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Abstract: Drying–wetting cycles play a crucial role in the investigation of the origin of life as processes
that both concentrate and induce the supramolecular assembly and polymerization of biomolecular
building blocks, such as nucleotides and amino acids. Here, we test different microfluidic devices to
study the dehydration–hydration cycles of the aqueous solutions of small molecules, and to observe,
by optical microscopy, the insurgence of phase transitions driven by self-assembly, exploiting water
pervaporation through polydimethylsiloxane (PDMS). As a testbed, we investigate solutions of the
chromonic dye Sunset Yellow (SSY), which self-assembles into face-to-face columnar aggregates
and produces nematic and columnar liquid crystal (LC) phases as a function of concentration. We
show that the LC temperature–concentration phase diagram of SSY can be obtained with a fair
agreement with previous reports, that droplet hydration–dehydration can be reversibly controlled
and automated, and that the simultaneous incubation of samples with different final water contents,
corresponding to different phases, can be implemented. These methods can be further extended
to study the assembly of diverse prebiotically relevant small molecules and to characterize their
phase transitions.

Keywords: microfluidics; chromonic liquid crystals; dry–wet cycles; self-assembly

1. Introduction

The quest to unravel the mysteries surrounding the origin of life on Earth has long
captivated the scientific community, leading to an extensive exploration of prebiotic chem-
istry and the conditions conducive to the formation of life’s building blocks, their assembly,
and evolution.

Dry–wet cycles play a pivotal role in the investigation of the origin of life since al-
ternating cycles of hydration and dehydration can simulate the dynamic environmental
conditions that early Earth might conceivably have experienced due to day–night and
seasonal cycles [1–3]. This phenomenon mimics the natural processes occurring in hy-
drothermal vents, tidal pools, and volcanic environments, all of which are environments
where life may have first emerged [4,5].

Dry–wet cycles are instrumental in concentrating and transporting essential building
blocks, such as amino acids and nucleotides [6]. Additionally, the importance of dry–wet
cycles lies in their ability to promote chemical reactions essential for the formation of
complex organic molecules, such as the formation of nucleosides [7], and to eventually
drive the self-assembly and the onset of phase transitions in molecular solutions [8–10].

Several investigations have shown that during the dry phase, concentrated organic
compounds can accumulate and condensation reactions are promoted by the reduced
water activity [11]. This is the case, for example, of ribonucleotide polymerization, which
has been reported to occur in an acidic pH in the lamellar phases produced by the
dehydration of lipids solutions, which is a process that takes the name lipid-assisted
polymerization [12–14]. Such a process is affected by the depurinization that is caused by
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a low pH. Recently, the robust polymerization of cyclic 5′-3′ or 2′-3′ phosphate ribonu-
cleotides has been reported in the absence of lipids [15–18]. Moreover, interaction with
mineral surfaces is another crucial process that can further enhance the polymerization of
both nucleotides and amino acids [19–21].

Drying and heating have also been tested as strategies for the condensation of amino
acids and α-hydroxy acids, with findings indicating that in mixtures, amino acids can
gradually be incorporated into polyesters, forming depsipeptides, and α-hydroxy acids
can favor the formation of amide bonds between amino acids [22–24].

Importantly, dry–wet cycles provide crucial features not only during the dry phase.
As the wet phase ensues, reacted and unreacted molecular compounds can mix, which is a
process that can promote variations by shuffling in the next rounds of polymerization [25];
the wet phase can promote the self-assembly of supramolecular structures, such as lipid
and fatty acid vesicles [26–31]; and the wet phase can cause phase transitions leading to
the formation of complex coacervates [32–37] and other membraneless phase-separated
droplets [38,39], which can play the role of rudimental protocells.

