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Abstract: Breast cancer is the most prevalent type of cancer in women. Risk factor assessment can aid
in directing counseling regarding risk reduction and breast cancer surveillance. This research aims to
(1) investigate the relationship between various risk factors and breast cancer incidence using the
BCSC (Breast Cancer Surveillance Consortium) Risk Factor Dataset and create a prediction model
for assessing the risk of developing breast cancer; (2) diagnose breast cancer using the Breast Cancer
Wisconsin diagnostic dataset; and (3) analyze breast cancer survivability using the SEER (Surveillance,
Epidemiology, and End Results) Breast Cancer Dataset. Applying resampling techniques on the
training dataset before using various machine learning techniques can affect the performance of
the classifiers. The three breast cancer datasets were examined using a variety of pre-processing
approaches and classification models to assess their performance in terms of accuracy, precision, F-1
scores, etc. The PCA (principal component analysis) and resampling strategies produced remarkable
results. For the BCSC Dataset, the Random Forest algorithm exhibited the best performance out of the
applied classifiers, with an accuracy of 87.53%. Out of the different resampling techniques applied
to the training dataset for training the Random Forest classifier, the Tomek Link exhibited the best
test accuracy, at 87.47%. We compared all the models used with previously used techniques. After
applying the resampling techniques, the accuracy scores of the test data decreased even if the training
data accuracy increased. For the Breast Cancer Wisconsin diagnostic dataset, the K-Nearest Neighbor
algorithm had the best accuracy with the original dataset test set, at 94.71%, and the PCA dataset test
set exhibited 95.29% accuracy for detecting breast cancer. Using the SEER Dataset, this study also
explores survival analysis, employing supervised and unsupervised learning approaches to offer
insights into the variables affecting breast cancer survivability. This study emphasizes the significance
of individualized approaches in the management and treatment of breast cancer by incorporating
phenotypic variations and recognizing the heterogeneity of the disease. Through data-driven insights
and advanced machine learning, this study contributes significantly to the ongoing efforts in breast
cancer research, diagnostics, and personalized medicine.

Keywords: resampling; principal component analysis; random forest; K-nearest neighbors; logistic
regression

1. Introduction

Breast cancer is a significant public health concern among women. According to the
American Cancer Society, high body weight, physical inactivity, and alcohol consumption
are risk factors that contribute to 30% of breast cancer cases [1]. Even while these variables
may be changed to potentially lower risk, determining a woman’s unique risk profile
is crucial for directing counseling regarding risk reduction, genetic testing, and breast
cancer surveillance.

In recent years, substantial advancements have been made in the risk assessment, diag-
nosis, and treatment of breast cancer. Early detection significantly improves survival rates,
with a 99% 5-year relative survival rate for localized cases [2]. Consequently, accurate risk
assessment is crucial to determining whether a woman has an average or elevated chance
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of developing breast cancer. Women at different risk levels can benefit from customized
management techniques based on this categorization [3].

This study’s main goal is to improve knowledge about breast cancer and how it is
managed by employing a thorough and multifaceted approach. Through the utilization
of large-scale datasets and machine learning skills, our goal is to investigate multiple
aspects of breast cancer research, including risk evaluation, improved diagnosis, and a
detailed examination of survivability variables. This study also focuses on breast cancer
risk prediction, identifying individuals at varying risk levels by integrating multiple risk
factors into our models to facilitate early diagnosis [4].

It is worth noting that artificial intelligence (AI) systems have shown the ability to
improve breast cancer diagnosis by outperforming traditional radiological methods by
11.5% [5]. Consequently, there is an urgent need for enhanced automated screening and
diagnosis procedures. Using the Breast Cancer Wisconsin (diagnostic) dataset, this study
demonstrates the application of diverse machine learning algorithms to the task of breast
cancer diagnosis.

Furthermore, the impact of breast cancer is not uniform across all demographic groups,
leading to clusters with varying incidence and mortality rates [6]. Effective screening and
prognostic identification are pivotal in addressing this heterogeneity. The objective is to
determine and depict relevant demographic and prognostic characteristics that affect breast
cancer survivability by using machine learning techniques. Breast cancer survivability
rates highlight the value of routine screening [7]. The SEER Breast Cancer Dataset enables
a thorough analysis of survivability from both supervised and unsupervised perspectives.

Several studies have contributed significantly to breast cancer diagnosis, risk assess-
ment, and survivability analysis. The literature review that follows focuses on several
significant studies that provide insight into risk factors, predictive models, and diagnostic
precision in breast cancer research.

Kabir et al. conducted experiments on a breast cancer dataset with imbalanced data,
using various resampling techniques to adjust the training data. They used resampling
techniques like random undersampling (RUS) of the majority class, random oversampling
(ROS) of the minority class, synthetic minority oversampling technique (SMOTE), edited
nearest neighbors (ENN), SMOTE combined with ENN, and SMOTE combined with Tomek
Link. They also used Decision Trees (DTs), Random Forests (RFs), and extreme gradient
boosting (XGBoost) classifiers. The results showed that using resampling techniques
improved performance, particularly for the minority class. The highest accuracy achieved
for DT was 90.69% with ENN, for RF it was 88.55% with SMOTE + ENN, and for XGBoost
it was 91.49% with ENN. However, the overall performance was better without applying
any resampling method for the minority class [8].

