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Abstract: Dicentric chromosome assay (DCA) is one of the cytogenetic dosimetry methods where
the absorbed dose is estimated by counting the number of dicentric chromosomes, which is a major
radiation-induced change in DNA. However, DCA is a time-consuming task and requires technical
expertise. In this study, a neural network was applied for automating the DCA. We used YOLOv5,
a one-stage detection algorithm, to mitigate these limitations by automating the estimation of the
number of dicentric chromosomes in chromosome metaphase images. YOLOv5 was pretrained
on common object datasets. For training, 887 augmented chromosome images were used. We
evaluated the model using validation and test datasets with 380 and 300 images, respectively. With
pretrained parameters, the trained model detected chromosomes in the images with a maximum
F1 score of 0.94 and a mean average precision (mAP) of 0.961. Conversely, when the model was
randomly initialized, the training performance decreased, with a maximum F1 score and mAP of
0.82 and 0.873%, respectively. These results confirm that the model could effectively detect dicentric
chromosomes in an image. Consequently, automatic DCA is expected to be conducted based on deep
learning for object detection, requiring a relatively small amount of chromosome data for training
using the pretrained network.

Keywords: dicentric chromosome assay; cytogenetic dosimetry; chromosome metaphases image;
object detection; you only look once; deep learning; transfer learning

1. Introduction

Biological dosimetry is a retrospective method for estimating the absorbed radiation
dose of patients based on biological endpoints. Among the various methods in biological
dosimetry, cytogenetic dosimetry is the most widely used, especially for the early triage
of radiation mass casualties [1]. Cytogenetic dosimetry utilizes the nature of the radiation–
DNA interaction to estimate absorbed doses. Ionizing radiation induces DNA damage in two
ways: directly by ionizing the DNA molecule or indirectly by generating free radicals [2–4].
Chromosome aberrations, including deletion, duplication, inversion, and translocation, are
likely to occur when the damaged DNA, especially double-strand breaks, is repaired by
the cellular DNA repair system [5–7]. The frequency of chromosome aberrations can be
estimated by counting them while acquiring Giemsa-stained images of the metaphase stage.
Subsequently, the absorbed dose is estimated by the counts based on the linear-quadratic
model between the frequency of chromosome aberration and the absorbed dose according
to the radiation type. Cytogenetic dosimetry involves several methods, such as the dicentric
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chromosome assay (DCA), cytokinesis-blocked micronucleus assay, translocation assay,
and premature chromosome condensation assay [1].

DCA is one of the most widely used cytogenetic dosimetry methods that measures
the frequency of a dicentric chromosome, which is an abnormal chromosome with two
centromeres [8,9]. It is created owing to the misrepair of two chromosomes and abnormal
chromosome replication, and the most commonly occurring abnormal chromosome is
generated by irradiation. The background frequency of the dicentric chromosome in the
normal population is approximately 1 per 1000 cells. A major characteristic of the dicentric
chromosome is that it is extremely sensitive to radiation to the extent that the threshold
dose is just approximately 0.1 Gy. These characteristics make DCA the gold standard for
biological dosimetry. However, DCA is a highly expertise-dependent and time-consuming
task when it comes to its application in the early triage of mass casualties.

Studies have been conducted to automate DCA using machine learning [10,11] and
deep learning [12–14] by using it to construct dose–response curves and calculate estimated
doses [13] or as a classifier for individual chromosome patches extracted from images of
individual metaphases [14]. In addition, several studies have been conducted on chro-
mosome classification based on deep learning [15,16], and there have been studies on
deep learning-based segmentation for biomedical images [17–19]. However, applying
those findings to automate DCA has critical limitations because additional segmentation or
localization methods are required before classification to obtain individual chromosome
data within the image. Therefore, we consider that an object detection method can provide
the appropriate framework for automated DCA, which outputs the number of dicentric
chromosomes from a chromosome metaphase image.

Object detection is a computer vision task that aims to identify the objects within
an image or video and classify them [20–22]. The rapid progress in deep learning in
the field of computer vision in recent decades has resulted in the advancement of object
detection techniques by adopting a convolution neural network [23–25] or the vision
transformer [26–28] as their feature extraction backbone. Most of the object detection
models aim to find the position of instances in an image and classify them from extracted
image features. Considering their focus on finding and classifying instances within an
image, object detection methods have potential applications in automating DCA.