Molecular concentration and temperature variations during dry–wet cycles can also
drive the occurrence of partially ordered still fluid phases that are typical of liquid crystals
(LC) in solutions of short DNA and RNA oligomers [40–45]. An LC phase transition has
been proposed as a relevant physical phenomenon for enhancing nucleic acid polymer-
ization and selection in prebiotic molecular mixtures [8,46,47]. This hypothesis has been
supported by the observation of segregation through the LC-phase separation of random
sequence oligomers [48,49], and the enhanced non-enzymatic ligation of DNA and RNA
oligonucleotides templated by LC ordering in segregative and associative phase separa-
tions [50–52]. Remarkably, single nucleotides also have the tendency to self-assemble and
order in LC phases through a process that involves the hydrogen bonding of nucleobases to
form canonical Watson–Crick pairs [53] (in the case of complementary pairs of dNTPs), G-
quartets [54] (in the case of guanine rich solutions), or even planar hexagonal structures [55]
(in the case of purines and prebiotically relevant base analogs), and undergo successive
linear aggregation promoted by π–π stacking of these aromatic rich amphiphilic planar
structures. In the field of liquid crystals, such systems take the name of chromonic lyotropic
liquid crystals, because they result from the face-to-face aggregation of multi-ring aromatic
compounds, typically dyes and drug molecules [56].

Extending the investigation of LC ordering to other nucleotide solutions, including
those that are prone to polymerize in dry conditions (such as 5′-3′ and 2′-3′ cyclic nu-
cleotides), can be relevant to unveil phenomena that can potentially provide the optimal
geometrical constraints to enhance reactivity in condensation reactions. In this direction
of inquiry, it is crucial to explore experimental drying–wetting strategies that allow fine
control of the concentration variation and allow the observation of the samples during the
process by optical microscopy. Evaporation on glass slides is a well-established method for
concentrating lyotropic LC solutions [57] but has several drawbacks, such as the low control
of the evaporation velocity, the formation of inhomogeneous regions (e.g., coffee ring effect),
and the difficulty of measuring the effective concentration of the sample over time.

For this reason, here we tested microfluidics to create precisely controlled dehydration–
hydration cycles of a lyotropic LC-forming aqueous solution of the chromonic dye Sunset
Yellow (SSY), which was chosen as the testbed analog of LC-forming nucleotides solu-
tions [56] since its phase behavior has already been quantitatively characterized in previous
works [58,59].

2. Materials and Methods
2.1. Materials

Sunset Yellow FCF (SSY) and chemicals, unless otherwise reported, were purchased
from Sigma-Aldrich. Polydimethylsiloxane (PDMS) Sylgard 184 was purchased from Dow
and used at a 10:1 prepolymer-to-crosslinker ratio. We used fluorinated oil (HFE7500, 3M)
and fluorinated surfactant (FluoSurf-C, Emulseo).
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2.2. Sunset Yellow Purification and Stock Solution Preparation

SSY was purified from impurities following a previously reported protocol [58,59]
consisting of two times repetition of the following: (i) SSY powder dissolution in Milli-Q
water, (ii) precipitation by the addition of ethanol, (iii) filtering with a Büchner funnel
(VWR) and (iv) drying in vacuum. SSY stock aqueous solutions were prepared by adding
the required amount of Milli-Q water to the SSY powder, calculated as vwater = mSSY/c0
− mSSY/ρSSY, and considering MWSSY = 452 g/mol and ρSSY = 1400 g/L, respectively, the
molecular weight and the density of SSY.

2.3. Microfluidic Chip Fabrication

Single-layer polydimethylsiloxane (PDMS)S chips (~5 mm thickness) were fabricated
following standard soft lithography techniques [60]. Microstructured molds were prepared
with SU-8 permanent epoxy negative photoresist (micro-resist technology GmbH), fol-
lowing producer processing guidelines and protocol (25 µm height microstructures) on a
100 mm diameter silicon wafer (Darwin microfluidics). A 10:1 ratio of Sylgard 184 PDMS
(~55 g) was poured on the SU-8 silicon wafer mold, degassed in a vacuum chamber, and
baked at 65 ◦C for 1 h in an oven. The cured PDMS was then peeled off of the wafer, cut
out, and access holes were punched using a stub. The PDMS slab was finally bonded to a
standard microscope glass slide (1 mm thick) with an oxygen plasma treatment (10 W for
30 s at 150 mT O2), which was followed by overnight incubation at 90 ◦C.

