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Abstract: To solve the problem of fault diagnosis for the key components of the CNC machine
feed system under the condition of variable speed conditions, an intelligent fault diagnosis method
based on multi-domain feature extraction and an ensemble learning model is proposed in this study.
First, various monitoring signals including vibration signals, noise signals, and current signals are
collected. Then, the monitoring signals are preprocessed and the time domain, frequency domain,
and time–frequency domain feature indices are extracted to construct a multi-dimensional mixed-
domain feature set. Finally, the feature set is entered into the constructed DoubleEnsemble–LightGBM
model to realize the fault diagnosis of the key components of the feed system. The experimental
results show that the model can achieve good diagnosis results under different working conditions
for both the widely used dataset and the feed system test bench dataset, and the average overall
accuracy is 91.07% and 98.06%, respectively. Compared with XGBoost and other advanced ensemble
learning models, this method demonstrates better accuracy. Therefore, the proposed method provides
technical support for the stable operation and intelligence of CNC machines.

Keywords: CNC machine feed system; variable speed condition; multi-sensor monitoring; ensemble
learning; intelligent fault diagnosis

1. Introduction

Among the failures in CNC machines, mechanical body failure accounts for about
57% and electrical system failure accounts for about 37.5%, according to statistics. CNC
system failure accounts for only 5.5%, and most of the current CNC machines have the
self-diagnosis function of electrical and CNC systems [1]. The failure of the mechanical
body is the key and most challenging point of the current research. With the continu-
ous development of data acquisition technology, information technology, and artificial
intelligence technology, fault diagnosis methods have also experienced the development
process from artificial experience diagnosis to intelligent diagnosis, and from single-sensor
diagnosis to multi-sensor fusion diagnosis. A CNC machine is a kind of efficient processing
equipment. The working stability and positioning accuracy of the feed system are very
important components of CNC machines that ensure processing quality and efficiency. The
mechanical transmission structure of the CNC machine feed system is mainly composed of
a servo motor, coupling, ball screw pair, rolling bearing, and guide rail pair.

Grether et al. [2] conducted a study on Siemens CNC machines. According to expert
knowledge in the field of fault diagnosis, an ontology-based knowledge representation
structure was proposed, and then the SimRank algorithm was used to calculate the similar-
ity between the fault phenomenon and the fault caused in the case base to realize the fault
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diagnosis of the CNC machine. However, the relationship between mechanical ontology
failures and critical components was not further analyzed.

Wang et al. [3] established the fault tree model of CNC machines and, on this basis,
a deep neural network model was constructed to classify and identify the features. The
average recognition rate of the back-propagation (BP) network after feature reduction was
found to be 86%. Kemal et al. [4] used Morlet wavelet analysis to extract the features of
vibration signals of CNC machines and then proposed a deep long short-term memory
(LSTM) model for fault classification, which effectively improves the classification accuracy.
However, the influence of the vibration signal fault diagnosis accuracy under the variable
speed working condition of CNC machines was not considered.

In recent years, many scholars have studied the fault diagnosis of key components of
the CNC machine feed system, such as roller bearings, ball screws, and so on.

Shan et al. [5] proposed to arrange multiple sensors at different positions of the ball
screw. The fault location of the ball screw was realized by carrying out weight distribution
on the fault sensitivity indices of different sensors and combining it with a convolutional
neural network (CNN). The effectiveness of the method was verified by testing it on the
ball screw bench; however, the model requires a larger sample dataset for training.

Zhang et al. [6] applied a new unsupervised learning method, generalized normalized
sparse filtering, to rolling bearing intelligence under complex working conditions. The
experiment proves that the method can obtain higher diagnosis accuracy with fewer
training samples. However, the validity of the algorithm was verified with the Western
Reserve University roller bearing dataset as well as the planetary gearbox test bed dataset,
and the accuracy of fault diagnosis under variable speed conditions was not analyzed.

Chen et al. [7] proposed a multi-scale feature alignment CNN for bearing fault diag-
nosis under different working conditions, which improves the displacement invariance
of the CNN. The effectiveness and advancement of the method were verified by using
the Nippon Seiko Kabushiki-gaisha (NSK) 40BR10 rolling bearing dataset and the rolling
bearing data set of CNC machines under three load conditions and four speed operating
conditions in experiments. Moslem et al. [8] proposed a domain adaptive method based on
deep learning for cross-domain ball screw fault diagnosis. A deep convolutional neural
network was used for feature extraction, and the maximum average difference metric
was proposed to measure and optimize the data distribution under different working
conditions. The effectiveness of the proposed method was proved by the experiment with
the monitoring data of the ball screw under real working conditions. Pandhare et al. [9]
collected the vibration acceleration signals at five different positions on the ball screw test
bench and proposed a data domain-adaptive fault diagnosis method based on the CNN,
which minimizes the maximum average difference of high-level representations between
the source domain data and the target domain data, and the average diagnostic accuracy of
the model reached 98.25%, which provides a kind of diagnostic method for diagnosing the
faults of the key components of the feed system. However, the methods proposed in the
literature [7–9] require larger sample datasets.

Jin et al. [10] proposed an end-to-end adaptive anti-noise neural network framework
(AAnNet) without manual feature selection and denoising processing. The convolutional
feature extraction part of the network takes the exponential linear unit as the activation
function, and the extracted features are learned and classified by a gated recurrent neural
network improved by an attention mechanism. The accuracy of bearing fault diagnosis
under the conditions of noise and variable load was effectively improved. However, the
validity of the algorithm was verified with the Western Reserve University roller bearing
dataset as well as the bearing failure test bed bench dataset, and the accuracy of fault
diagnosis under variable speed conditions was not analyzed.

Patel et al. [11] modeled the mixed fault, analyzed its vibration signal, and then
recognized the mixed fault pattern. Abbasion et al. [12] applied the combination of wavelet
packet decomposition and support vector machine to the mixed fault diagnosis of bearings.
Lei et al. [13] proposed a classification method based on adaptive fuzzy neural inference
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to diagnose the composite faults of electric locomotives. Delgado et al. [14] extracted
fault features from the motor current signal and vibration signal and used partial least
squares to reduce the dimensionality of the extracted features and construct feature vectors.
Finally, they used a support vector machine (SVM) model to achieve the diagnosis of motor
inter-turn short-circuit fault. The authors of [11–14] provided effective methods and ideas
for nonlinear feature extraction and fault diagnosis of rolling bearings.

