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Abstract: The identification of risk factors for future prediabetes in young men remains largely
unexamined. This study enrolled 6247 young ethnic Chinese men with normal fasting plasma glucose
at the baseline (FPGbase), and used machine learning (Mach-L) methods to predict prediabetes after
5.8 years. The study seeks to achieve the following: 1. Evaluate whether Mach-L outperformed
traditional multiple linear regression (MLR). 2. Identify the most important risk factors. The baseline
data included demographic, biochemistry, and lifestyle information. Two models were built, where
Model 1 included all variables and Model 2 excluded FPGbase, since it had the most profound effect
on prediction. Random forest, stochastic gradient boosting, eXtreme gradient boosting, and elastic
net were used, and the model performance was compared using different error metrics. All the
Mach-L errors were smaller than those for MLR, thus Mach-L provided the most accurate results. In
descending order of importance, the key factors for Model 1 were FPGbase, body fat (BF), creatinine
(Cr), thyroid stimulating hormone (TSH), WBC, and age, while those for Model 2 were BF, white
blood cell, age, TSH, TG, and LDL-C. We concluded that FPGbase was the most important factor to
predict future prediabetes. However, after removing FPGbase, WBC, TSH, BF, HDL-C, and age were
the key factors after 5.8 years.

Keywords: machine learning; prediabetes; young men; Chinese

1. Introduction

Globally, type 2 diabetes (T2D) is the most common type of diabetes, and its prevalence
has increased drastically in recent years. In 2022, according to the American Diabetes
Association, over 11% of Americans are diabetic, with type 2 accounting for 95% of all
cases [1]. The prevalence and ratios of type 1 and type 2 diabetes in Taiwan are similar.
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According to Taiwan Biobank, in 2020, Taiwan had 2.18 million diabetic patients (11.1%
of the population). Again, type 1 diabetes only accounted for 0.51% of these patients [2].
From 2001 to 2017, the number of T2D cases among subjects younger than 20 years old
nearly doubled [3], while the number of cases in subjects under the age of 35 increased
2.8-fold [4]. These reports indicate that the age of initial diabetes onset has been decreasing.
Since the severity of diabetes complications is related to the time of onset, patients who
develop diabetes at a younger age will suffer more extensive and severe complications [5].
This raises an urgent need for early diagnosis and management among younger people
susceptible to T2D.

Many risk factors have been identified for susceptibility to diabetes, including be-
ing overweight, smoking, alcohol consumption, income, less physical activity, marital
status, and educational level [6]. Most previous studies of diabetes susceptibility relied
on traditional statistic methods such as multiple linear regression (MLR). In recent years,
machine learning (Mach-L) techniques have been widely applied in many fields including
medicine [7,8]. Mach-L applies computer algorithms to achieve our goal automatically
on the basis of Mitchell [9]. Mach-L can capture nonlinear relationships in the data and
complex interactions among multiple predictors, allowing it to potentially outperform other
conventional multiple logistic regression for diseases [10]. Several large-cohort studies have
focused on the prediction of prediabetes, but have failed to account for factors including
lifestyle, income, education level, and marriage status. The present study enrolls subjects
under the age of 36, with a follow-up of 5.8 years. Four different Mach-L methods are
applied to achieve the following:

1. Compare Mach-L and MLR performance in predicting future prediabetes
2. Identify and rank the six most important risk factors for prediabetes.

2. Materials and Methods
2.1. Subject Selection

The data for this study were sourced from the Taiwan MJ Cohort, an ongoing prospec-
tive cohort of health examinations conducted by the MJ Health Screening Centers in
Taiwan [11]. These examinations cover more than 100 important biological indicators,
including anthropometric measurements, blood tests, imaging tests, etc. Each participant
completed a self-administered questionnaire, covering personal and family medical his-
tory, current health status, lifestyle, physical exercise, sleep habits, and dietary habits [12].
All participants provided informed consent. All or part of the data used in this research
were authorized by and received from the MJ Health Research Foundation (Authorization
Code: MJHRF2023007A). Any interpretations or conclusions described in this paper do
not represent the views of MJ Health Research [13]. The study protocol was approved by
the Institutional Review Board of the Kaohsiung Armed Forces General Hospital (IRB No.:
KAFGHIRB 112-006). An initial sample of 23,462 subjects under the age of 36 was selected
based on the standards of care published by the American Diabetes Association [14], which
notes that most T2D diagnoses occur after this age. Excluding subjects who did not fit our
inclusion criteria left a total sample of 6247 male subjects for further analysis (Figure 1).

