1.1. First Kinematic Chain Workspace Constraints

The first kinematic chain, composed of links ¯PD, D̄A, and ĀG, has active joints at all
three of its articulations P, D, and A. Moreover, its base articulation P is set at position
(0, 0). Then, letting G, with coordinates (Px, Py), be all the possible positions that the
end-effector’s centroid can reach, the inequality shown in expression (8) is derived. This
expression acts as the first workspace constraint, where the end-effector’s position is limited
by the length of the fully extended first kinematic chain, and it is shown in Figure 5:

(Px)
2 +

(
Py
)2

< (2l + m)2 (8)

Figure 5. First kinematic chain workspace constraint.

Note that the workspace has been defined using less-than inequalities to avoid working
mode misconfigurations. Whereas the conventional planar parallel robot kinematic models
provide eight solutions to this robot configuration, only two of them have no singularities
in their workspace [3]. In this research, by making the workspace definitions less-than
inequatities, we prevent the robot from reaching potential working modes that, due to
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inertia, could result in a misconfiguration of the position of the kinematic chains. Hence,
the models presented in this work yield two viable non-singular positions within the
workspace: (1) a position when all kinematic chains are oriented elbow-down and (2) when
they are oriented elbow-up.

3.1.2. Second Kinematic Chain Workspace Constraints

The second kinematic chain, composed of links R̄F, F̄C, and C̄G, has a passive joint
in all three of its articulations R, F, and C. Moreover, this chain’s base joint, R, has a fixed
position given by coordinates

(
1
2 H,

√
3

2 H
)

, as shown in Figure 6.

Figure 6. Planar parallel robot base joint positions.

Hence, the inequality shown in expression (9) further delimits the robot’s workspace
due to the second kinematic chain’s length. As with the first kinematic chain, the distance
from C̄G must be taken into consideration. However, given that ∆ABC is an equilateral
triangle, ĀG = B̄G = C̄G = m; hence, (9) provides the second workspace constraint:

(
Px −

H
2

)2
+

(
Py −

√
3

2
H

)2

< (2l + m)2 (9)

This expression further reduces the robot’s workspace as shown in Figure 7 because the
allowed final end-effector position, G, must satisfy both (8) and (9).

Figure 7. Robot’s workspace constraints due to both the first and second kinematic chain lengths.
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3.1.3. Third Kinematic Chain Workspace Constraints

The third kinematic chain, composed of links Q̄E, ĒB, and B̄G, has passive joints in all
three of its articulations Q, E, and B. Moreover, its base joint Q has a fixed position given by
coordinates (H, 0), as shown in Figure 6. Hence, analogously to the workspace constraint
expressions derived for the first two kinematic chains, the end-effector’s final position G is
delimited by expression (10):

(Px − H)2 + P2
y < (2l + m)2 (10)

Therefore, the end-effector’s final position G, with coordinates (Px, Py), must satisfy all
three inequality expressions (8)–(10), as shown in Figure 8.

Figure 8. Robot’s workspace constraints due to all three kinematic chain constraints.

Thus, this workspace description method offers a novel and straightforward approach.
This system of inequalities can be visualized as the common area of three symmetric circles.
These inequality systems will be utilized for both the direct and inverse kinematics of the
study in the next two sections.

3.2. Direct Kinematics Model

The reference system is located at the active joint A according to Figure 9. Hence, Px
and Py will be referenced there. To obtain the direct kinematics, a vector addition is used,
where the links ĀB, B̄C, and C̄G will determine the vectors. The result of the vector A⃗G is
given in (11):

A⃗B + B⃗C + C⃗G = A⃗G (11)

In Figure 9, each vector can be broken down into its components, as shown in (12)–(14):

A⃗B = (l cos θ1)î + (l sin θ1) ĵ (12)

B⃗C = [l cos(θ1 + θ2)]î + (l sin(θ1 + θ2)) ĵ (13)