Wang et al. [15] used a multi-task shared classifier based on incremental learning
to achieve better fault diagnosis of support bearings under various working conditions.
Li et al. [16] proposed a method based on an attention mechanism to solve the problem
of low accuracy and poor stability of the model caused by unbalanced datasets. The ex-
perimental results of their study show that the method has a good diagnosis effect under
unbalanced data conditions. Xu et al. [17] used an improved method of combining a
multi-scale convolutional neural network with a feature attention mechanism to improve
the generalization ability of the model. Wu et al. [18] adopted a fault diagnosis method
combining domain antagonistic neural networks and attention mechanisms. The experi-
mental results of their study show that this method has great potential in the cross-domain
diagnosis of rolling bearings. Huang et al. [19] proposed a method to solve the problem of
data distribution deviation in the fault diagnosis of support-bearing migration. The experi-
mental results of their study show that the method can support bearing migration fault
diagnosis suitable for different working conditions. The authors of [15–19] provided effec-
tive methods and models for bearing fault diagnosis under different operating conditions.

Zhang et al. [20] proposed an instance-based transfer learning method to solve the
problem of insufficient labeled samples in the application of ball screw fault diagnosis. The
authors of [20] provided effective methods and models for ball screw fault diagnosis under
complex operating conditions.

Based on a comprehensive analysis of the research status of fault diagnosis of key
components of the CNC machine feed system, this study’s primary contributions can be
summarized as follows:

1. To solve the problem of the fault diagnosis of key components of the CNC machine
feed system under variable speed conditions and the issue of too few fault samples
being available in practical work, a fault diagnosis method based on multi-monitoring
signals, multi-domain feature extraction, and the DoubleEnsemble–LightGBM inte-
grated learning model is proposed in this study. The experimental results show that
this method can realize the fault diagnosis of key components of the feed system with
fewer data samples, and the method achieves a better diagnosis effect than Xgboost
and other advanced integrated learning models.

2. Various monitoring signals including vibration signals, noise signals, and current
signals are collected. The monitoring signals are preprocessed by using singularity
elimination, trend item elimination, and wavelet threshold denoising. Next, the
time domain, frequency–domain feature indices, and IMF information entropy of
the monitoring signals are extracted. Finally, the multi-dimensional mixed-domain
feature set is constructed.

3. Based on the LightGBM model, the DoubleEnsemble–LightGBM fault diagnosis
model is constructed by introducing the sample re-weighting mechanism based on
learning trajectory and the feature selection mechanism based on shuffling technology,
which realizes the intelligent fault diagnosis of the CNC machine feed system.

The remainder of this article is structured as follows: The main theories and approaches
behind the proposed model are introduced in Section 2. The proposed method is explained
in Section 3. The experimental findings are summarized in Section 4. The pertinent
conclusions are summarized in Section 5.
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2. Relevant Theories
2.1. CEEMDAN Decomposition and IMF Information Entropy
2.1.1. CEEMDAN Decomposition

The CEEMDAN (Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise) algorithm overcomes the mode mixing problem of EMD by adding adaptive white
noise. This model can effectively reduce the residual white noise in the IMF components
obtained after decomposition [21].

The specific process of CEEMDAN decomposition is as follows:
1. Add k times of random Gaussian white noise with a mean value of 0 into the

signal x(t) to be decomposed; next, construct the sequence xi(t) of the k times experiment
according to Formula (1): i = 1, 2, · · ·, K

xi(t) = x(t) + ε0δi(t) (1)

where δi(t) is the random Gaussian white noise added in the ith experiment; ε0 is the
weight coefficient of the Gaussian white noise.

2. Carry out EMD decomposition on the sequence, xi(t), by taking the average value
of the first IMF component obtained from the k times the experiment as the first IMF
component obtained from the CEEMDAN decomposition, and refer to Formula (2) for
calculation. Refer to Formula (3) for the calculation of the residual signal after the first
decomposition.

IMF1(t) =
1
K

K

∑
i=1

IMF1
i(t) (2)

r1(t) = x(t)− IMF1(t) (3)

3. A new sequence r1(t) + ε1E1(δi(t)) is obtained by adding k times specific noise r1(t).
Next, the EMD decomposition is carried out by calculating the second IMF component
obtained by using the CEEMDAN decomposition according to Formula (4),

IMF2(t) =
1
K

K

∑
i=1

E1(r1(t) + ε1E1(δi(t))) (4)

where E1(·) is the first IMF component obtained after EMD decomposition; ε1 is the weight
coefficient for adding noise to r1(t).

4. Calculate a margin signal rm(t)m = 2, · · ·, M according to Formula (5), and obtain
the m+1th IMF component of the CEEMDAN in the same way as step 3. Refer to Formula (6)
for calculation.

rm(t) = rm−1(t)− IMFm(t) (5)

IMFm+1(t) =
1
K

K

∑
i=1

E1(rm(t) + εmEm(δi(t))) (6)

The formula Em(·) represents the mth IMF component obtained after the EMD decom-
position of a certain sequence; εm is the weight coefficient for adding noise rm(t).

5. Repeat step 4 to calculate other IMF components of the CEEMDAN decomposition
until the number of extreme points rm(t) is less than two. Eventually, the signal x(t) is
decomposed into m IMF components and a residual component R(t) is obtained.

R(t) = x(t)−
M

∑
m=1

IMFm(t) (7)
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2.1.2. False Modal Component Rejection

The IMF components obtained by using the CEEMDAN decomposition may contain
false modal components, and the spurious modal components need to be rejected. The
correlation coefficient can describe the degree of correlation between the IMF component
and the original signal. The closer the correlation coefficient is to 1, the more useful the
information contained by the component, and, thus, the stronger the correlation with the
original signal. Therefore, the false modal components obtained after the CEEMDAN
decomposition can be adaptively eliminated through the correlation coefficient.

The correlation coefficient Cm between the mth IMF component and the original signal
is calculated as follows:

Cm =

N
∑

i=1
(xi − x)(yi − y)√

N
∑

i=1
(xi − x)2

√
N
∑

i=1
(yi − y)2

(8)

where xi is the ith element value in the original signal sequence; x is the average value of
the original signal sequence; yi is the value of the ith element in the mth IMF component; y
is the average value of the mth IMF component; and N is the signal sequence length.