The exclusion criteria were as follows:

1. Age < 18 and >35 years old;
2. Taking any medications known to affect blood pressure, blood glucose, or blood lipids;
3. Abnormal plasma glucose level at the time of the study.

The following methods were published in our previous study [15]. On the day of
the study, senior nursing staff recorded the subject’s medical history, including current
medications, and a physical examination was performed. Body fat percentage (BF) was
measured using bioelectrical impedance analysis. WBC, hemoglobin levels, and the platelet
count (Plt) were measured using standard laboratory techniques, typically performed on
automated hematology analyzers. Creatinine (Cr), uric acid (UA), and C-reactive protein
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(CRP) levels were measured through blood tests using a biomedical analyzer to assess the
concentration of these substances in the blood [16].

1 
 

 
Figure 1. Participant selection.

Following previously published protocols, demographic and biochemical data were
collected as follows. After fasting for 10 h, blood samples were collected for biochemical
analysis. Plasma was separated from blood within 1 h of collection and stored at 30 ◦C
until the analysis of the fasting plasma glucose and lipid profiles. The FPG was measured
using the glucose oxidase method (YSI 203 glucose analyzer; Yellow Springs Instruments,
Yellow Springs, OH, USA). The total cholesterol and triglyceride (TG) levels were measured
using the dry multilayer analytical slide method with a Fuji Dri-Chem 3000 analyzer (Fuji
Photo Film, Tokyo, Japan). The serum high-density lipoprotein cholesterol and low-density
lipoprotein cholesterol concentrations were analyzed using an enzymatic cholesterol assay,
following dextran sulfate precipitation. A Beckman Coulter AU 5800 biochemical analyzer
was used to determine the urine ACR via turbidimetry (Indianapolis, IN, USA).

Table 1 shows the 25 baseline variables, including the participants’ age, body fat,
complete blood cell count, biochemistries, thyroid stimulating hormone, C-reactive protein,
education level, marital status, and income level. Alcohol consumption was defined as the
multiple of the total consumption duration, frequency, and alcohol percentage. Similarly,
smoking was the multiple of the smoking duration, frequency, and number of cigarettes.
The sport area was the multiple of the exercise duration, frequency, and type. All of these
parameters were used as independent variables, while the dependent variable was the
fasting plasma glucose (FPGend) after a 5.8-year follow-up, on average.

Table 1. Participant descriptive data.

Variable Mean ± SD

n 6247
Age (year) 27.7 ± 5.1
Years of follow-up 5.8 ± 4.2
Body fat (mg/dL) 22.3 ± 5.4
Leukocyte (×103/µL) 6.2 ± 1.4
Hemoglobin (×106/µL) 15.4 ± 0.9
Platelets (×103/µL) 236.7 ± 49.5
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Table 1. Cont.

Variable Mean ± SD

Fasting plasma glucose—baseline (mg/dL) 92.0 ± 4.7
Fasting plasma glucose—end of follow-up
(mg/dL) 97.2 ± 6.8

Serum glutamic pyruvic transaminase (IU/L) 31.5 ± 47.7
Serum glutamic oxaloacetic transaminase
(IU/L) 24.1 ± 20.8

Serum γ-glutamyl transpeptidase (IU/L) 19.8 ± 16.9
Lactate dehydrogenase (IU/L) 287.8 ± 66.7
Uric acid (mg/dL) 7.0 ± 1.4
Creatinine (mg/dL) 1.0 ± 0.1
Triglyceride (mg/dL) 100.3 ± 60.9
High density lipoprotein cholesterol (mg/dL) 49.2 ± 11.8
Low density lipoprotein cholesterol (mg/dL) 112.5 ± 31.1
Alkaline phosphatase 147.3 ± 47.3
Thyroid stimulating hormone (IU/mL) 1.6 ± 1.6
C-reactive protein (mg/dL) 0.2 ± 0.4
Drinking area 1.6 ± 7.2
Sport area 9.5 ± 9.0