C⃗G =
[
mcos

(
θ1 + θ2 + θ3 +

π

6

)]
î +
[
m sin

(
θ1 + θ2 + θ3 +

π

6

)]
ĵ (14)

If A⃗G = Px î + Py ĵ is the vector sum of (11), then the following Equations (15) and (16)
are obtained for each component of the vector A⃗G:

Px = l cos θ1 + l cos(θ1 + θ2) + mcos
(

θ1 + θ2 + θ3 +
π

6

)
(15)

Py = l sin θ1 + l sin(θ1 + θ2) + m sin
(

θ1 + θ2 + θ3 +
π

6

)
(16)
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To obtain the orientation of the triangular chain ∆CDE, the angle ∠ECJ is analyzed.
From here, it is deduced that

ϕ = θ1 + θ2 + θ3 (17)

In conclusion, Equations (15)–(17) describe the 3-DOF that the 3RRR symmetric planar
robot can have.

(Pa, Pb)

D

E

G
H

J

A

B

L

L

(Px, Py)

m

B’

C’

M

X

Y

O

N

(Pa, 0)
(Px, 0)

θ1

θ1

θ2

θ3

θ1+ θ2

<CAH

Figure 9. Kinematic chain geometry with active joints in A, B, and C.

3.3. Inverse Kinematics Model

The geometric method will be utilized to determine the inverse kinematics. To achieve
this, we analyze Figure 9, depicting the motorized kinematic chain of the robot.

Point C with coordinates (Pa, Pb) is defined, which will help find the angles of the
active joints θ1, θ2, and θ3 in terms of these coordinates and the final position G with
coordinates (Px, Py).

The first step is to analyze the chains AB and BC.
Solution for θ1: Based on [35], if we analyze the angles forming ∠NAO, it can be

expressed as (18):
∠NAO = ∠NAC +∠CAB + θ1 (18)

Since ∠NAO = π
2 is an angle of the reference coordinate system, if θ1 is isolated, then

(19) occurs:
θ1 =

π

2
−∠NAC −∠CAB (19)

To find angle ∠NAC, it is observed that the segments NA and CH are parallel since
the sum of angles ∠NAO and ∠AHC equals π. Therefore, ∠NAC = ∠ACH. So, ∠ACH is
obtained by (20):

cos (∠ACH) =
CH
CA

(20)

If CH = Pb, CA =
√

P2
a + P2

b , and ∠NAC = ∠ACH, if ∠ACH is isolated and substi-
tutes the other variables, the result is (21):

∠NAC = arccos

 Pb√
P2

a + P2
b

 (21)
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To obtain ∠CAB, the triangle ∆CAB is analyzed; using the cosine law on this triangle,
the following is obtained (22):

CD2 = CA2 + AB2 − 2(CA)(AB) cos(∠CAB) (22)

If CB = AB = l and CA =
√

P2
a + P2

b , then (23):

l2 = P2
a + P2

b + l2 − 2l
√

P2
a + P2

b cos(∠CAB) (23)

If ∠CAB is isolated, (24):

∠CAB = arccos

 P2
a + P2

b

2l
√

P2
a + P2

b

 (24)

Therefore, replacing Equations (21) and (24) in (19), θ1 is obtained in terms of known
variables using (25):

θ1 =
π

2
− arccos

 Pb√
P2

a + P2
b

− arccos

 P2
a + P2

b

2l
√

P2
a + P2

b

 (25)

Solution for θ2 : The triangle ∆ABC is analyzed [35], from which it is deduced that
in (26),

ĀC2
= ĀB2

+ B̄C2 − 2(ĀB)(B̄C) cos(∠ABC) (26)

If ¯CA =
√

P2
a + P2

b and C̄B = ĀB = l, then (27):

P2
a + P2

b = l2 + l2 − 2(l)(l) cos(∠ABC) (27)

Isolating for cos(∠ABC) results in (28):

cos(∠ABC) = −
P2

a + P2
b − 2l2

2l2 (28)

If ∠ABC = 180 − θ2, then (29):

cos(180 − θ2) = −
P2

a + P2
b − 2l2

2l2 (29)

By the trigonometric property cos(180 − θ) = − cos(θ), cos(180 − θ2) = − cos θ2;
therefore, (30).