Albert et al. [22] developed a formula for calculating the adaptive threshold of the
correlation coefficient, as shown in Equation (9). If Cm < µ, then the mth IMF component
will be rejected.

µ =
max(Cm)

10×max(Cm)− 3
, m = 1, 2, · · ·, M (9)

In the formula, M is the number of IMF components decomposed from the original
signal and max(Cm) is the maximum correlation coefficient value.

2.1.3. Calculation of IMF Information Entropy

In the field of fault diagnosis, entropy can effectively reflect the complexity of the signal
and describe its nonlinear characteristics. It is often difficult to describe the signal charac-
teristics of a single entropy value; therefore, multiple information entropy eigenvalues are
extracted simultaneously. It is assumed that K effective IMF components are obtained after
the signal x(t) is decomposed by using CEEMDAN, denoted as ui(t), i = 1, 2, · · ·, k.

1. Energy entropy of IMF
Energy entropy is an index that can characterize the energy complexity of a signal.

The IMF energy entropy is calculated as follows:
First, the energy value of each effective IMF component is calculated by Equation (10):

Ei =
∫ +∞

−∞
|ui(t)|2dt, i = 1, 2, · · ·, k (10)

Then, the total energy value is calculated by Equation (11):

E =
k

∑
i=1

Ei (11)

Finally, the IMF energy entropy is calculated by Equation (12):

HE = −
k

∑
i=1

hilghi (12)

where hi = Ei/E represents the proportion of the energy value of the ith IMF component to
the total energy value.

2. Power spectrum entropy of IMF
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Power spectrum entropy can reflect the change in signal energy in the frequency
domain. The IMF power spectrum entropy is calculated as follows: First, each effective IMF
component ui(t) is Fourier-transformed to obtain ui(ω), i = 1, 2, · · ·, k. Then, the power
spectrum of each effective IMF component is calculated by Equation (13):

Si =
1

2πN
|ui(ω)|2 (13)

Finally, the IMF power spectrum entropy is calculated by Equation (14):

HF = −
k

∑
i=1

pilgpi (14)

where pi = Si/
k
∑

i=1
Si represents the proportion of the power spectrum of the ith IMF

component to the total power spectrum.
3. The singular spectral entropy of IMF
Singular spectral entropy can quantitatively describe the complex state characteristics

of time series. The calculation of the IMF singular spectral entropy is as follows:
First, each IMF component is formed into a characteristic matrix A:

A = [u1(t), · · ·, uk(t)]
T (15)

Then, the singular values λi, i = 1, 2, · · ·, k of the characteristic matrix A are computed.
Finally, the IMF singular spectral entropy is calculated by Equation (16):

HS = −
k

∑
i=1

qilgqi (16)

where qi = λi/
k
∑

i=1
λi represents the proportion of the ith singular value to the sum of all

singular values.

2.2. LightGBM Algorithm

LightGBM [23] (Light Gradient Boosting Machine) is a lightweight gradient lifting
model. It is an optimized framework based on the classical ensemble learning model
GBDT [24]. The principle of GBDT is shown in Figure 1.
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The basic idea is to use the decision tree as a weak classifier. A plurality of weak
classifiers are iteratively trained through a gradient lifting strategy, and all the weak
classifiers are combined in a linear addition mode to form a strong classifier with a better
classification effect.

Based on the GBDT model, LightGBM is optimized as follows:
(1) The gradient-based one-sided sampling (GOSS) algorithm is used to compress the

training data samples without loss of accuracy, and its basic idea is to discard some samples
that are not helpful to the calculation of information gain. Then, the data calculation
amount can be reduced, and the operation cost is greatly reduced.

(2) The Exclusive Feature Bundling (EFB) algorithm is used to merge the mutually
exclusive features in high-dimensional data into one feature, which can effectively reduce
the feature dimension and reduce the computational load.

(3) The histogram algorithm is used to improve the node segmentation strategy of the
decision tree. The basic idea is to discretize the continuous floating-point eigenvalues into K
integers and construct a histogram with width K. This can greatly reduce the computational
time and memory consumption, and it has little impact on the overall classification accuracy
of the model under the framework of gradient boosting. At the same time, it has the effect
of regularization, which can prevent the model from overfitting and enhance the stability
and robustness of the model.

(4) The decision tree growth strategy used by GBDT is grow-by-layer, as shown in
Figure 2, which treats all leaf nodes in the same layer indiscriminately and is computa-
tionally very inefficient. LightGBM instead uses a grow-by-leaf strategy, the principle of
which is shown in Figure 3. This strategy identifies the leaf node with the largest splitting
gain from all current leaf nodes to split each time, and so on. With the same number of
splits, the grow-by-leaf strategy can reduce errors and achieve better accuracy. However,
this approach may result in deeper decision trees, leading to model overfitting; therefore,
LightGBM adds another maximum depth limit to the grow-by-leaf strategy.
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In summary, LightGBM not only inherits the advantages of GBDT but also greatly
improves the training efficiency and memory consumption. Compared with other inte-
grated learning models, this model more easily addresses large-scale data and requires low
computing power. Therefore, LightGBM is the basic model for mechanical fault diagnosis
of CNC machine feed systems.

2.3. DoubleEnsemble Algorithm

DoubleEnsemble is a new ensemble algorithm framework that can be used with
various machine learning models. It includes two key technologies, one of which is the
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sample re-weighting technology based on learning trajectory, which can give different
weights to different samples in the model training process, thus reducing the interference of
simple samples and noise samples and enhancing the training of key samples. The feature
selection technology based on the shuffling mechanism can help the model automatically
screen sensitive features in the training process, thus effectively improving the model’s
accuracy and reducing the risk of overfitting.

The algorithm flow (pseudocode) of DoubleEnsemble is shown in Algorithm 1.