Spouse status

Single 3957 (63.9%)
With spouse 2232 (36.1%)

Sleep hours

0–4 h/day 24 (0.4%)
4–6 h/day 1054 (16.9%)
6–8 h/day 4745 (76.1%)
>8 h/day 408 (6.6%)

Education level

Primary school 3 (0.05%)
Junior high school 51 (0.8%)
Senior high school 1012 (16.3%)
College 1830 (29.4%)
University 2293 (36.9%)
Higher than a master’s degree 1031 (16.6%)

Income level (thousand USD/year)

0/year 1232 (19.7%)
12.7/year 1029 (16.5%)
12.7–25.3/year 2822 (45.2%)
25.3–38.0/year 883 (14.1%)
38.0–50.6/year 130 (2.1%)
50.6–63.3/year 73 (1.2%)
>63.3/year 78 (1.2%)

2.2. Traditional Statistics

Two models were built in the present study. From our preliminary evaluation, Model 1
included all 25 variables. Our results showed that the FPGbase displayed 100% importance
when compared to the second important factor (BF, 28.3%). To further evaluate the hidden
interactions between these factors, Model 2 was built without the baseline FPG.

Data are represented as means ± standard deviations. The Student’s t test was
used to evaluate the differences in the continuous data between married and unmarried
participants. Education and income levels were used as ordinal variables for analysis of
variance (ANOVA). Pearson’s correlation was used to analyze the relationships between all
the continuous risk factors and the FPGend (Table 2). All statistical tests were two sided,
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and p < 0.05 was considered statistically significant. Statistical analysis was performed
using SPSS 10.0 for Windows (SPSS, Chicago, IL, USA).

Table 2. The results of correlation between risk factors and fasting plasma glucose at the end of the
follow-up.

Variable Value

FPGbase 0.301 **
Body fat 0.139 **

Age 0.121 **
TG 0.095 **

LDL-C 0.087 **
WBC 0.064 **
γ-GT 0.058 **
UA 0.053 **

LDH 0.037 **
GPT 0.033 *

Drink area 0.023
Hb 0.020

Platelets 0.012
GOT 0.012
CRP 0.008

Gap year 0.006
HDL-C −0.086 **

Sport area −0.058 **
TSH −0.018
ALP −0.016
Cr −0.001

Sleep time −0.006
FPGbase: fasting plasma glucose at the baseline of the follow-up, WBC: white blood cell count, Hb: hemoglobin,
ALP: alkaline phosphatase, GOT: serum glutamic oxaloacetic transaminase, GPT: serum glutamic pyruvic
transaminase,γ-GT: serum γ-glutamyl transpeptidase, LDH: lactate dehydrogenase, UA: uric acid, TG: triglyceride,
HDL-C: high-density lipoprotein cholesterol, LDL-C: low-density lipoprotein cholesterol, TSH: thyroid-stimulating
hormone, CRP: C-reactive protein, Cr: creatinine, * p < 0.01, ** p < 0.001.

2.3. Proposed Machine Learning Scheme

Building on our group’s previous work, models were constructed using four different
Mach-L methods to predict prediabetes and to rank risk factors [15].

Random forest (RF) is an ensemble learning decision tree algorithm that combines
bootstrap resampling and bagging [17]. RF’s randomly generates many different and
unpruned CART decision trees, using the decrease in Gini impurity as the splitting criterion.
The trees in the forest are then averaged or voted on to generate output probabilities and a
final model, producing a robust model [18]. The following methods were published by our
group [15,19]:

Stochastic gradient boosting (SGB) is a tree-based gradient boosting learning algorithm
that combines bagging and boosting techniques to minimize the loss function and solve
the overfitting problem of traditional decision trees [20]. In SGB, many stochastic weak
learners of trees are sequentially generated through multiple iterations, in which each
tree concentrates on correcting or explaining errors of the tree generated in the previous
iteration. That is, the residual of the previous tree iteration is used as the input for the newly
generated tree. This iterative process is repeated until the convergence condition, or a
stopping criterion is reached for the maximum number of iterations. Finally, the cumulative
results of many trees are used to produce a robust model.