This study introduces the “You Only Look Once” (YOLO) algorithm [25], which is a
widely used deep learning-based object detection algorithm, to the automation of DCA.
Because the object detection model aims to classify the objects within the image, the model
was directly applied to perform both object localization within the chromosome metaphase
image and their classification. We attempted to enhance model performance by using
pretrained parameters and treating the problem as a downstream task. In addition, since
the ratio of the monocentric and dicentric chromosomes is imbalanced, we applied the
augmentation technique to address the class imbalance issue. The overall pipeline is
illustrated in Figure 1.
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2. Materials and Methods

YOLO is a one-stage object detection algorithm that localizes the bounding box and
simultaneously classifies it [25,29,30]. In YOLO, a global image is used as the network input,
and the detection result is the output, which is a single vector integrating the positional
and geometric information of the bounding box and its classification. More specifically, the
output of YOLO is the concatenation of the four positional elements, which determine the
position of the bounding box in the image; the confidence score, which is the probability of
whether the object belongs to the bounding box or not; and the class probabilities for classes.
Thus, the object detection task is converted into a single regression problem in the YOLO
architecture. Owing to its simplicity, YOLO is fast, and this is a major advantage when
adopting the method for DCA automation. Several subsequent versions of YOLO have
been published and have improved detection performance [31]. In this study, YOLOv5 [32],
a recent version of the YOLO family, was used as the object detection model.

In the YOLO framework, the input image is divided into several grids. Each grid
cell is supposed to contain one class. The number of predicted bounding boxes for the
input image is proportional to the number of grid cells. The positional information of the
bounding box in the network output is related to its relative position on the grid. Moreover,
several anchor boxes are assigned to each grid. The dimensions of the anchor boxes are
initially determined using K-means clustering to choose the bounding boxes from the
training set and the intersection over union (IoU)-based distance. The size of the bounding
box is determined by adjusting the size of the anchor box. Therefore, the network predicts
as many bounding boxes as the number of grids × number of anchor boxes when a single
image is inputted.

One of the problems with most object detection models is that they create multiple
bounding boxes for an object. The non-maximum suppression (NMS) [33] method is
adopted to select the most significant bounding box. In NMS, the bounding boxes for
which IoU with the bounding box of the highest confidence score is higher than the
threshold are filtered out.

The network structure used in the recent versions of YOLO consists of three parts:
the backbone, neck, and head. Since an image is used as the network input, each part is
constructed based on a 2-dimensional convolution neural network. In YOLOv3, multi-scale
features extracted in the backbone are used for object detection. The detailed network
structure is illustrated in Figure 2. The backbone extracts image features. In YOLOv5,
CSPDarknet, a modified version of Darknet that uses a cross-stage partial network (CSP-
Net) [34] in its residual blocks, is used as the backbone. The path aggregation network
(PANet) [35] is used as the neck. PANet is based on the feature pyramid network (FPN) [36],
which prevents features from the backbone’s lower stage from being ignored. Finally, the
features modified by the neck proceed to the head, which converts them into the output,
which includes localization and classification information. YOLOv5 has various model
sizes. YOLOv5s, the second-smallest and fastest YOLOv5 network model, was used in our
study, and it has 7.2 million parameters to be trained.

The loss functions of YOLOv5 consist of three parts: location loss function, classes loss
function, and objectness loss function. These mainly originate from the tasks the one-stage
object detection algorithm is designed to perform: localize the bounding boxes, verify
whether the object is in the box, and classify the object. Location loss function is related
to the bounding box geometry and its location. Among the elements in the output vector,
each bounding box’s four-dimensional information (tx, ty, tw, th) is transformed into the
bounding box geometry as Equation (1). (Cx, Cy) is the coordinate of the input grid.

bx = sigmoid(tx) + Cx

by = sigmoid
(
ty
)
+ Cy

bw = pwexp(tw)

bh = phexp(th)

(1)
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The sigmoid function is defined as sigmoid(x) = (1 + e−x)
−1. Location loss function

is calculated based on the IoU of the bounding box from the network output and its ground
truth. In YOLOv5, the complete IoU (CIoU) [37] is used as a location loss function. It
considers the IoU of the ground-truth bounding box, the generated bounding box, the
distance between their centers, and the aspect ratio. For the diagonal length c of the
enclosing box of prediction box b, its ground truth bgt, and the distance between their center
ρ(b,bgt), the CIoU is calculated using Equation (2).
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Lloc = 1− IoU +
ρ2(b,bgt)

c2 + αυ

υ = 4
π2

(
arctan bgt

w

bgt
h
− arctan bw

bh

)2

α = υ
(1−IoU)+υ

(2)