Algorithm 1: DoubleEnsemble

1: Input: Training data (X, y), number of sub-models K, and sub-model weights a = (a1, · · · , aK)
2: Set the initial sample weights w1 = (1, · · · · · · , 1)
3: Select initial feature set f1 = [F]
4: for k = 1 to K:
5: Mk←Train sub-model (X, y, wk, fk)
6: Retrieve the loss curve Ck of the sub-model Mk and the loss Lk of the current integrated

model Mk

7: Update sample weights based on the sample re-weighting technique wk+1←SR (Ck, Lk, K)
8: Update the feature set based on the feature selection technique fk+1←FS (Mk, X, y)
9: Return: Integrated model MK

(·)

The algorithm sequentially trains K machine learning sub-models, denoted as M1,· · · ,MK;
all sub-models are weighted and integrated according to Formula (17), and the integrated
model MK

(·) is taken as the final output of the algorithm,

MK
(·) = 1

K

K

∑
i=1

aiMi(·) (17)

where ai is the weight coefficient of the ith sub-model Mi.
The training data comprise a feature matrix X and a label vector y. X = [x1, · · ·, xN ]

T ∈
RN×F, where xi represents the feature set of the ith sample, N is the total number of training
samples, and F is the dimension of the feature set. y = (y1, · · ·, yN), yi represents the fault
label of the ith sample. For the first sub-model M1, the algorithm will use all the feature
indices in the feature set of the training data for training, i.e., f1 = [F]; the initial sample
weights are set to w1 = (1,· · · ,1). The subsequent sub-models are trained based on the
newly selected feature set fk ⊆ [F] and the updated sample weights wk = (wk

1, · · ·, wk
N),

where wk and fk are obtained through sample re-weighting based on learning trajectory
and feature selection based on the shuffling mechanism algorithm, respectively.

3. Model: Multi-Domain Feature and DoubleEnsemble–LightGBM

The CNC machine feed system is a complex system with multi-mechanical compo-
nents, and it is difficult to describe its fault state by the characteristics in a single domain.
To reflect the operational status of the feed system more comprehensively, the time domain
characteristic indices, the frequency domain characteristic indices, and the time–frequency
domain characteristic indices of various monitoring signals including vibration signals,
noise signals, and current signals are first extracted, and a multi-dimensional mixed domain
feature set, as shown in Figure 4, is constructed.
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In addition, considering that the total dimension of the multi-dimensional mixed
domain feature set reaches hundreds of dimensions, it may contain invalid features, which
will impair the model training process. In addition, there may be simple samples and
useless high-noise samples in the collected training samples, which leads to poor training
performance of the model and overfitting. Therefore, the fault diagnosis model is further
optimized and multiple LightGBM classification sub-models are trained and integrated
through the DoubleEnsemble algorithm. Finally, the DoubleEnsemble–LightGBM model
is constructed, as shown in Figure 5, for intelligent identification of the fault mode of the
CNC machine feed system.
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The wk and fk parameters in the model are obtained through sample re-weighting
using learning trajectory and feature selection based on the shuffling mechanism algorithm,
respectively.

(1) Sample re-weighting based on the learning trajectory algorithm
The algorithm flow (pseudocode) of sample re-weighting based on the learning trajec-

tory is shown in Algorithm 2. The algorithm aims to reduce the training weight of simple
samples (samples that are easy to be correctly classified by the model) and noisy samples
(samples that are easy to be overwhelmed with information) so that the model can focus on
learning difficult samples (samples that are challenging for the model to correctly classify)
during training, and thus improve the classification performance of the model.

Algorithm 2: Sample re-weighting based on learning trajectory

1: Input: the loss curve Ck of the sub-model Mk, the index value K of the loss Lk and Mk of the
current integrated model Mk

2: Parameters: coefficient α1 and α2, number of sample subsets B, attenuation factor γ

3: Calculate the value h of each sample according to Formula (18)
4: Divide the sample into B sample subsets based on the values h
5: Calculate the sample weights wk+1 = (wk+1

1 , · · ·, wk+1
N ) according to Formula (19)

6: Return: Sample weight wk+1



Machines 2024, 12, 305 10 of 24

The algorithm uses the loss curve Ck of the current sub-model Mk(k = 1, · · ·, K− 1)
during training and the loss Lk of the current ensemble model Mk to update the sample
weights wk+1 to be used in the next sub-model Mk+1 training. It is assumed that the sub-
model Mk has been trained for T iterations (for the LightGBM sub-model, each iteration
will build a new decision tree); then, Ck ∈ RN×T is a matrix composed of elements ci,t,
which are the errors of the ith sample after the tth iteration of the sub-model Mk. Lk ∈ RN×1

is the vector of elements li, which is the error of the current ensemble model Mk on the ith
sample (i.e., the difference between Mk

(xi) and yi). The specific measures are as follows:
First, the value of h for each sample is calculated based on Ck and Lk, as shown in

Equation (18), and the calculation is performed element by element. For robustness consider-

ations, Ck and Lk are normalized in order, respectively, C̃k = norm(Ck), −̃Lk = norm(−Lk)
(inverse normalization), norm(·) is the rank normalization function,

h = α1h1 + α2h2 = α1(−̃Lk) + α2norm(
Ck

end

Ck
start

) (18)

where h ∈ RN×1 is the vector consisting of the values h of all samples. Ck
start, Ck

end ∈ RN×1

is the average loss of the first 10% of T iterations and the last 10% of T iterations of C̃k,
respectively, representing the loss of the sub-model Mk at the beginning and end of training.
α1 and α2 are constant coefficients, and their function is to adjust the calculated proportion
of h1 and h2, which is generally taken as α1 = α2 = 1.

Then, the algorithm divides all the samples into B subsets by sorting the h values of
the samples; the samples in the same subset are assigned the same weight, and the samples
in different subsets are assigned different weights. Assuming that the ith sample is divided
into the bth subset, its weight wi is calculated as shown in Equation (19):

wi =
1

γhb + 0.1
(19)

where hb is the average value of h values of all samples in the bth subset. γ is the attenuation
factor, whose function is to make the distribution of sample weights more uniform, and γ
is generally taken at 0.5.

In general, the value h1 of simple samples is large and the value h2 is moderate;
moreover, the value h1 of noise samples is large and the value h2 is small. However,
the h1 and h2 values of difficult samples are small. Therefore, through the calculation
of Equations (18) and (19), the difficult sample will obtain a larger training weight. The
training weights of simple samples and noise samples are relatively small.

(2) Feature selection based on the shuffling mechanism algorithm
The algorithm flow (pseudocode) of feature selection based on the shuffling mecha-

nism is shown in Algorithm 3. The algorithm calculates a value of g for each feature index
in the current feature set fk. The value is used to measure the contribution of the feature to
the current integration model Mk (it also represents the importance of the feature; a larger
value of g indicates that the feature is more important to the training of the model).