The third method used in this study is eXtreme gradient boosting (XGBoost), a gradient
boosting technique based on an optimized extension of SGB [21]. XGBoost sequentially
trains multiple weak models, which are then assembled using the gradient boosting method
of outputs to improve prediction performance. XGBoost uses Taylor binomial expansion to
approximate the objective function and arbitrary differentiable loss functions to accelerate
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the model construction convergence process [22]. In addition, XGBoost applies regularized
boosting techniques to penalize the complexity of the model and correct overfitting, thus
increasing model accuracy [21].

Finally, elastic net (EN) is a hybrid of L1 and L2 regularization, integrating the penalty
terms of both. EN combines the Ridge penalty item, to achieve effective regularization, and
the Lasso penalty item, to select variables, allowing for effective model learning with only a
small number of arguments that are non-zero sparse, just like Lasso, but while maintaining
some of Ridge’s regular properties, thus providing certain advantages as follows: 1. EN
encourages group effects in the case of highly correlated variables, rather than setting some
of them to 0, like Lasso. 2. Ens are useful when multiple features are correlated with one
another. 3. Lasso tends to choose one of them at random, while elastic net tends to choose
two [23].

Figure 2 presents the proposed prediction and important variable identification scheme
that combines the four Mach-L methods. First, patient data were collected to prepare the
dataset, which was then randomly divided into a training dataset (80%) for model building
and a testing dataset (20%) for model testing. In the training process, the hyperparameters
of each Mach-L method must be tuned to construct an effective model. In this study, a
10-fold cross-validation technique was used for hyperparameter tuning.

The training dataset was further randomly divided into a training dataset to build
the model with a different set of hyperparameters, and a validation dataset for model
validation. All possible combinations of hyperparameters were investigated via grid search.
The model with the lowest root mean square error on the validation dataset was taken as
the best model for each Mach-L method. The best models for RF, SGB, XGBoost, and EN
were generated to obtain the corresponding variable importance ranking information.

During the testing phase, the performance of the best machine learning models was
evaluated using the testing dataset. Since the target variable in this study is a numerical
variable, the model performance was compared using different metrics, including symmet-
ric mean absolute percentage error (SMAPE), relative absolute error (RAE), root relative
squared error (RRSE), and root mean squared error (RMSE). The values for these metrics
are listed in Table 3.

Table 3. Four performance metrics used: stochastic gradient boosting, random forest, eXtreme
gradient boosting, and elastic net.

Metrics Description Calculation

SMAPE
Symmetric Mean Absolute
Percentage Error SMAPE = 1

n

n
∑

i=1

|yi−ŷi |
(|yi |+|ŷi |)/2 × 100

RAE Relative Absolute Error RAE =

√
∑n

i=1(yi−ŷi)
2

∑n
i=1(yi)

2

RRSE Root Relative Squared Error RRSE =

√
∑n

i=1(yi−ŷi)
2

∑n
i=1(yi−Y)

2

RMSE Root Mean Squared Error RMSE =

√
1
n

n
∑

i=1
(yi − ŷi)

2

To ensure a more reliable and stable comparison, the training and testing processes
were each repeated 10 times. The performance metrics of the four machine learning models
were then averaged for comparison against the performance of the benchmark MLR model
using the same training and testing datasets. A model with an average metric lower than
that of the MLR model was considered to be a more convincing model.
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Because all of the machine learning methods used can rank the importance of each
predictor variable, we defined the priority demonstrated in each model that was ranked 1
as the most critical risk factor, and that ranked as 25 was the last selected risk factor. The
machine learning methods used in this study may produce different variable importance
rankings due to their unique modeling characteristics. To maximize the stability and
reliability of our findings, we integrated the variable importance rankings of the pricier
machine learning models. In the final stage of our proposed scheme, we summarize and
discuss our significant findings based on the pricier machine learning methods.
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All methods were performed using R software version 4.0.5 and RStudio version
1.1.453, with the required packages installed [24,25].

The Materials and Methods should be described with sufficient details to allow others
to replicate and build on the published results. Please note that the publication of your
manuscript implicates that you must make all materials, data, computer code, and protocols
associated with the publication available to readers. Please disclose at the submission stage
any restrictions on the availability of materials or information. New methods and protocols
should be described in detail while well-established methods can be briefly described and
appropriately cited.