For double-layer PDMS chips, a thick layer (~5 mm) and a thin PDMS membrane
(100 µm) were fabricated separately and then bounded together by oxygen plasma surface
activation, which was followed by overnight incubation at 90 ◦C. PDMS membranes were
produced by spin coating a 10:1 ratio of Sylgard 184 PDMS (750 rpm for 40 s, ramp rate of
200 rpm/s) on a SU-8 Silicon wafer mold previously treated with trichloro (1H,1H,2H,2H-
perfluorooctyl) silane in the gas phase.

2.4. Microfluidic Chip Operation and Microscope Image Acquisition

Three microfluidic chips were used. Chip 1, a single-layer PDMS chip, was used to
study the phase diagram of SSY droplets upon evaporation (Supplementary Materials).
Chip 2, a double-layer PDMS chip, was adapted from ref. [61] (upper layer) with the
addition of a bottom layer with a reservoir channel and was used to perform dehydra-
tion and rehydration cycles (Supplementary Materials). Chip 3, a double-layer PDMS
chip, was adapted from ref. [62] and was used to incubate SSY solutions at different final
concentrations (Supplementary Materials).

The microfluidic chips were plugged with Tygon tubing (1/16” OD × 1/32” ID, Dar-
win Microfluidics) to a pressure controller for microfluidics (MFCS-EZ, Fluigent) managed
by computer software (Maesflo v3.1, Fluigent). The following pressures were applied to the
chip inlets for device operation: chip 1: oil pressure = 100 mbar, SSY pressure = 50 mbar;
chip 2: oil pressure = 190 mbar, SSY pressure = 200 mbar, reservoir pressure = 300 mbar
for exchanging the solutions (water and salt), then 10 mbar during the experiment; chip 3:
oil pressure = 200 mbar, SSY pressure = 200 mbar, reservoir pressure = 50 mbar. In chips 1
and 2, the first droplets, initially produced during pressure equilibration, were discarded
by letting them exit the chip. After droplets production (chips 1 and 3), the oil pressure
was gradually reduced to facilitate trapping.

SSY droplets were observed with an inverted polarized optical microscope (Ti-U,
Nikon). Bright-field and crossed polarizer images were acquired at constant time intervals,
using 10× or 20× ELWD objectives, a Nikon DS-Fi3 color camera, and NIS Element AR
(version 5.30.03) acquisition software. Temperature, T, was controlled by a Peltier hot/cold
stage for microscopy (TSA12Gi, Instec Inc., Boulder, CO, USA).

2.5. Image Analysis

Images were initially analyzed with ImageJ (version 2.14.0/1.54f, http://imagej.net
(accessed on 7 July 2023)) software and then with a custom Python (version 3.11.4) code

http://imagej.net
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(Supplementary Materials) properly realized to (1) identify droplets from bright-field im-
ages, generate enclosing masks by circular fitting, measure the diameter of the droplet
for each time step; (2) measure the average intensity of polarized images, Ip, within the
corresponding circular masks for each time step; (3) calculate the droplets volume and
SSY concentration for each time step (see Appendix A); (4) identify the frames correspond-
ing to the phase transitions; and (5) calculate the concentrations corresponding to the
phase transitions.