− cos(θ2) = −
P2

a + P2
b − 2l2

2l2 (30)

Isolating for θ2, it is deduced that (31):

θ2 = arccos

(
P2

a + P2
b − 2l2

2l2

)
(31)

Solution for θ3: The triangle ∆ACG is analyzed, and it is deduced that (32):

ĀG2
= ĀC2

+ C̄G2 − 2(ĀC)(C̄G) cos(∠ACG) (32)
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If ĀG =
√

P2
x + P2

y , ¯CA =
√

P2
a + P2

b and C̄G = m, then (33):

P2
x + P2

y = P2
a + P2

b + m2 − 2m
√

P2
a + P2

b cos(∠ACG) (33)

Isolating for cos(∠ACG) results in (34):

cos(∠ACG) = −
P2

x + P2
y − P2

a − P2
b − m2

2m
√

P2
a + P2

b

(34)

If ∠ACG = 180 −∠GCC′, then (35):

cos(180 −∠GCC′) = −
P2

x + P2
y − P2

a − P2
b − m2

2m
√

P2
a + P2

b

(35)

Since cos(180 −∠GCC′) = − cos∠GCC′, then (36):

cos(∠GCC′) =
P2

x + P2
y − P2

a − P2
b − m2

2m
√

P2
a + P2

b

(36)

By trigonometry properties, it is known that tan2(∠GCC′) + 1 = sec2(∠GCC′). Isolat-
ing for ∠GCC′, it is deduced that ∠GCC′ = arctan(±

√
sec2(∠GCC′)− 1). If

sec(∠GCC′) = 1
cos(∠GCC′) , using Equation (36), (37) is deduced:

∠GCC′ = arctan

±

√√√√√ 2m
√

P2
a + P2

b

P2
x + P2

y − P2
a − P2

b − m2

2

− 1

 (37)

This result generated two solutions for ∠GCC′. It would be necessary to validate
which of the two solutions is the correct one. For this, the answers will be validated using
the direct kinematics of the robot proposed in this research.

If the angles between the angle ∠GCJ are analyzed, (38):

θ1 + θ2 + θ3 +
π

6
= ∠GCC′ +∠C′CJ (38)

If ∠C′CJ = ∠CAH, and if θ3 is isolated, then (39):

θ3 = ∠GCC′ +∠CAH − θ1 − θ2 −
π

6
(39)

If ∠CAH = arctan
(

Pb
Pa

)
, substituting in Equation (39), it is concluded that (40):

θ3 = arctan
(

Pb
Pa

)
+ arctan

±

√√√√√ 2m
√

P2
a + P2

b

P2
x + P2

y − P2
a − P2

b − m2

2

− 1

− θ1 − θ2 −
π

6
(40)

Therefore, Equations (25), (31) and (40) describe the inverse kinematics of the robot.
To reach position (Px, Py), the inverse kinematics will give two possible results, which must
be validated using the direct kinematics to identify the correct angle configuration θ1, θ2,
and θ3.
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Solution for Pa and Pb

Figure 10 represents the geometry of a mobile platform; all the parameters Pa and Pb
are utilized. These parameters depend on the initial parameters Px and Py, selected from a
mathematical equation. Additionally, Pa and Pb could be contingent upon the orientation
angle ϕ, though it is essential to ascertain if the orientation of the robot truly impacts
its application. An analysis will be conducted to determine the values of Pa and Pb in
two scenarios: one where the orientation ϕ of the triangle ∆CDE is significant and another
where it is not. In the latter case, the solutions will be based on a criterion involving the
minimum distance from the active joints 1 and 3.

Solution for Pa and Pb where the orientation ϕ matters.

Figure 10. Mobile platform geometry considering ϕ.