Objectness loss function is formulated based on the binary cross entropy of the con-
fidence score of the bounding box. The bounding boxes generated from the network
generally do not contain the object when calculating the objectness loss function, and the
class imbalance problem [38] can occur. Hence, the objectness loss function is calculated
as the weighted sum of the binary cross entropy of the bounding boxes from the output,
with much less weight attached to the bounding box with no object. The formulation is
expressed as

Lobj = −∑S2

i ∑B
j Iobj

ij CE
(
Ci, Ĉi

)
− λnoobj∑S2

i ∑B
j Inoobj

ij CE
(
Ci, Ĉi

)
. (3)

The loss function of classes is calculated as the sum of the binary cross entropy of
the class probability but only for the bounding boxes that include the object. The entire
formulation is expressed as

Lclass = −∑S2

i Iobj
ij ∑c∈classes CE(pi(c), p̂i(c)). (4)
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Metaphase images with or without chromosomal aberrations were provided by the
National Radiation Emergency Medical Center at the Korea Institute of Radiological and
Medical Sciences [39,40]. A total of 1456 Giemsa-staining metaphase images were gathered,
and 189 of them included a dicentric chromosome.

The position of the bounding boxes, which include a normal chromosome in the image,
was acquired by using Otsu’s algorithm and the “regionprops” method in the scikit-learn
library in Python for labeling. Conversely, the boxes bounding the dicentric chromosome
were selected manually. As there were many more normal chromosomes than dicentric
ones in the image, the class imbalance problem had to be mitigated. Therefore, individual
dicentric chromosome patches were added to the image to mitigate the problem while
avoiding superposition over the chromosomes. By segmenting the chromosomes using
Otsu’s algorithm, the backgrounds in the patches were made transparent before addition.
Moreover, several normal individual chromosome patches were similarly attached to
prevent the model from being trained to detect the dicentric chromosome by its segmented
edge. The number of dicentric chromosome bounding boxes was 2133 in the training
dataset, while it was 143 before augmentation.

We split the dataset into a training set; a validation dataset, which included the aug-
mented dicentric chromosome patches; and a test dataset, which included dicentric chro-
mosomes and did not have an augmented slide. The numbers of chromosome metaphase
images within those datasets were 887, 380, and 189, respectively. Originally, the images in
the dataset differed in size; however, they were resized to 640 × 640 pixels before being
used as the input for the network.

The number of epochs was set to 200, and the size of the mini-batch was 32. The
model was optimized using the stochastic gradient descent method. When training the
network without any information, we used a fine-tuning technique to enhance the model’s
performance. The network parameters were initialized with pretrained weights, which
were trained using the Microsoft Common Objects in Context (MS-COCO) dataset [41],
which is unrelated to chromosome images.

The performance of the object detection model was mainly evaluated using confusion
matrix-based metrics, such as precision and recall. Precision is defined as the ratio of
the number of true positive samples to the number of positive samples labeled by the
prediction model. On the other hand, recall is defined as the ratio of the number of true
positive samples to the real number of positive samples. These metrics are affected by
IoU thresholds and a confidence threshold, which determine whether the object is in the
bounding box or classified as a specific class and whether the proposed bounding box
coincides with the ground truth. Therefore, this study evaluated model performance by
setting the precision and recall above the confidence threshold, while the IoU threshold
was fixed at 0.5. The F1 score and average precision (AP), typically employed in object
detection, were used as the evaluation metrics. The F1 score is defined as the harmonic
mean of precision and recall, and the area under the precision–recall curve calculates the
AP. The mean AP (mAP) is the mean of the AP over the classification category.