Research manuscripts reporting large datasets that are deposited in a publicly available
database should specify where the data have been deposited and provide the relevant
accession numbers. If the accession numbers have not yet been obtained at the time of
submission, please state that they will be provided during review. They must be provided
prior to publication.

Interventionary studies involving animals or humans, and other studies that require
ethical approval, must list the authority that provided approval and the corresponding
ethical approval code.

3. Results

A total of 2789 study participants developed prediabetes, with age, BF, WBC, FPGbase,
γ-GT, LDH, UA, TG, and LDL-C as the most important impact factors for the total 5.8-year
follow-up period, while HDL-C, TSH, and sport area also displayed significance in the ear-
lier follow-up stages. Unmarried subjects were found to be more susceptible to developing
prediabetes, while the educational level was found to have no significant impact. Subjects
without income were also more susceptible (Table 1). Table 4 compares the performance of
the four different methods. For both models, the four Mach-L methods produced lower
values for SMAPE, RAE, RRSE, and RMSE, indicating that they outperformed MLR. Table 5
shows the importance percentage of the four Mach-L methods. The rightmost column
averages the four methods, indicating that the most important factors for predicting the
FPGend were FPGbase, BF, Cr, TSH, WBC, and age in Model 1. As previously noted, the
importance percentage for the FPGbase was 100%, which is significantly higher than the
second most important impact factor, i.e., BF (28.32%). Table 6 shows the results for Model
2, excluding the FPGbase. Similar to Model 1, the most important factors are BF, WBC, age,
TSH, TG, and LDL-C. Finally, Figures 3 and 4, respectively, present illustrations of the
results in Tables 5 and 6, allowing for closer observations of the risk factor rankings.

Table 4. The average performance of linear regression and the four machine learning methods.

A. Model 1

Methods SMAPE RAE RRSE RMSE

MLR 0.0534 0.9349 0.951 6.5015
RF 0.0535 0.9358 0.9531 6.5154
SGB 0.0533 0.9323 0.9503 6.4962
XGBoost 0.0533 0.9333 0.9535 6.5184
Elastic net 0.0534 0.935 0.9516 6.5055

B. Model 2

Methods SMAPE RAE RRSE RMSE

MLR 0.054 0.9861 0.9873 6.4317
RF 0.0535 0.978 0.9814 6.3931
SGB 0.0538 0.983 0.9843 6.4124
XGBoost 0.0536 0.9792 0.9828 6.4027
Elastic net 0.0538 0.9832 0.9851 6.4174

MLR: multiple linear regression, RF: random forest, SGB: stochastic gradient boosting, XGBoost: eXtreme Gradient
Boosting, SMAPE: symmetric mean absolute percentage error, RAE: relative absolute error, RRSE: root relative
squared error, and RMSE: root mean squared error.
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Table 5. Importance percentages of risk factors predicting future fasting plasma glucose using four
different machine learning methods in Model 1.

Variables RF SGB XGBoost Elastic Net MOIP
Age 29.79 11.12 14.7 24.96 20.14
Years of follow up 30.94 7.49 9.43 28.81 19.16
Body fat 53.75 20.11 21.23 18.19 28.32
Leukocyte 37.63 2.98 3.66 36.49 20.19
Hemoglobin 33.73 0.69 1.01 14.65 12.52
Platelet 39.43 0.86 0.89 0.52 10.42
Fasting plasma
glucose—baseline 100 100 100 100 100

SGPT 30.6 3.15 0.97 0.53 8.81
SGOT 26.07 0 0 0 6.51
γ-glutamyl transpeptidase 31.78 0.57 1.35 0 8.42
Latic dehydrogenase 37.77 2.26 2.09 0.37 10.62
Uric acid 36.73 0.53 0.93 19.71 14.47
Creatinine 14.76 0 0 93.54 27.07
Triglyceride 40.42 3.76 4.81 0 12.24
HDL-cholesterol 36.64 4.15 5.12 6.68 13.14
LDL-cholesterol 38.55 3.82 2.51 1.03 11.47
Alkaline phosphatase 38.63 1.6 1.92 0.2 10.58
Thyroid stimulating
hormone 41.65 1.77 2.19 36.43 20.51

C-reactive protein 7.37 0 0 10.79 4.54
Alcohol consumption 3.23 0 0 0.24 0.86
Sport area 19.91 2.77 3.62 4.47 7.69
Marital status 0 0 0 0 0
Sleep hours 4.71 0 0.64 0.77 1.53
Education level 9.51 0 0 19.31 7.20
Income level 9 1.11 0 7.11 4.30

RF: random forest, SGB: stochastic gradient boosting, XGBoost: eXtreme Gradient Boosting, SGPT: Serum glutamic
pyruvic transaminase, SGOT: Serum glutamic oxaloacetic transaminase, MOIP: mean of importance percentage.