Using information gathered during screening, Louro et al. created a risk prediction
model to estimate the short- and long-term risk of breast cancer in women undergoing
mammography. They used partially conditional Cox proportional hazard regression in-
cluding covariates like age, family history, past benign breast disease, and mammographic
characteristics. Over a period of two to twenty years, the E/O ratio (the ratio of expected to
observed cases in the target group) varied from 0.99 to 1.02. The 4-year risk estimate had
the lowest AUC (area under the curve) (58.7%, 95% CI: 55.9–61.5%) and the 18-year risk
estimate had the highest AUC (64.7%, 95% CI: 62.5–66.9%) [9].

Behravan et al. proposed a method that used the XGBoost machine learning model
with an adaptive iterative search algorithm to identify the interactions between genetic
and demographic risk factors that provide the best accuracy in predicting breast cancer
(BC). The first module provides a list of potential BC-risk-predictive traits, while the second
module captures the interacting characteristics that produce the best BC risk prediction
accuracy on validation data. By combining interacting genetic features and family history
features, the proposed approach achieved a mean average precision (mAP) of 77.78 on the
Kuopio Breast Cancer Project (KBCP) dataset, which was better than the mAPs of 74.19 and
73.65 obtained by using only Group 1 features and interacting SNPs, respectively. When
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using only estrogen metabolism (Group 2) features, the mAP was 72.57, but by combining
interacting genetic and Group 2 features, the mAP increased to 78.00, outperforming the
former [10].

In 2021, Gupta et al. investigated the effects of several class balancing methods on
models created from an unbalanced mammographic dataset. In 2022, Sood et al. created
a breast cancer prognostic modeling method using the minimum necessary data from
mammography screening [11].

In 2022, Sood et al. created a breast cancer prognostic modeling method using the
minimum necessary data from mammography screening. The paper discussed the use of
machine learning techniques for predicting breast cancer in women. The researchers exper-
imented with seven different machine learning algorithms, including Naive Bayes, SVM,
K-Nearest Neighbors, Decision Trees, Random Forests, Adaboost, and deep learning. They
evaluated the performance of these algorithms based on their ability to correctly identify
cancerous and noncancerous cases. The researchers noted a significant improvement in
the accuracy of the models after addressing the imbalance in the data through resampling
techniques. The best accuracy achieved was 92.46% on the actual datasets [12].

Lavanya et al. conducted a study on multiple breast cancer datasets to evaluate the
performance of the CART (Classification and Regression Tree) Decision Tree classifier with
and without feature selection. The outcomes demonstrated that a certain feature selection
made using the CART had improved the classification precision of a specific dataset [13].
The study by Naji et al. utilized the Breast Cancer Wisconsin diagnostic dataset and
five machine learning algorithms, namely, Support Vector Machines, Random Forests,
Logistic Regression, Decision Trees, and K-Nearest Neighbors, to accurately predict and
diagnose breast cancer [14]. The research by Salama et al. uses accuracy in classification and
confusion matrices to compare the performance of various classifiers (Decision Trees, Multi-
Layer Perception, Naive Bayes, Sequential Minimal Optimization, and Instance-Based for
K-Nearest Neighbors) on three separate sets of data of breast cancer. In order to obtain the
best multi-classifier strategy for each dataset, the study also introduces a combination at
the classification level among these classifiers [15]. The accuracy of various deep learning
algorithms for predicting breast cancer patients’ post-operative survival is compared in the
research by Gupta et al. Artificial neural networks, restricted Boltzmann machines, deep
autoencoders, and convolutional neural networks (CNNs) are some of the techniques that
were investigated [16].

Our paper on breast cancer research is informed by a range of methodologies and
perspectives, as outlined in this literature review. This comprehensive approach supports
our efforts to thoroughly address the topic.

The paper adheres to a conventional structure; Sections 2 and 3 describe the methodol-
ogy and the analysis of the results obtained, respectively. Finally, Section 4 discusses future
directions and concludes the research.

2. Methodology
2.1. Risk Assessment Using BCSC Risk Factor Dataset

The BCSC (Breast Cancer Surveillance Consortium) Risk Factor Dataset includes
risk factor data from mammograms performed at the BCSC between January 2005 and
December 2017. To build this dataset, one exam per woman per calendar year and per age
was chosen.

In the data from the 6,788,436 mammograms, the 13 attributes are age, race/ethnicity,
family history of breast cancer, age at menarche, age at first birth, breast density, use of
hormone replacement therapy, menopausal status, body mass index, history of biopsy, and
history of breast cancer. There is also an attribute named count, which shows the frequency
count of that combination of features [17]. For data pre-processing, after applying several
approaches like removing the year column, rows with unknown values, and data scaling
the dataset, 527 k records were left (Figure 1).
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Figure 1. Data Visualization of the BCSC risk factor dataset.