3. Results
3.1. Convergence in Training

Figure 3 plots the behavior of the loss functions according to the epochs during training
for both the pretrained and randomly initialized models. The loss functions decreased
with the epochs, implying that the training process was sufficiently stable for both cases.
Moreover, the losses of the pretrained model were always lower than those of the randomly
initialized one for the entire training process; however, it was not capable of detecting
or distinguishing the individual chromosomes before training. These findings show that
the detecting capability of the model trained with an object unrelated to the chromosome
image of the Giemsa-stained image was utilized appropriately in the training process.
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3.2. Evaluation

Figure 4 illustrates the evaluation results of the fine-tuned model on both validation
and test sets. In the validation set, both normal and dicentric chromosomes were appropri-
ately detected. The maximum F1 score was approximately 0.94 when the confidence score
was 0.527. Moreover, the model accurately detected normal and dicentric chromosomes
in terms of mAP, scoring 0.961 for the IoU threshold of 0.5. Specifically, the precision and
recall for normal chromosomes were 0.946 and 0.915, respectively, whereas those for the
dicentric ones were 0.962 and 0.921, respectively.
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The models were also evaluated on the test dataset with chromosome metaphase
images without any augmentation. On the test dataset, it is shown that the maximum F1
score was 0.80 when the confidence score was 0.628. In addition, when the IoU threshold
was 0.5, the mAPs for normal and dicentric chromosomes were 0.874 and 0.703, respectively.
The precision and recall for predicting normal chromosomes were 0.896 and 0.842, while
those for dicentric chromosomes were 0.886 and 0.615.

Conversely, the evaluation metrics over the confidence score deteriorated when the
model was not pretrained, as shown in Figure 5. As shown in the figure, the maximum F1
score was 0.82 when the confidence score was 0.416 and the mAPs of the normal chromo-
some, dicentric chromosome, and all classes were 0.928, 0.818, and 0.873, respectively, for
the validation dataset. The comparison of the precision–recall curve and F1–confidence
curve between the pretrained network and the randomly initialized one demonstrates that
pretraining contributed to enhancing the performance of detecting dicentric chromosomes.
This tendency becomes more obvious when it comes to evaluating the performance of the
test dataset. The F1 score of the randomly initialized network was 0.66 for all classes at
a 0.517 confidence score. Moreover, the mAPs of the normal, dicentric, and whole chro-
mosomes were 0.826, 0.529, and 0.678, respectively. While the performance of detecting
normal chromosomes slightly degraded, the detection performance for the dicentric ones
decreased significantly.
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The overall results for the comparison of using the pretrained network are listed in
Table 1. According to the table, using the pretrained weight enhanced the performance of
the model. Moreover, based on the results for the test dataset shown in Figures 4 and 5, the
model was less effective in detecting dicentric chromosomes than detecting normal ones.
However, by adopting the pretrained weight with the MS-COCO dataset, the performance
improved significantly in terms of detecting dicentric chromosomes, while the performance
achieved in detecting normal ones was relatively insensitive to the initial weight of the
object detection model.
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Table 1. Comparison of model performance according to the initialization of the network.

Initialization Dataset F1 Score mAP

Pretrained
Validation 0.94 0.961

Test 0.80 0.788

Random
Validation 0.82 0.873

Test 0.66 0.678

Figure 6 visually compares the ground-truth label with the object detection model
output. Furthermore, we evaluated the mean number of chromosomes per metaphase
to evaluate how close they came to 46 chromosomes per metaphase. While the number
of chromosomes per metaphase in the validation set was 45.92, the predicted number of
chromosomes, including both normal and dicentric ones, per metaphase was 47.32.
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4. Discussion

Our experiments showed that normal and dicentric individual chromosome detection
is more accurate when using a weight pretrained on the MS-COCO dataset consisting
of unrelated common objects. Specifically, the capability to classify both normal and
dicentric chromosomes becomes considerably better when using the pretrained network.
The network used in the object detection algorithm has numerous parameters to be trained;
thus, it is obvious that enormous amounts of data should be prepared for training. However,
since both collecting and labeling the chromosome metaphase images are complex and
expertise-dependent tasks, acquiring an adequately sized dataset is hard and costly. In this
point of view, our results indicate that pretraining can improve model performance and
address the challenge of creating and labeling a large dataset, which is time-consuming
and requires expertise.