The value g is obtained by the feature shuffling mechanism as follows:
For feature f, its arrangement in the training dataset X is disrupted to obtain a new

dataset X f (in which the role of feature f has been invalidated), and the integrated model
loss Lk

f when feature f is invalidated is computed by Equation (20):

Lk
f = loss(Mk

(X f ), y) (20)

Then, the value g of feature f is calculated by Equation (21):

g f = mean(Lk
f − Lk)/std(Lk

f − Lk) (21)
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where Lk is the normal integrated model loss, mean(·) is the mean function, and std(·) is
the standard deviation function.

After calculating the value g of each feature by using the above method, all the features
can be sorted according to the size of the value g from high to low importance. Finally,
according to the preset feature sampling ratio, the top r% of features are retained to form the
filtered sensitive feature set fk+1, which is used for the training of the next sub-model Mk+1.

Algorithm 3: Feature selection based on the shuffling mechanism

1: Input: Current integrated model Mk and training data (X, y)
2: Parameter: feature sampling ratio r%
3: Lk = loss(Mk

(X), y)
4: For the index value f of each feature in fk

5: The f th column feature of X f←X is disrupted

6: Lk
f = loss(Mk

(X f ), y)

7: g f = mean(Lk
f − Lk)/std(Lk

f − Lk
)

8: Sort all feature indicators in the feature set fk in the descending order of their values g
9: Select the top r% of ranked features as sensitive features to obtain the sensitive feature set
fk+1 = r%fk

10: Return: fk+1

Compared with other feature selection methods, feature selection based on the shuf-
fling mechanism has the following advantages: firstly, this method takes into account the
contribution of the feature to the model as a whole when filtering the features, instead of
only considering the nature of the feature itself, such as the feature data relevance. Secondly,
compared with the direct removal of a feature, this approach eliminates the contribution
of a feature by perturbing the arrangement of a column of features in the dataset, and its
contribution can be evaluated without re-training the model, which is more efficient in
terms of computational efficiency. Moreover, this approach does not change the overall
distribution of the model training data, which is more reasonable than the direct zeroing
of features.

Li et al. [25] proposed a multi-scale weighted ensemble model based on LightGBM
for fault diagnosis without requiring cross-domain data. In the MWE–LightGBM model,
multiple LightGBMs were considered as multiple weak learners and integrated as strong
learners for classification. Moreover, the MWE–LightGBM model adopted multi-scale
sliding windows to achieve data augmentation. Specifically, sliding windows with different
scales are employed to subsample the raw samples and construct multiple subsample
datasets. The focus of the model is on fault diagnosis with few samples, which can reduce
the number of required feature signals and multi-domain features; moreover, it can also
provide another method of conducting the fault diagnosis of key components of the CMC
machine feed system.

4. Experimental Results
4.1. Data Set Description
4.1.1. University of Ottawa Variable Speed Bearing Failure Widely Used Dataset

The vibration data of ER16K deep groove ball bearings under different speed con-
ditions were collected from the variable speed bearing fault dataset of the University of
Ottawa in Canada, and the sampling frequency was 200 kHz. The fault types of bearings
include normal, inner ring fault, outer ring fault, rolling element fault, and compound
fault of inner and outer rings and rolling elements. Speed changes include speed up (from
846 r/min to 1428 r/min), speed down (from 1734 r/min to 822 r/min), speed up first and
then speed down (from 882 r/minute to 1518 r/minute and then to 1260 r/minute), and
first decrease and then increase (from 1452 r/min to 888 r/min and then to 1236 r/min).
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Firstly, five kinds of original data collected from the dataset under four speed condi-
tions (speed up, speed down, speed up and then speed down, and speed down and then
speed up) were divided into samples, and each sample contained 2000 data points. Since
the key components of the CNC machine feed system do not have a large number of fault
samples in actual operation, we used a smaller number of samples to simulate the reality.
Initially, the number of training samples was set at 480 and the number of test samples was
set at 120. Then, the obtained samples were divided into the training set and the test set in
a ratio of 8:2. The sample distribution of the dataset and the corresponding relationship of
the fault labels are shown in Table 1.

Table 1. Sample distribution of the widely used dataset and corresponding relationship of fault labels.

Label Category Number of Training
Set Samples

Number of Test
Set Samples

1 Normal 480 120
2 Bearing inner ring fault 480 120
3 Bearing ball fault 480 120
4 Bearing outer ring fault 480 120
5 Bearing compound fault 480 120

4.1.2. Dataset of Feed System Test Bench

Based on the transmission principle and mechanical structure of the X-direction feed
system of the vertical machining center, a feed system test bench made of heavy steel, as
shown in Figure 6, was built. The model and specification of the key parts used in the test
are the same as those of the vertical machining center. The model of the ball screw pair is
Taiwan Shangyin R4010FSI, the model of the rolling bearing is Japan NSK angular contact
ball bearing 30TAC62B, the guide rail pair is a roller-type rail with good rigidity, and the
driving motor is a three-phase AC servo motor.
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The model and parameters of the data acquisition equipment used in the experiment
are shown in Table 2. Among them, the data acquisition instrument uses a high-precision
distributed acquisition instrument developed by the Beijing Dongfang Vibration Research
Institute. The device has Ethernet and WiFi interfaces, supports multiple synchronous
cascades, and can perform data acquisition using DASP software. The used sensors are
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three-directional vibration acceleration sensors, noise sensors produced by the Beijing
Dongfang Vibration Research Institute (Beijing, China), and open-loop Hall current sensors
produced by the Beijing Senshe Electronics Co., Ltd (Beijing, China).

Table 2. Model and parameters of data acquisition instrument and sensor.

Device Name Equipment Model Device Parameters

Data acquisition instrument INV3062C Sampling frequency range: 0.4~216 kHz; resolution:
24 bits; number of channels: 8

Three-direction vibration sensor INV9832 Frequency range: 1–10 kHz; sensitivity: 100 mV/G

Noise sensor INV9206 Frequency range: 20 Hz~20 kHz; sensitivity: 50 mV/Pa

Hall current sensor CHK-100R1 Frequency range: from 0 to 20 kHz

According to the historical fault statistics of the CNC machine feed system, the fault
frequency of the rolling bearing is the highest, accounting for 42% of all faults, and the fault
frequency of the ball screw pair is the second highest, accounting for 26% [26]. Therefore,
to collect data on common fault types of rolling bearings and ball screw pairs, tools such
as files and electric grinding needles were used to produce different degrees of wear or
damage scars on the inner and outer rings of bearings and the raceways of screws, and the
bearing balls were polished with sandpaper to produce wear faults. Figure 7 shows the
tools used and some of the manufactured fault parts.
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Figure 7. Tools for preparation of defective parts and some defective parts. (a) Tool used; (b) worn
lead screw; (c) bearing outer ring failure; (d) bearing inner ring failure; and (e) bearing ball failure.