The most important sixth rank 1st 2nd 3rd 4th 5th 6th

Table 6. Importance percentages of risk factors predicting future fasting plasma glucose using four
different machine learning methods in Model 2.

Variables RF SGB XGBoost Elastic Net MOIP
Age 61.18 43.94 60.64 53.82 36.87
Years of follow up 56.58 8.35 16.01 18.83 22.78
Body fat 100 100 100 55.4 58.62
Leukocyte 78.4 19.31 36.78 100 54.89
Hemoglobin 71.74 8.62 10.35 0 22.32
Platelet 79.12 0 6.35 0 20.95
SGPT 70.84 0 3.15 0 16.83
SGOT 65.09 3.83 6.61 0 18.49
γ-glutamyl transpeptidase 69.96 10.26 10.39 0.52 22.67
Latic dehydrogenase 80.21 0 9.07 0 22.16
Uric acid 72.78 1.68 9.34 0 18.88
Creatinine 35.81 0 0 0 6.71
Triglyceride 82.98 18.88 28.27 0.53 28.69
HDL-cholesterol 78.35 9.5 12.86 8.98 24.94
LDL-cholesterol 82.46 12.76 17.25 2.3 27.42
Thyroid stimulating hormone 82.99 3.33 12.38 48.8 32.66
C-reactive protein 20.59 0 0 0 4.00



Diagnostics 2024, 14, 979 10 of 15

Table 6. Cont.

Variables RF SGB XGBoost Elastic Net MOIP
Alcohol consumption 6.6 0 0 0 0
Sport area 44.13 5.69 12.24 5.28 8.95
Marital status 0 0 0 0 0
Sleep hours 11.25 0 4.76 0 1.65
Education level 24.46 0 0 0 5.14
Income level 26.86 0 0 0 6.11

RF: random forest, SGB: stochastic gradient boosting, XGBoost: eXtreme Gradient Boosting, SGPT: Serum glutamic
pyruvic transaminase, SGOT: Serum glutamic oxaloacetic transaminase, MOIP: mean of importance percentage.

The most important sixth rank 1st 2nd 3rd 4th 5th 6th
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Figure 3. Relative importance of variables in Model 1. SGPT: Serum glutamic pyruvic transaminase,
SGOT: Serum glutamic oxaloacetic transaminase.
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Figure 4. Relative variable importance in Model 2. SGPT: Serum glutamic pyruvic transaminase,
SGOT: Serum glutamic oxaloacetic transaminase.

4. Discussion

The present study followed 6247 young ethnically Chinese men for an average of
5.8 years. The subject data included lifestyle information, allowing for a more comprehen-
sive view of the predictors for glucose change. Using four different Mach-L in Model 1, we
found that FPGbase, BF, Cr, TSH, WBC, and age were the six most important factors for the
FPGend. Given the disproportionate impact of the FPGbase on the second most important
factor (100% versus 28.3% for BF), Model 2 was built excluding the FPGbase, and the same
methods were repeated, finding only minor differences in terms of the key impact variables.

Consistent with other studies, the FPGbase was found to be the leading determinator
for an increased FPGend. In 2021, We et al. found that FPG was the most important
predictor for prediabetes in a 3.35-year follow-up period among 551 Chinese subjects,
aged from 40–70 years old [26]. However, that study used multiple logistic regression and
provided a hazard ratio (HR: 2.284; 95% confidence interval: 1.556, 3.352; p < 0.001). Logistic
regression is less informative than MLR because it does not present quantitative changes
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of the relationships between the dependent and independent variables. Another review
article published by Abdul-Ghani et al. also supported the role of FPG. They reported the
development of a variety of multivariate models, all of which were useful for predicting
future T2D. The main pathophysiology underlines how the FPG might be related to the
decline of β-cell function with increasing age [27]. Our results further confirm that even a
mild elevation of FPG might lead to the further dysregulation of glucose metabolism.