It is assumed that Px and Py belong to the workspace. From Figure 10, if ∠GCC′ = π
6 + ϕ,

then the following Equations (41) and (42) can be deduced:

Px − Pa = m cos
(π

6
+ ϕ

)
(41)

Py − Pb = m cos
(π

6
+ ϕ

)
(42)

Isolating for Pa in (41) and Pb in Equation (42), the required values would be found to
have the complete inverse kinematics considering the orientation ϕ (43) and (44):

Pa = Px − m cos
(π

6
+ ϕ

)
(43)

Pb = Py − m sin
(π

6
+ ϕ

)
(44)

Solution for Pa and Pb where the orientation ϕ does not matter:
Given that (Px, Py) is the desired position of the robot, in this case, ϕ is not considered

in this analysis and the point (Pa, Pb) is taken using the following criterion: (Pa, Pb) is the
minimum possible distance from active joint 1; in other words, from point A according
to Figure 9. From this criterion, the problem needs a solution using optimization. Also,
by geometry, (Pa, Pb) has a workspace given by the two chains ĀB and B̄C that can be
defined by the following inequality (45):

P2
a + P2

b < 4l2 (45)

For this problem, a function to optimize and a restriction are needed. The optimization
function is the distance between the active joints 1 and 3, which will be denoted by r.
Putting it into an equation results in (46) as shown in Figure 11:

r2 = P2
a + P2

b (46)
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The only restriction that this case has is the distance between point G, where the
end-effector is located, and point C, where the active joint is located, so (46):

m2 = (Px − Pa)
2 + (Py − Pb)

2 (47)

Figure 11. Optimization of Pa and Pb.

From here, Pb is isolated, taking the positive square root of the process, and replaced
in (46). So, the function to optimize is (48):

r2 =

[
Py −

√
m2 − (Px − Pa)2

]2
+ P2

a (48)

The derivative of r with respect to Pa is taken, and (49) is deduced:

dr
dPa

=
PyPa + Px

√
m2 − (Px − Pa)2 − PyPx√

m2 − (Px − Pa)2

√
P2

a +
(

Py −
√

m2 − (Px − Pa)2
)2

(49)

Let dr
dPa

= 0, and the value of Pa that satisfies the equation is found by (50):

PyPa + Px

√
m2 − (Px − Pa)2 − PyPx = 0 (50)

By doing arithmetic operations, it follows that (51) occurs:

(P2
x + P2

y )P2
a + (−2PxP2

y − 2P3
x )Pa + (P2

x P2
y − P2

x m2 + P4
x ) = 0 (51)

In order to work in a more organized manner, it is stated that a = P2
x + P2

y ,
b = −2PxP2

y − 2P3
x , and c = P2

x P2
y − P2

x m2 + P4
x , so (52):

aP2
a + bPa + c = 0 (52)

By the quadratic equation, the roots of the equation are found by (53):

Pa =
−b ±

√
b2 − 4ac

2a
(53)

Since there are two results of Pa, there must be two points: (Pa1, Pb1) and (Pa2, Pb2).
The point Pb is determined with (54):

Pb = Py −
√

m2 − (Px − Pa)2 (54)
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When isolating for Pb, the positive square root was taken. Now, the negative square
will be taken and the same process will be performed, so Pb is now as shown in (55):

Pb = Py +
√

m2 − (Px − Pa)2 (55)

Consequently, the new function to optimize is the following (56):

r2 =

[
Py +

√
m2 − (Px − Pa)2

]2
+ P2

a (56)

If the derivative of dr
dPa

of Equation (56) is calculated, the derivative equals zero, and
Pb is isolated, the solution for Pa is exactly the same as Equation (51). Since there are two
solutions for Pa in that case, there are two more solutions: (Pa3, Pb3) and (Pa4, Pb4).

In brief, this proposed criterion will give four different answers obtained, as shown in
Table 2.

Table 2. Solutions for optimization of Pa and Pb.