In this experiment, the normal data and fault data of three common feeding conditions
were collected, respectively. The feed rates of cases 1 to 3 were set as 1000 mm/min,
2000 mm/min, and 3000 mm/min, respectively. Fault types included bearing inner ring
fault, bearing outer ring fault, bearing ball fault, screw wear, screw bending, screw wear
and bearing inner ring composite fault, screw wear and bearing outer ring composite fault,
and screw wear and bearing ball composite fault. The collected signals included vibration
signals, noise signals, and current signals. The sampling frequency was 10 kHz, and the
sampling time for each fault was 120 s. The fault dataset divided by 2000 data points per
sample is shown in Table 3.
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Table 3. Self-built fault dataset of feed system test bench.

Type of Fault
Number of Samples

Condition 1 Condition 2 Condition 3

Normal 600 600 600
Bearing inner ring fault 600 600 600
Bearing outer ring fault 600 600 600

Bearing ball fault 600 600 600
Worn lead screw 600 600 600
Screw bending 600 600 600

Screw wear and bearing inner
ring composite fault 600 600 600

Screw wear and bearing outer
ring composite fault 600 600 600

Screw wear and bearing ball
composite fault 600 600 600

4.2. Signal Preprocessing

(1) Elimination of singular point
By setting the upper and lower threshold limits for the signal, the abnormal values

outside the threshold range are eliminated. The empirical formula for the upper and lower
limits of the threshold is the signal mean ± 4 signal standard deviations. Taking the noise
sensor signal shown in Figure 8a as an example, the calculated upper and lower threshold
values are 5 and −5, respectively. The signal after removing the singular points is shown in
Figure 8b.
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Figure 8. Comparison before and after singular point removal of the noise signal. (a) Noise signal
before singular point removal; (b) Noise signal after singular point removal.

(2) Elimination of trend term
To ensure the accuracy of the original data as much as possible, the signal trend line

was fitted by using the least squares method and subtracted. Figure 9a,b show the compari-
son of the X-direction vibration signals before and after the removal of the trend item.

(3) Wavelet threshold denoising
Wavelet threshold denoising is a nonlinear denoising method based on wavelet trans-

form. This method is very suitable for processing non-stationary fault signals of CNC
machines. In industrial signals, the fault signal mostly exists in the low-frequency com-
ponent of the signal, while the noise is usually a high-frequency signal with a small
amplitude [27]. The process of wavelet threshold denoising is shown in Figure 10.
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Figure 9. Comparison of vibration signal before and after detrending. (a) Vibration signal before
elimination of trend term; (b) vibration signal after elimination of trend term.
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Figure 10. The process of wavelet thresholding denoising.

Sym5 is selected as the wavelet base for signal denoising, and the original signal is
decomposed by using a three-layer wavelet. Then, the soft and hard threshold compromise
method is used for noise reduction, and the expression of the threshold function is shown
as Formula (22):

σλ(ω) =

{
sgn(ω)·(|ω| − αλ), |ω| ≥ λ

0, |ω| < λ
(22)

where ω is the wavelet coefficient; λ is the threshold; and α is the scaling factor. The value
of α in this study is 0.5.

Figure 11 shows the comparison between the original vibration signal and the signal
after the application of the above-mentioned wavelet threshold denoising method. It can be
observed that this method effectively eliminates the high-frequency noise while retaining
the main characteristic information of the original signal, and the denoising effect is good.
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4.3. Signal Feature Extraction

(1) Time domain feature extraction
To reflect the overall situation of the signal and reflect the sudden change in the signal,

13 time domain characteristic indices with dimension and non-dimension were extracted,
as shown in Table 4. In the table, {xi} is the discrete signal and i = 1, 2, · · ·, N, N is the
number of sampling points.

Table 4. Time domain characteristic indices and their calculation formula.

Dimensional Characteristic Index Calculation Formula Dimensionless
Characteristic Index Calculation Formula

Maximum value Xmax = max{xi} Peak factor Cf =
Xpk
Xrms

Peak value Xpk = max{xi} −min{xi} Pulse factor I = Xpk
X′

Average amplitude X = 1
N

N
∑

i=1
xi

Waveform factor Cs =
Xrms
X′

Absolute mean X′ = 1
N

N
∑

i=1
|xi| Margin factor Ce =

Xpk
Xr

Square root magnitude Xr = ( 1
N

N
∑

i=1

√
|xi|)

2

Kurtosis
K =

1
N

N
∑

i=1
(xi−X)

4

( 1
N

N
∑

i=1
(xi−X)

2
)

2 − 3
Variance σ2 = 1

N−1

N
∑

i=1
(xi − X)

2

Root mean square value Xrms =

√
1
N

N
∑

i=1
xi

2 Skewness
S =

1
N

N
∑

i=1
(xi−X)

3

( 1
N

N
∑

i=1
(xi−X)

2
)

3/2

(2) Feature extraction in the frequency domain
Spectrum analysis can reflect the distribution and change in frequency components

in the signal and provide effective fault information in the signal. The three extracted
frequency domain characteristic indices and their calculations are shown in Table 5.

Table 5. Frequency domain characteristic indices and their calculation formula.

Frequency Domain Characteristic Index Calculation Formula

Center of gravity frequency
Xfc =

N
∑

i=1
fi F( fi)

N
∑

i=1
F( fi)

Mean square frequency
Xmsf =

N
∑

i=1
fi

2 F( fi)

N
∑

i=1
F( fi)

Frequency variance
Xvf =

N
∑

i=1
( fi−Xfc)

2 F( fi)

N
∑

i=1
F( fi)

(3) Feature extraction in the time-frequency domain
The CEEMDAN algorithm was used to decompose the preprocessed signal to extract

and select the effective IMF components, and then the information entropy values of IMF
components, such as energy, power spectrum, and singular spectrum, were calculated.
Taking the X-direction vibration signal of the bearing ball wear fault as an example, the
result of CEEMDAN decomposition is shown in Figure 12. The correlation coefficient
between each IMF component and the original signal is shown in Table 6, and the correla-
tion coefficient threshold can be calculated as 0.178 according to Formula (9). Therefore,
IMF 1, IMF 9, and IMF 10 were removed, and then the seven effective IMF components,
IMF 2~IMF8, were used to compute three information entropies containing energy entropy,
power spectrum entropy, and singularity spectrum entropy.
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Table 6. The correlation coefficient between the IMF component and the original signal.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

0.150 0.239 0.200 0.286 0.185 0.220 0.611 0.684 0.132 0.009

Finally, the multi-dimensional mixed domain feature set was constructed by stitching
the above 13 time domain characteristic indices, three frequency domain characteristic
indices, and three IMF information entropies, totaling 19 features, into feature vectors.