3. Results

Inspired by the fact that the permeation of water through PDMS has been exploited to
produce microfluidic devices capable of controlling and measuring the concentration of
aqueous solutions inside microdroplets [63], here we investigated if the phase behavior of
SSY solutions could be measured and controlled with microfluidics. Microfluidic devices
have been used to investigate the phase diagram of salt–polymer mixtures or to finely con-
trol protein crystallization temperature and concentration conditions [62]. Additionally, it
has been shown that concentration-dependent phase transitions leading to the LC ordering
of surfactants or fd virus solutions can be achieved by controlled water evaporation in
microchannels [64] or in larger volumes [65], respectively. It has been also shown that in
PDMS chips, the microchannels’ surface wettability, geometry, topography, anchoring, and
other features can spatiotemporally tune phase transitions of solutions of the lyotropic
chromonic dye disodium cromoglycate (DSCG) [66,67].

On the other hand, lyotropic liquid crystal droplets, including chromonic SSY and
cellulose nanocrystals, have been produced in water-in-oil emulsion [68,69], and osmotic
droplet shrinkage has been exploited to observe phase transitions or topological reconfigu-
rations [70].

Here, we tested three microfluidic devices to measure the concentration–temperature
phase diagram of SSY solution (chip 1), to realize drying–wetting cycles (chip 2), and to
incubate SSY solutions at different final hydration states, corresponding to different phases,
in parallel (chip 3).

3.1. Measurement of the SSY Phase Diagram

We first tested if the phase diagram of the chromonic dye SSY could be measured
in microdroplets undergoing slow evaporation in a PDMS microfluidic device, which
is sketched in Figure 1a. Aqueous isotropic SSY droplets, at an initial concentration
cSSY,0 = 0.33 M, in fluorinated oil with 2% surfactant, were produced by a flow-focusing
junction integrated into the microfluidic PDMS chip 1. Droplets were trapped by anchoring
to circular holes (dT = 50 µm, hT = 10 µm) in the channel roof due to surface energy
minimization [71]. The height and the width of the rectangular section channel were
h = 25 µm and l = 500 µm, respectively. Water evaporation through the PDMS layer over
time caused the shrinkage of SSY droplets and the consequential increase in cSSY (Figure 1b).

In a typical experiment performed at room temperature, the images acquired during
time (∆t = 60 s) in bright field and polarized microscopy (Figure 2a) showed that as
the volume of the initially isotropic (I) phase droplets gradually decreased, birefringent
domains with the typical textures of the nematic (N) LC phase started to nucleate, grow and
coalesce until the droplets became completely occupied by the N phase. Subsequently, the
N phase was stable for a certain amount of time until columnar (C) phase domains started
to nucleate and pervaded the whole volume. Finally, the droplets lost their smooth circular
shape, which is a sign that the columnar phase was losing its fluidity and turning crystalline.
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Figure 1. Sketch of the microfluidic chip 1: (a) including a flow-focusing droplets generator and
the trapping section, which is obtained by droplets anchoring to a hole in the channel roof due
to surface energy minimization. A side view of the traps is reported in the inset (not in scale).
(b) Scheme of the water evaporation process through the PDMS layer exploited to increase the cSSY

in the trapped droplets.
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enough accuracy. The obtained phase diagram is in agreement with the ones reported in 
the literature [58,59] even if the transition concentration values are slightly underesti-
mated (Figure 3). The difference between the expected and measured values is of the order 
of 5–10%. Such discrepancy can be attributed to a systematic error in the measurement of 
the initial volume of the droplets, V0, which can already be affected by evaporation during 
the operations of droplets production and trapping. Indeed, the measured volume de-
crease after the first 5 min is of the order of 5–6% at 25 °C (Figure 2c). This fact indicates 
that the time interval between the production of the droplets and the beginning of image 
acquisition is a crucial parameter that should be minimized to perform a more accurate 
measurement of the concentration. For this reason, we discarded experiments in which 
the image acquisition of the trapped droplets started after 5 min from the initial fluxing of 
the SSY solution in the microfluidic device. 