In both Models 1 and 2, BF was the second most important risk factor. While the
present study accounts for BMI, BF is more accurate and was thus used to build the
models [28]. As noted in the Methods section, the impact of BF was much less significant
than that of FPG. To demonstrate the effects of BF on glucose metabolism, Jo et al. [29]
classified 6335 participants from the National Health and Nutrition Examination Survey
into four groups as follows: (1) normal weight with normal %BF, (2) normal weight with
high %BF, (3) overweight with normal %BF, and (4) overweight with high % BF. The most
important finding was that the prevalence of abnormal glucose in the normal weight group
with a high % of BF (13.5%) is significantly higher than that of the overweight group with
a low % of BF (10.5%, p < 0.001). This finding is incompatible with our result, which
further supports the importance of BF in glucose metabolism. BF is positively related to
plasma levels of free fatty acid [30], which has a significantly negative impact on glucose
metabolism via an increased hepatic glucose output and decreased skeletal muscle glucose
disposal, thus producing inflammatory proteins and increasing insulin resistance [31–33].
These effects clearly explain the present findings.

The WBC was the 5th and 2nd important factor in Model 1 and 2, respectively. There
were many studies showing that this relationship does exist [34–37]. For example, Jiang
et al. showed that the WBC was positively correlated with glycated hemoglobin and 2 h
postprandial glucose in 9697 Chinese [38]. It is well known that one’s WBC is closely related
to oxidative stress, and could even be used in clinical caring for type 2 diabetes [39,40]. Thus,
this relationship is easily understood since a high WBC, which is a marker for inflammation,
is related to high TG and low LDL-C and hypertension [41,42]. All these derangements are
hallmarks of insulin resistance [43].

The impact of aging on glucose metabolism has been studied extensively [44]. In
the present study, age is, respectively, the 6th and 3rd most important impact factor in
Models 1 and 2. Chia et al. found that the incidence of several important impairments
related to glucose metabolism increases with age, including confounding impacts on insulin
secretion [45,46], pulsatile insulin secretion [47], reduced β-cell response to incretin [48],
and even insulin resistance [49]. The results of the present study are consistent with
these findings.

TSH was the 4th most important risk factor for predicting the FPGend in the present
study. While this relationship is less widely known, many studies have shown that both
hyper- and hypothyroidism are related to T2D [50–53]. Thyroid hormone levels affect
the glucose metabolism through the following mechanisms: increased glucose absorption,
gluconeogenesis and glycogenolysis, and free fatty acids via promoting lipolysis [54]. All
these impacts could explain our present findings.

Finally, in Model 2, higher TG and LDL-C levels were positively correlated with the
FPGend. Insulin resistance is one of the main causes for T2D [55], while major changes to
the lipid profile include increased TG and LDL-C [56]. Therefore, our results are consistent
with previous findings.

It is interesting to note that the plasma Cr level was selected in Model 1, but not in
Model 2. This could be explained by the interplay between the plasma Cr level and the
FPGbase. Yoshida et al. reported that a lower Cr level is associated with a higher chance
of prediabetes [57]. When removing the baseline FPG, the position of Cr moved from
3rd to 18th in the present study. This indicates the importance of Cr and FPGbase being
synchronized together.
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Other hidden but important information should also be pointed out. In our study, the
gap between the follow-up, income, education level, sleep hour, drinking status, and the
presence of a spouse were all unimportant factors for determining the FPGend.

The present study is subject to certain limitations. First, none of the subjects were
smokers, thus the impact of tobacco consumption cannot be determined. Secondly, the
MJ Health Screening cohort generally excludes those with lower socio-economic statuses
who cannot afford the company’s services, thus the sample may be subject to selection bias.
Finally, our study was limited to ethnic Chinese subjects, and caution should be taken in
extrapolating the findings to other ethnic groups.

5. Conclusions

Mach-L was found to outperform traditional MLR in terms of capturing non-linear
relationships. FPGbase, BF, WBC, age, TSH, TG, and LDL-C were the most important
determinators for the FPGend after 5.8 years in a group of Chinese men, aged from 18 to
35 years old.
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