4.4. Experimental Environment, Hyper-Parameter Setting, and Model Evaluation Index

(1) Experimental environment configuration
The experiment uses a self-configured server with an Intel core i9 11900k CPU, 128 GB

running memory, and a 64-bit Windows 10 operating system. The development environ-
ment is LightGBM 3.2.1.99, Python 3.8.

(2) Hyperparameter setting
The training hyperparameters of the DoubleEnsemble–LightGBM fault diagnosis

model are set as follows:
LightGBM key hyperparameters: the number of iterations (num_iterations) is 100, the

learning_rate is 0.14, the maximum depth of the decision tree (Max_depth) is 7, the number
of leaf nodes (num_leaves) is 21, and the minimum sample number of leaf nodes (min_data
_in_leaf) is 30.

DoubleEnsemble key hyperparameters: the number of sub-models is five, and the
weight of the sub-models is (1,1,1,1,1). The number of sample subsets is four, the feature
sampling ratio is 80%, and the loss function is the classification cross-entropy loss.

(3) Model evaluation index
A confusion matrix [28] is often used to judge the performance of multi-classification

models. Table 7 shows the confusion matrix of the fault category prediction results, where
the number in the main diagonal position indicates the number of samples that the model
correctly classifies for each fault; a larger number indicates better model diagnostic per-
formance. The numbers in the remaining positions represent the number of misclassified
samples, and the smaller the number, the better the diagnostic performance of the model.
Which kinds of faults are easily confused by the model can be clearly distinguished through
the confusion matrix.
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Table 7. Confusion matrix of fault category prediction results.

Predictive Failure Category (Label)
Actual Fault Category (Label)

1 2 3 · · · · · · N

1 a11 a12 a13 · · · · · · a1N
2 a21 a22 a23 · · · · · · a2N
3 a31 a32 a33 · · · · · · a3N
...
...

...

...

...

...

...

...

. . .
. . .

...

...
N aN1 aN2 aN3 · · · · · · aNN

The overall diagnosis accuracy and individual diagnosis accuracy are used as the
evaluation indices of the fault diagnosis model. The overall diagnostic accuracy can reflect
the overall diagnostic performance of the model, as calculated in Equation (23). The
individual diagnostic accuracy can reflect the diagnostic performance of the model for a
specific type of fault, as calculated in Equation (24):

T =

N
∑

i=1
aii

N
∑

i=1

N
∑

j=1
aji

(23)

Ii =
aii

N
∑

j=1
aji

, i = 1, 2, 3, · · ·N (24)

where T is the overall diagnostic accuracy rate; Ii is the individual diagnostic accuracy rate;
and aji is the element value of the ith column of the jth row in the confusion matrix.

4.5. Analysis of Experimental Results
4.5.1. Analysis of Experimental Results of a Widely Used Dataset

Considering the influence of random factors on model training and testing, 10 repeated
experiments were carried out. Figure 13 shows the confusion matrix of the last experimental
test result.

The overall diagnostic accuracy and individual diagnostic accuracy of the DoubleEnsemble–
LightGBM model under each speed condition were calculated by analyzing the confusion matrix,
and the calculation results are shown in Table 8. It can be observed from the table that the
overall diagnostic accuracy of the model is 90.96% after averaging the calculation results under
four speed conditions, which can achieve better overall diagnostic performance. The individual
diagnostic accuracies from Category 1 to Category 5 are 96.46%, 91.88%, 88.54%, 87.92%, and
90%, respectively. It can be observed that the diagnostic accuracy of the model for Category 1
(normal) is the highest, and the diagnostic accuracy for Category 3 (bearing ball failure) and
Category 4 (bearing outer ring failure) is lower.

Table 8. Calculation of model evaluation indices of experimental test results.

Speed Change
Individual Accuracy Ii/% Overall Accuracy

T/%I1 I2 I3 I4 I5

Speed up 99.17 93.33 88.33 86.67 92.50 92.00
Slow down 95.00 90.83 86.67 93.33 87.50 90.67

First up, then down 96.67 91.67 93.33 85.83 89.17 91.33
First down, then up 95.00 91.67 85.83 85.83 90.83 89.83

Average value 96.46 91.88 88.54 87.92 90.00 90.96
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In addition, the diagnosis performance of the constructed DoubleEnsemble–LightGBM
model was compared with that of the original LightGBM model and three other ensemble
learning models with excellent performance in the field of fault diagnosis: the RF model
used in [29], the AdaBoost model used in [30], and the XGBoost model used in [31].
The average value of the overall fault diagnosis accuracy of 10 experiments was taken
as the evaluation index, and the experimental comparison results are shown in Table 9.
It can be observed from the table that the average overall diagnostic accuracy of the
DoubleEnsemble–LightGBM model is the highest, which increased by 6.57%, 6.61%, 3.42%,
and 4.06%, respectively, compared with the RF model, AdaBoost model, XGBoost model,
and LightGBM original model. Figure 14 shows the comparison of the overall diagnostic
accuracy of the five models under different speed conditions. The diagnostic performance
of the DoubleEnsemble–LightGBM model is significantly better than that of other models.

Table 9. Comparison of diagnostic performance of different models on the widely used dataset.

Comparison Model

Overall Accuracy T/%

Average Overall Accuracy T/%Speed Up Slow Down First Up,
Then Down

First Down,
Then Up

RF 85.02 84.36 85.14 83.46 84.50
AdaBoost 85.23 84.15 84.92 83.54 84.46
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Table 9. Cont.