Figure 2. Measurement of the concentration phase diagram of SSY solutions during drying at
T = 25 ◦C. (a) Bright-field (top) and polarized (bottom) microscopy images of an SSY droplet trapped
in the microfluidic chip and undergoing phase transitions during evaporation. Numbered frames are
the ones corresponding to the phase transitions I to I–N (1), I–N to N (2), N to N–C (3), and N–C to
C (4). Pink and light blue arrows indicate the directions of the polarizer and analyzer, respectively.
Scale bars are 100 µm. Graphs reporting the time evolution of the measured normalized droplet
(b) diameter D/D0, (c) volume V/V0, (d) polarized intensity IP, and (e) SSY yellow concentration
cSSY. Blue open circles and dashed lines indicate the phase transition points between the isotropic
(I), isotropic–nematic coexistence (I–N), nematic (N), nematic–columnar coexistence (N–C), and
columnar (C) phases.

Bright-field image analysis by ellipse fitting allowed the measurement of the diameter
of the droplet, D (Figure 2b), and the calculation of the droplet volume, V, as a function of
time (Figure 2c and Appendix A). The observation and the measurement of the polarized
image intensity, Ip, over the droplet area allowed the identification of the phase transition
time points (numbered open circles), as reported in Figure 2d. Specifically, the beginning
of the I–N coexistence (point 1) was identified as the first frame in which birefringent N
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phase domains were present, corresponding to Ip greater than the background; the end
of the I–N coexistence (point 2) was identified as the frame in which the birefringent N
textures occupy the whole droplet, corresponding to the maximum of Ip; the beginning of
the N–C coexistence (point 3) was identified as the frame in which columnar domains start
to nucleate inside the N textures, generally corresponding to a local maximum of Ip; the
end of the N–C coexistence (point 4) was identified as frame in which columnar textures
occupy the whole droplet.

Finally, the SSY concentration was calculated by assuming mass conservation as cSSY
(t) = cSSY,0 × V(t)/V(t0), and the concentrations corresponding to the phase transitions were
identified (Figure 2e).

The SSY concentration–temperature phase diagram was then sampled by repeating
the procedure at different temperatures, T = 25 ◦C, 35 ◦C, 45 ◦C and 60 ◦C. At T = 60 ◦C, the
high velocity of water evaporation allowed us to measure only the I to I–N transition with
enough accuracy. The obtained phase diagram is in agreement with the ones reported in
the literature [58,59] even if the transition concentration values are slightly underestimated
(Figure 3). The difference between the expected and measured values is of the order
of 5–10%. Such discrepancy can be attributed to a systematic error in the measurement
of the initial volume of the droplets, V0, which can already be affected by evaporation
during the operations of droplets production and trapping. Indeed, the measured volume
decrease after the first 5 min is of the order of 5–6% at 25 ◦C (Figure 2c). This fact indicates
that the time interval between the production of the droplets and the beginning of image
acquisition is a crucial parameter that should be minimized to perform a more accurate
measurement of the concentration. For this reason, we discarded experiments in which the
image acquisition of the trapped droplets started after 5 min from the initial fluxing of the
SSY solution in the microfluidic device.
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Figure 3. Concentration–temperature phase diagram of SSY solutions obtained by drying droplets
within the microfluidic chip (symbols) compared with the one reported in ref. [59] (solid lines). Data
points and error bars are reported as the average and standard deviation of N = 5 measurements
performed on different droplets.