Solution Pa Pb

#1 −b+
√

b2−4ac
2a Py −

√
m2 − (Px − Pa)2

#2 −b−
√

b2−4ac
2a Py −

√
m2 − (Px − Pa)2

#3 −b+
√

b2−4ac
2a Py +

√
m2 − (Px − Pa)2

#4 −b−
√

b2−4ac
2a Py +

√
m2 − (Px − Pa)2

To find out which of the four possible points to use, (46) is used to determine which
generates the smallest distance r. Realizing a rigorous analysis of finding the expression
that generates the smallest result, it is found that solution 2 generates the smallest distance
r. Then, to generate the smallest distance between joint 1 and joint 3, (57), and (58) must
be used:

Pa =
−b −

√
b2 − 4ac

2a
(57)

Pb = Py −
√

m2 − (Px − Pa)2 (58)

The summary of the most relevant equations for the development of functions in
Matlab is shown in Figure 12. In the inverse kinematics, an equation from the forward
kinematics is used to determine the correct value of θ3. And, a = P2

x + P2
y , b = −2PxP2

y −
2P3

x , and c = P2
x P2

y − P2
x m2 + P4

x .

Figure 12. Results of the kinematic model when the orientation is needed.
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4. Model Validation
4.1. Kinematics Model Implementations

Prior to employing direct and inverse kinematics, it is imperative that the desired
point (Px, Py) of the 3RRR symmetric planar robot belongs to the workspace defined by the
inequalities (8)–(10).

The inverse kinematics model, in the two approaches explained (considering the
orientation ϕ of the mobile platform ∆CDE), will invariably produce two possible solutions
for the angle configurations necessary to reach the desired point (Px, Py). The correct angle
selection is determined by inputting these angle values into the direct kinematics to verify
if the data obtained correspond to the primary values inputted in the inverse kinematics.
An algorithm is employed to ascertain the correct angles.

For example, let H = 136, Px = 136, Py = 16, and ϕ = π
4 . In this scenario, the values

of Px and Py satisfy the three inequalities of the workspace. Therefore, it is feasible for the
robot to reach that location. Subsequently, if Equations (1), (2) and (4) are obtained using
the aforementioned parameters, then l = 92, m = 13.28, and h = 23, respectively. With this
data, the equations describing the inverse kinematics are employed. If Equations (25), (31)
and (40) are utilized,

• If the orientation of the mobile platform ∆CDE is considered, then, employing
Equations (43) and (44) to determine Pa and Pb, the two solutions in the form (θ1, θ2, θ3)
for this case would be (−42.52◦, 87.78◦,−0.26◦) and (−42.52◦, 87.78◦,−147.52◦),
respectively.

There are two solutions, and to determine the correct one, the solutions are in-
putted into the direct kinematics to obtain the resulting values. For the first solution
(θ1, θ2, θ3) = (−42.52◦, 87.78◦,−0.26◦), the direct kinematics yield Px = 136, Py = 16,
and ϕ = 45◦. For the second solution (−42.52◦, 87.78◦,−147.52◦), the direct kinematics
yield Px = 136.61, Py = −9.47, and ϕ = −102.26◦. Therefore, the correct configuration of
angles is the first one.

• If the orientation of the mobile platform ∆CDE is not considered, then utilizing
Equations (57) and (58) to determine Pa and Pb, respectively, yields the two identical
solutions in the form (θ1, θ2, θ3), which are both (−41.52◦, 95.55◦,−77.77◦).

If the solution is validated in the direct kinematics, then the result would be Px = 136,
Py = 16, and ϕ = −23.29◦. Therefore, Px and Py are exactly as desired, but ϕ is different.
However, this discrepancy is inconsequential as the angle ϕ is deemed unconsidered for
the application.