As shown in Figure 3, the models were trained stably for both cases, representing
similar values for three kinds of losses. However, the evaluation results were quite different
from each other, and, even for the test dataset, the randomly initialized model shows very
poor performance in detecting dicentric chromosomes. This originates from the overfitting
issue of the model, since the dataset is not large enough for training. Therefore, it is directly
related to the advantage of using a pretrained network, which mitigates the issue. Moreover,
the recall value on the test dataset shows that the model tends to predict relatively high false
negatives for dicentric chromosomes, which originates from the class imbalance problem
in both classes. The main issue in the automation of DCA using deep learning is the nature
in which the dicentric chromosomes are underrepresented in the chromosome metaphase
image. Although individual dicentric chromosome patches were added to the chromosome
images to mitigate the class imbalance problem, they did not essentially solve the problem.
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Moreover, acquiring numerous chromosome images that include an adequate number
of dicentric chromosomes is crucial. However, labeling a sizeable dicentric chromosome
dataset, especially for DCA, would be expensive owing to the need for specialized expertise.
Therefore, a semi-supervised learning model [42,43] should be developed to deal with a
significant, partially labeled dataset. Recently, numerous studies on semi-supervised object
detection have been conducted [44,45]. To practically implement automated DCA using an
object detection model, a suitable semi-supervised architecture must be used and validated.

Studies have been conducted to automate DCA by adopting a deep learning model. Jang
et al. [12] suggested a deep learning-based automated dose estimation system (DLADES)
for DCA automation and absorbed dose estimation. They used faster R-CNN, a deep
learning object detection algorithm with FPN. The automation network was composed
of the counting network (CN) and identifying network (IN). Trained on 3031 images,
the precision and recall of the CN were 97.8% and 97.9%, respectively, and those for
IN, trained with 9904 images, were 90.5% and 90.4%, respectively. Wadhwa et al. [14]
minimized the intervention of field experts by introducing an objection detection model
only to extract the chromosome patches regardless of their abnormality. Subsequently, the
dicentric classifier was applied to the extracted individual chromosome patches. Trained on
4.5–5 Gy images from WHO-BIODOSENET, the model achieved 98.54% and 90% precision
and recall, respectively, when using the Inception Resnet V2 network as the dicentric
classifier. Compared to the performance shown in the results section, our model, where the
object detection algorithm is directly applied, was less effective in terms of mAP, scoring
0.8, than the others. However, our approach using the pretraining is compatible with the
other method, so it can be utilized even for those methods.

There are some limitations of this study. Because the internal test dataset cannot
evaluate the overfitting of the model properly, an external test set acquired by another
institute or protocol is required for the evaluation of the trained model. Therefore, we will
evaluate the model with an external dataset in the future. In addition, the dose–response
curve should be estimated from the predicted number of dicentric chromosomes. As
the relationship between the estimated dose and dicentric chromosome frequency can be
expressed as a linear-quadratic function, the dose–response curve can be obtained by fitting
the following model:

F = αD2 + βD + γ (5)

where F is the frequency of the dicentric chromosome; D is the absorbed dose; and α, β,
and γ are the parameters to be fitted. The linear-quadratic curve can be fitted to the training
data for which the amount of irradiated dose is given. After fitting, the absorbed dose can
be estimated by solving the quadratic equation with the estimated dicentric chromosome
frequency using deep learning. We expect that sequential application of the object detection
deep learning model and linear-quadratic dose–response curve can function as an end-
to-end automatic cytogenetic dosimetry tool that outputs the estimated absorbed dose
from the set of the chromosome metaphase images. Consequently, it is expected that the
deep learning-based dicentric chromosome assay will mitigate the expertise-dependent
and time-consuming limitations of DCA simultaneously.

5. Conclusions

DCA is a cytogenetic dosimetry method for measuring radiation-induced DNA dam-
age. Counting dicentric chromosome by hand is time-consuming and requires expertise. In
this study, YOLOv5 was applied to chromosome images to examine the applicability of
methods for automating DCA. It was remarkable that using images from the MS-COCO
dataset that were unrelated to the target chromosome images to pretrain the weights clearly
improved the performance of the detection model. The strategy also has significant advan-
tages in preparing the appropriate number of data for training, since it requires a high cost
for the chromosome metaphase image and its labeling. In addition, individual dicentric
chromosome patches were used to alleviate the class imbalance problem. However, the
training dataset with dicentric ones could be expanded. In practice, the labeling cost must
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be resolved to obtain a large dataset and should precede research on a semi-supervised ob-
ject detection model for DCA. Moreover, the dose is expected to be estimated automatically
using the automatic DCA deep learning model with the linear-quadratic dose–response
curve together, where both are trained and fitted with the same dataset and the amount
of the absorbed dose of the subjects is given. It is expected that applying the object detec-
tion deep learning model with a pretrained weight that is trained with the dataset with
chromosome-regardless objects can be used in real applications or other studies, if further
studies that resolve those limitations are conducted.
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