3.2. Implementation of Dry–Wet Cycles in the Microfluidic Device

We then tested the possibility of reversibly inducing phase transitions in the droplets
trapped in the microfluidic chip 2 by dehydration–hydration cycles. For this purpose,
we adopted a double-layer microfluidic chip with a bottom layer containing a reservoir
channel (height of the reservoir channel hr = 50 µm), placed underneath the droplet traps
and separated by a thin PDMS membrane (hm = 50 µm), in which NaCl or water solutions
can be fluxed to osmotically drive droplets shrinkage or swelling (Figure 4a). In the upper
layer, the traps consisted of smoothed angles squared chambers with higher height than the
main channel, which was designed to trap droplets by surface tension relaxation [61]. The
height of the main channel was hc = 20 µm and that of the rectangular traps was ht = 35 µm.
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rehydration (ii and iii) steps obtained by exchanging the flux in the reservoir channel (NaCl or water)
and modifying the evaporation from the top PDMS layer. Red and blue arrows indicate the direction
of the water transport. (b) Variation of cSSY inside a droplet during time calculated from the measured
droplet volume change. Vertical solid lines identify the different drying and wetting phases of the
cycle. The colored background identifies the phase diagram of the SSY solution inside the droplet.
(c) Partially de-crossed polarizers microscopy images of the SSY droplets during the dry–wet cycle
showing droplet shrinkage and swelling and the transitions between the different phases.

To remove water from the SSY droplets, the reservoir channel was first loaded with
1 M NaCl solution (i). Water transport through the PDMS membrane and evaporation from
the top PDMS layer induced the shrinkage of the SSY droplets and their transition to N
phase (Figure 4b) as a consequence of the cSSY increase, which was calculated from the
volume variation (Figure 4c) as explained in the previous section. Subsequently, water was
fluxed in the reservoir channel (ii) to invert the osmotic potential between the reservoir
and the SSY droplets. We observed droplets swelling but not the transition to the initial
isotropic state. Indeed, the droplets dimension and cSSY reached a plateau value caused by a
balance between hydration from the bottom channel and evaporation from the upper PDMS
layer. The addition of water on top of the microfluidic chip (iii) contrasted evaporation
and allowed further wetting of the droplets and their consequent transition to a lower
concentration isotropic phase. To induce drying again, we substituted water with 2 M NaCl
solution in the reservoir channel, and we removed the water from the top of the chip (iv).
The SSY droplets concentrated faster than the first dehydration step due to the higher
osmolarity of the salt solution and transitioned to the N and C liquid crystal phases. This
indicates that different salt concentrations in the reservoir channel can be exploited to tune
the velocity of the drying process and the final equilibrium phase. Since the timescale of
the drying process was of the order of hours, no appreciable effects on the nucleation and
growth of the N phase or in the subsequent transition to the C phase or in the LC textures
were observed.

3.3. Incubation of SSY Solutions in Different Phases by Controlled Drying

Based on the results reported in the previous section, we tested if the different liquid
and liquid crystalline phases exhibited by SSY could be obtained as the final equilibrium
condition of the drying process by using multiple reservoir channels containing different
NaCl concentrations. To achieve this goal, we adopted a different two-layer chip (chip 3,
Figure 5a), which was inspired by the “phase chip” reported in ref. [62]. Such a microfluidic
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device is composed of a 5 mm thick PDMS upper layer containing 240 circular wells
(diameter 400 µm) located at bifurcations of the main channel (width 100 µm) and followed
by a striction (width 25 µm). The height of the design is fixed (50 µm). Similar designs
have been previously shown to allow the trapping of droplets when two immiscible fluids
are subsequently fluxed from the main channel due to capillary forces and the different
hydrodynamic resistance of the bifurcated channels in proximity to the circular traps [62,72].
The bottom thin PDMS layer is composed of a gradient generator obtained by the repetitive
splitting and mixing of the flow of two aqueous fluids (a high-concentration NaCl solution
and a low-concentration NaCl solution) in a branched network of channels. The chip is
designed to produce a linear gradient of salt concentration in 10 parallel reservoir channels
(height 50 µm and width 600 µm) placed in correspondence with the wells. Similarly to
chip 2, water can diffuse through a thin PDMS membrane (50 µm) separating the wells and
the reservoir layer driven by the difference in osmolarity of the two solutions.
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Figure 5. Incubation of SSY solutions in different phases by controlled drying. (a) Sketch of the
microfluidic chip 3 inspired from ref. [62] composed of an upper layer hosting wells for trapping
SSY droplets (orange) and a bottom layer designed to repetitively mix two input salt solutions to
obtain a linear gradient of salt concentrations in the reservoir channels placed in correspondence
with the traps (black). Inset shows the detail of a well placed at the bifurcation of the main channel in
two channels with different hydrodynamic resistance, which allows the trapping of SSY droplets in
oil. (b) Normalized fluorescence intensity, If, measured in the reservoir channel during the mixing
of 0.5 M and 2 M NaCl solutions, the latter doped with 1 mM FITC, as a function of the channel
position. Data are reported as average values and error bars correspond to standard deviations of
n = 5 measurements. The blue line represents the linear fit of data. (c) Fluorescence microscopy
images of the initial part of the reservoir channels at different reservoir channel positions. (d) Bright-
field microscopy images of traps loaded with SSY solution (initial concentration, cSSY,0 = 0.1 M) at
the beginning of the experiment (t0). (e) Polarized microscopy images of the same traps tf = 15 h,
showing the reduction in droplet volume and the transition to different phases (I, N, C) and relative
coexistence (I-N, N-C).
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We loaded the reservoir layer with 0.5 M and 2 M NaCl solutions, the latter doped
with 1 mM fluorescein (FITC). The measurement of FITC fluorescence intensity, If, at the
entrance of the reservoir channels (Figure 5b,c) confirmed the linear distribution of salt
concentration as a function of the channel position in the interval 0.5 < cNaCl < 2 M.