Comparison Model

Overall Accuracy T/%

Average Overall Accuracy T/%Speed Up Slow Down First Up,
Then Down

First Down,
Then Up

XGBoost 88.54 87.23 87.96 86.87 87.65
LightGBM 87.83 86.92 87.25 86.05 87.01

DoubleEnsemble–
LightGBM 91.96 90.83 91.33 90.17 91.07
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4.5.2. Analysis of Experimental Results of Feed System Test Bench Dataset

The feed system fault dataset established by the feed system test bench in Section 4.1.2
was divided into the training set and the test set at a ratio of 8:2. The distribution of
the divided samples and the corresponding relationship of the fault labels are shown in
Table 10.

Table 10. Sample distribution of the test bench dataset and corresponding relationship of fault labels.

Label Category Number of Training
Set Samples

Number of Test
Set Samples

1 Normal 480 120

2 Bearing inner ring fault 480 120

3 Bearing ball fault 480 120

4 Bearing outer ring fault 480 120

5 Worn lead screw 480 120

6 screw bending 480 120

7 Worn lead screw and bearing
inner ring complex fault 480 120

8 Worn lead screw and bearing
ball complex fault 480 120

9 Worn lead screw and bearing
outer ring complex fault 480 120

To ensure the reliability of the model, 10 repeated experiments were also carried out.
Figure 15 shows the confusion matrix for the last experimental test result.
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The overall diagnostic accuracy and individual diagnostic accuracy of the DoubleEnsemble–
LightGBM model under each feed condition were calculated by analyzing the confusion matrix,
and the calculation results are shown in Table 11. In the table, the feed speeds corresponding
to working condition 1, working condition 2, and working condition 3 are 1000 mm/min,
2000 mm/min, and 3000 mm/min, respectively. It can be observed from the table that, after
averaging the calculation results under the three feeding conditions, the overall diagnostic
accuracy of the model is 98.06%, and the individual diagnostic accuracy of categories 1 to
9 is 100%, 97.78%, 98.06%, 95%, 99.45%, 95.55%, 98.61%, 99.17%, and 98.89%, respectively.
The results show that the DoubleEnsemble–LightGBM model can achieve high-precision fault
diagnosis, and the classification accuracy of normal data (class 1) reaches 100%.

Table 11. Calculation of model evaluation index of the last experimental test result.

Working
Condition

Individual Accuracy Ii/% Overall
Accuracy

T/%I1 I2 I3 I4 I5 I6 I7 I8 I9

1 100 98.33 99.17 95.00 99.17 95.83 100 99.17 99.17 98.43
2 100 97.50 98.33 94.17 99.17 95.00 99.17 100 98.33 97.96
3 100 97.50 96.67 95.83 100 95.83 96.67 98.33 99.17 97.78

Average
value 100 97.78 98.06 95.00 99.45 95.55 98.61 99.17 98.89 98.06

In addition, the RF model, AdaBoost model, XGBoost model, and LightGBM original
model were also selected to compare the diagnostic performance with the DoubleEnsemble–
LightGBM model. The average value of the overall fault diagnosis accuracy of 10 exper-
iments was taken as the evaluation index, and the experimental comparison results are
shown in Table 12. It can be observed from the table that, compared with the original Light-
GBM model, the average overall diagnostic accuracy of the constructed DoubleEnsemble–
LightGBM model is improved by 2.91% under three feeding conditions, indicating that the
introduction of sample re-weighting and the feature selection mechanism can effectively
improve the overall diagnostic performance of the model. Compared with the RF model,
AdaBoost model, and XGBoost model, the average overall diagnostic accuracy of the
DoubleEnsemble–LightGBM model is still the highest, which is improved by 4.48%, 3.87%,
and 2.66%, respectively. Figure 16 shows more intuitively the comparison of the overall
diagnostic accuracy of the five models at different feed rates. The diagnostic performance of
the DoubleEnsemble–LightGBM model is significantly better than that of the other models.
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Table 12. Comparison of diagnostic performance of different models on the test bench dataset.

Comparison
Model

Overall Accuracy T/%
Average Overall Accuracy T/%

Condition 1 Condition 2 Condition 3

RF 93.99 93.75 92.99 93.58
AdaBoost 94.56 94.18 93.83 94.19
XGBoost 95.73 95.32 95.15 95.4

LightGBM 95.42 95.05 94.98 95.15
DoubleEnsemble–

LightGBM 98.46 97.98 97.75 98.06
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5. Conclusions and Future Work

To solve the problem of intelligent fault diagnosis of the CNC machine feed system
under variable speed conditions, a variety of signals such as current signal, vibration signal,
and noise signal were used as monitoring data. Firstly, the above signals were preprocessed
by using singularity elimination, trend item elimination, and wavelet threshold denoising.
Then, time domain analysis and frequency domain analysis were carried out for each
signal, and 13 time domain characteristic indices and three frequency domain characteristic
indices were extracted. The time–frequency domain analysis of the signal was carried out
using the CEEMDAN algorithm, and three IMF information entropies were calculated.
The multi-dimensional mixed domain feature set was constructed by stitching the above
multiple feature indices into feature vectors. Finally, LightGBM was selected as the basic
fault diagnosis model. In addition, to further improve the training performance of the
model and improve the diagnosis accuracy, the sample re-weighting mechanism based on
learning trajectory and the feature selection mechanism based on shuffling technology were
introduced to build a DoubleEnsemble–LightGBM fault diagnosis model. The experimental
results show that the average diagnostic accuracy of the DoubleEnsemble–LightGBM
model is 91.07% on the public variable speed bearing fault dataset, and 98.06% on the
self-built fault dataset of the feed test bench. Compared with the RF, AdaBoost, Xgboost,
and other advanced ensemble learning models and the original LightGBM model, the
proposed DoubleEnsemble–LightGBM model effectively improves the diagnostic accuracy
of both datasets.

The experimental results show that the proposed model effectively solves the fault
diagnosis of the key components of the CNC machine feed system in the case of fewer
samples as well as under variable speed and noise conditions.

Based on the above conclusions, the author believes that the model can be applied to
the fault diagnosis of key rotating parts of large equipment such as high-speed railways and
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wind turbines under complex working conditions. Due to the limitation of the experimental
conditions, the fault data of the key mechanical components of the feed system were mainly
collected by building a feed test bench and artificially producing simulated faults. Our
follow-up research will aim to accumulate real fault data from actual working conditions
and production of the CNC machine feed system. Moreover, the values of rotation speed,
different accelerations, and decelerations could be increased in order to further expand the
types of faults tested.
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