To verify the proposed equations in the inverse kinematics and direct kinematics
models, functions were implemented in MATLAB. These functions were used to ensure
that the data from the inverse kinematics corresponded to those from the direct kinematics
and vice versa. The conducted tests are presented in Tables 3 and 4, where the parameter H
is varied across different values, thus causing the values of h, m, and l to adjust accordingly.
This illustrates how the direct and inverse equations are utilized to showcase the values
of certain desired points and their corresponding angles required to reach those positions.
Table 3 presents the results using the model where the orientation ϕ was considered,
and Table 4 demonstrates the outcomes using the model where ϕ was not considered
and an optimization process was executed.

Table 3. θ1, θ2, and θ3 obtained from certain parameters, and ϕ is considered.

H Px Py ϕ θ1 θ2 θ1

250 125.5 101 21 −5.08◦ 85.34◦ −58.76◦

200 100 102 20 10.34◦ 69.66◦ −60.00◦

140 70 70 25 8.49◦ 71.23◦ −54.73◦

160 60 40 50 −31.03◦ 117.84◦ −36.81◦

250 40 30 10 −44.14◦ 159.49◦ −105.34◦
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Table 3. Cont.

H Px Py ϕ θ1 θ2 θ1

190 49 25 −10 −44.34◦ 146.23◦ −111.89◦

100 35 50 −20 14.64◦ 88.92◦ −123.57◦

110 50 60 25 14.42◦ 70.69◦ −60.11◦

95 40 50 45 10.18◦ 78.03◦ −43.22◦

81 35 52 37 28.89◦ 52.58◦ −44.47◦

Table 4. θ1, θ2, and θ3 obtained from certain parameters, and ϕ is not considered.

H Px Py θ1 θ2 θ1

221 130 35 −31.35◦ 92.84◦ −76.42◦

181 120 35 −21.45◦ 75.42◦ −67.71◦

200 159 50 3.28◦ 28.34◦ −44.17.81◦

210 160 55 −1.81◦ 41.57◦ −50.78◦

150 61 90 22.36◦ 67.00◦ −63.50◦

135 61 82 24.29◦ 58.11◦ −59.05◦

100 40 49 6.70◦ 88.13◦ −74.06◦

107 40 51.7 6.01◦ 92.50◦ −76.25◦

93 65.9 35.6 7.53◦ 41.68◦ −50.84◦

351 100 100 −19.43◦ 128.87◦ −94.43◦

4.2. Analysis of the Optimization of (Pa, Pb)

Now for the optimization, it is crucial to understand the relationship between the
two mathematical models found, both considering and not considering the orientation ϕ
and how they can be compared. Basic statistical calculations will be employed to describe
Table 5, which will contain the desired values Px and Py of the end-effector along with the
two possible solutions. The standard deviation will be computed from each column of
the table containing the angles. Additionally, it is noted that H = 230 and ϕ = 45◦ are
constants. A total of 100 data points were collected to calculate the standard deviation.
The table below presents a subset of 20 points.

Table 5. θ1, θ2, and θ3 obtained from certain parameters, and ϕ is and is not considered (H = 230).