Then, the wells layer was initially loaded with a SSY solution, cSSY,0 = 0.1 M, which
was followed by the fluxing of fluorinated oil with 2% surfactant allowing the trapping of
equal concentration isotropic SSY droplets in the wells (Figure 5d). During the experiment
time, the droplets started to equilibrate with the corresponding reservoir channels and
reduced their volume. During time, as cSSY was increasing, phase transitions between the
SSY LC phases were observed as a function of the position of the wells (Figure 5e and
Supplementary Materials). The variation of normalized droplet volume (V/V0) over time
was measured from bright field microscopy images (Figure 6a), and the corresponding cSSY
was obtained (Figure 6b). It is possible to notice that on the side of the chip corresponding
to reservoir channels with higher cNaCl, the shrinkage of the trapped SSY droplets was
faster due to the high osmolarity difference between the SSY and NaCl solutions. Stable
droplets exhibiting C, N-C, and N phases were obtained after 5, 10, and 13 h, respectively,
indicating that an incubation of SSY solutions in different phases can be achieved.
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Figure 6. Plots of (a) the variation of normalized volume (V/V0) and (b) the SSY concentration (CSSY)
over time of the droplets during incubation in chip 3. Volume was measured from a bright-field
microscopy image sequence acquired at ∆t = 10 min (Supplementary Materials). Curves correspond
to droplets trapped in correspondence of channels 2, 5, 6, and 10 and thus exposed to a salt reservoir
with increasing osmolarity. Droplets corresponding to higher osmolarity reservoir channels exhibit
faster concentration and equilibration compared to those in lower osmolarity channels.

4. Discussion

The reported experiments show that different microfluidics approaches can be used
to investigate the phase diagram of SSY solutions as a function of concentration and tem-
perature, to simulate drying–wetting cycles, and to incubate SSY solutions in different LC
phases. These results were not granted, since the compatibility of microfluidic approaches
based on water pervaporation through PDMS with solutions of small molecular weight
molecules like SSY was not known before. Indeed, both an undesired permeation of fluid
through PDMS walls [73] and the absorption of hydrophobic small molecules in PDMS [74],
with possible alteration of measured concentrations, have been previously reported. We
can disregard these effects as if they were present in our experiments, they would have led
to an overestimation in the measurements of the SSY concentration, which contrasts with
our actual observations.