ϕ Orientated Not Orientated

Px Py ϕ θ1 θ2 θ3 θ1 θ2 θ3

85 11 45◦ −64.96◦ 127.35◦ −17.39◦ 59.44◦ 133.63◦ −96.81◦

73 11 45◦ −69.28◦ 135.55◦ −21.27◦ −62.21◦ 141.57◦ −100.78◦

60 23 45◦ −61.6◦ 143.59◦ −36.99o −52.94◦ 147.83◦ −103.91◦

60 41 45◦ −43.43◦ 139.82◦ −51.39◦ −36.82◦ 142.33◦ −101.16◦

60 100 45◦ 1.40◦ 111.22◦ −67.63◦ 3.20◦ 111.66◦ −85.83◦

90 100 45◦ −2.91◦ 96.225◦ −48.31◦ −0.76◦ 97.55◦ −78.77◦

131 100 45◦ 1.45◦ 65.78◦ −22.239◦ 2.79◦ 69.12◦ −64.56◦

165 90 45◦ 12.21◦ 26.64◦ 6.14◦ 10.28◦ 36.64◦ −48.32◦

165 72 45◦ −0.63◦ 41.51◦ 4.12◦ −1.43◦ 50.02◦ −55.01◦

165 22 45◦ −25.17◦ 56.84◦ 13.32◦ −26.04◦ 67.28◦ −63.64◦

115 12 45◦ −53.09◦ 105.34◦ −7.25◦ −50.24◦ 112.40◦ −86.20◦

115 51 45◦ −31.25◦ 100.29◦ −24.03◦ −28.38◦ 104.59◦ −82.29◦

115 92 45◦ −6.60◦ 83.94◦ −32.33◦ −4.60◦ 86.52◦ −73.26◦

117 90 45◦ −7.53◦ 83.47◦ −30.93◦ −5.53◦ 86.21◦ −73.10◦

93 135 45◦ 19.17◦ 69.16◦ −43.33◦ 20.39◦ 70.07◦ −65.03◦

130 130 45◦ 22.40◦ 40.77◦ −18.17◦ 22.97◦ 44.05◦ −52.02◦

130 62 45◦ −21.21◦ 84.88◦ −18.67◦ −19.21◦ 89.43◦ −74.71◦

91 11 45◦ −62.77◦ 123.15◦ −15.38◦ −57.89◦ 129.57◦ −94.78◦

115 140 45◦ 25.58◦ 46.31◦ −26.90◦ 26.45◦ 48.29◦ −54.14◦

70 71 45◦ −20.13◦ 122.57◦ −57.43◦ −16.57◦ 123.96◦ −91.98◦
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Then, if the standard deviation of each one of the columns that corresponds to an
angle is included, the results are shown in Table 6.

Table 6. Standard deviation of the columns of angles

Angle Name ϕ Orientation No Orientation

θ1 26.06 24.67
θ2 32.46 31.62
θ3 22.31 15.81

5. Discussion

In general, parallel robots offer several advantages over robotic arms, such as high
speed and the ability to move masses, although they often have limitations in terms of
their workspace and the complexity of kinematic equations [36]. This paper proposes a
solution that preserves the advantages of parallel robots while reducing the complexity of
kinematic equations by a vector analysis. The presented algorithm offers two alternatives:
the traditional one, which requires knowledge of the orientation phi of the end-effector and
is used in various applications as pick and place [37,38], or medical rehabilitation [39,40].
There is also an alternative that eliminates the need to know this orientation, using instead
an optimization method, useful in monitoring applications like conventional or thermal
cameras [41]. This means that the similarity law of planar 3RRR robots reduces the number
of singularities obtained in kinematic models. Most models use P, Q, and R as active
joints [3–12], which is the major difference from this kinematic model, which has active
joints in P, D, and A. This complexity in kinematic models leads to the use of polynomial
equations of degree eight for their solution. The workspace of this model is delimited by
the areas common to the circles generated in P, Q, and R with the sum of the links as the
radius. The main contribution of this work is the proposal of a new alternative for the
implementation of planar 3RRR robots. This proposal has (15)–(17) as direct kinematics
and (25), (31) and (40) as inverse kinematics. For applications where phi is not necessary,
the application of inverse kinematic systems is proposed.

6. Conclusions

The development of a mathematical model for robots of this type can be challenging,
with the aim of simplifying their behavior description. This research has led to the creation
of a mathematical model that achieves this goal, offering a simpler alternative to the
traditional approach. Despite being based on conventional methods, the mathematics
of this model is notably more user-friendly. Basic mathematical tools and optimization
techniques were employed in its development, aiming to streamline robot motion. An
initial optimization analysis yielded promising standard deviations, yet further evaluation
using more sophisticated statistical methods is warranted to fully assess the method’s
efficiency. Moreover, there is still much to explore, including the differential kinematics
model and dynamic considerations, to draw comprehensive conclusions regarding the
robot’s positioning and configuration. As a future endeavor, the aim is to develop the
dynamic model of this planar robot and conduct comparisons to assess its advantages and
disadvantages relative to traditional models.
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