Almost all the experiments reported here could have been in principle performed with
just one microfluidic chip. Nevertheless, we found that the three tested microfluidic devices
have both advantages and disadvantages to each other, which motivated the choice of using
a different chip for each different application. We report the advantages and disadvantages
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in Table 1, hoping to offer the reader useful information for planning future experiments
with these or similar devices.

Table 1. Advantages and disadvantages of the three microfluidic chips used in this work, which led
us to the choice to use chip 1 for phase diagram investigation, chip 2 for implementing hydration–
dehydration cycles, and chip 3 for the parallel incubation of samples in different phases.

Advantages Disadvantages

Chip 1

Fast and controlled production of
droplets, large droplets
surface-to-volume ratio that increases
the sensitivity of the measurement of
the volume.

Not compatible with a reservoir layer
because the high deformability of the thin
PDMS membrane causes surface tension and
traps destabilization.

Chip 2
Fast and controlled production of
droplets, compatibility of the
trapping method with reservoir layer.

Lower droplets surface to volume ratio (i.e.,
less precision for phase diagram
determination), too close traps and escaping
of small (high concentration) droplets from
traps (i.e., not suitable for parallel incubation
of samples in different phases).

Chip 3
Compatible with multiple reservoir
channels, large droplets surface to
volume ratio.

Slower and less controlled droplets
production process, non-circular shape of the
droplets, possible splitting/escaping of the
droplets during the drying process (i.e., less
suitable for phase diagram determination).

A possible upgrade of chips 2 and 3 could be the addition of a glass or plastic layer
above the upper PDMS layer to avoid water evaporation from the upper side of the chip.

5. Conclusions

Microfluidic platforms offer unparalleled advantages, enabling the manipulation of
minute volumes of fluids with high precision, rapid mixing, and the capability to create
controlled gradients. The integration of microfluidic systems with drying–wetting cycles
represents a novel strategy to mimic dynamic environmental conditions relevant to early
Earth, where fluctuating hydration states may have played a crucial role in prebiotic
chemistry. By subjecting small molecules to controlled drying–wetting cycles within
microfluidic channels, it can be possible to elucidate the impact of hydration fluctuations
on the reversible formation of ordered phases typical of liquid crystals or other high-
concentration phases, such as gels or glasses.

Leveraging the unique capabilities of microfluidics, including low sample consump-
tion, low equilibration times, and automatization and parallelization possibilities, this
approach can be extended to investigate the assembly dynamics of diverse small molecules
solutions systematically, in particular nucleic acids monomers, pertinent to simulate prebi-
otic scenarios.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/life14040472/s1, Python code for droplets images analysis, lithography
masks of the microfluidic chips, and supplementary figures.
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Appendix A. Calculation of the Volume of a Droplet in the Microfluidic Device

The shape of a droplet in the microfluidic chips 1 and 2 can be assumed as a sphere
only if the droplet diameter is smaller than the height of the confining channel or trap,
D ≤ h (Figure A1a). In this case, the volume of the droplet is the volume of the sphere:

V = 1/6 πD3, (A1)

Otherwise, if the diameter is larger than the height of the channel, D > h, the droplet is
confined, its shape is squeezed and its volume can be calculated with good approximation
as the volume of a filled torus of diameter D (Figure A1b) [61]:

V = 1/4 πhD3 (1 − 2 h + 5/3 h2 + π/2 h (1 − h)), (A2)

To calculate the volume of the SSY droplets from the measurement of their apparent
diameter, we used Equations (A1) and (A2) according to the value of D with respect to h.

For chip 3, since the shapes of the trapped droplets were non-circular and were
changing over time, the volume was calculated as

V = Ah, (A3)

where A is the surface of the droplet and h is the height of the trap. This means that
the droplet is considered as a slice of surface A with straight borders (Figure A1c). This
approximation, which does not consider the droplet curvature at the border, is acceptable
due to the large area-to-height ratio of the droplets, i.e., D′ >> h (where D is of the order
of A1/2).
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