We addressed the dataset imbalance through resampling techniques—random un-
dersampling of the majority class and oversampling of the minority class. The goal was
to generate a balanced training dataset and mitigate classifier bias toward the dominant
class. We then trained various classifier models using both the imbalanced and resampled
training data.

The prediction performance of our models is directly affected by the data quality and
relevance, which were ensured by this thorough pre-processing stage. Machine learning
models that followed were able to zero in on real patterns, not data collecting artifacts or
representation biases, because we scaled the dataset and corrected imbalances. Our study’s
reliability is enhanced and it aligns with best practices in data science for health-related
research because of this careful methodology.

The following sections provide detailed information on the selected machine learning
algorithms and their performance indicators.

Step 1: First, we obtained breast cancer risk factor data for the classification. Training
data contain 70% and test data contain the remaining 30% of the dataset.

Step 2: In this step, the training data are resampled because they are of unequal
distribution in the dataset. The test data are not resampled and kept the same.

Step 3: In this step, different classifier models are trained first using the imbalanced
training data. After that, we use resampled training data which had been modified by
resampling methods for the classifiers.

Step 4: Apply test data on the models to predict the risk of developing breast cancer.
During Step 2, we used various resampling strategies to balance the BCSC Risk Factor

Dataset. To balance the majority class, we randomly undersampled, and to enhance the
minority class, we used the synthetic minority oversampling method (SMOTE). For Step 3’s
classification problem, we employed machine learning techniques such as Decision Trees
(DTs), Random Forests (RFs), and extreme gradient boosting (XGBoost), and evaluated
their performance using key measures like accuracy, sensitivity, specificity, and precision
(Figure 2).
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Figure 2. Flowchart of the proposed approach for dataset 1.

2.2. Diagnosis Using Breast Cancer Wisconsin (Diagnostic) Dataset

In the Breast Cancer Wisconsin (diagnostic) dataset, features were extracted to describe
the characteristics of the cell nuclei from the digitized images of FNA (fine needle aspirate)
biopsy. The dataset contains 569 data points, 357 benign and 212 malignant. Cell nucleus
radius, texture, perimeter, area, smoothness, compactness, concavity, concave points, sym-
metry, and fractal dimension were the 10 features calculated in the dataset (Figure 3). Each
attribute contains three data elements: the mean, the standard deviation, and the greatest
or “worst” value (the mean of the three highest values), resulting in a dataset with a total
of 30 features [18].
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Figure 3. Pairwise relationship of malignant and benign tumors based on three important features
from the Breast Cancer Wisconsin diagnostic dataset.

Before running the Decision Tree (DT) and K-Nearest Neighbor (KNN) algorithms,
a principal component analysis was run on the dataset, and PC1 to PC7 was able to
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maintain more than 91% of the total variance. So, dimensionality was reduced from
30 features to 7 principal components. The efficiency of principal component analysis (PCA)
in simplifying complex data without significantly reducing information loss encouraged
our decision to use it. In addition to lowering computing requirements, this method
lowered the risk of overfitting by zeroing in on the dataset’s most important features.
More accurate and generalizable results were obtained after applying machine learning
models to this optimized dataset, demonstrating the need for careful data preparation in
diagnostic investigations.

Then, both the original dataset and the new principal component dataset were split
into a 30% validation set and a 70% training set and 10-fold cross-validation was performed.
Then, both datasets underwent classification using Decision Trees and KNN. We applied
the KNN model, which uses K = 10, on the validation dataset of the original dataset and
applied the KNN model, which uses K = 6, on the validation dataset of the PC dataset. The
Decision Trees were pruned to minimize their size by removing the branches that could not
classify cases. Best pruned and minimum error trees were found using xerror and xstd.

These models’ performance was assessed using the criteria of accuracy, sensitivity,
specificity, and precision. A receiver operating characteristic (ROC) curve was used to
graphically display performance.

2.3. Survival Analysis Using SEER Breast Cancer Dataset

The SEER Breast Cancer Dataset of breast cancer patients was made available in
the NCI’s Surveillance, Epidemiology and End Results (SEER) program’s November 2017
update. SEER provides information on population-based cancer statistics. Age, race, marital
status, tumor size, estrogen status, and progesterone status are some of the 15 features in
this dataset. The 4024 data points in the dataset have a survivability status of 616 dead and
3408 living [19] (Figure 4).
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Figure 4. Data visualization of the SEER Breast Cancer Dataset.

The various categorical feature types were converted into numeric values for data
pre-processing. For instance, the race categories White, Black, Other (American Indian/AK
Native, Asian/Pacific Islander), and Unknown were denoted by 1, 2, 3, and 4, respectively.
Similarly, positive estrogen progesterone status was represented as 1, and negative estrogen
progesterone status was represented as 2. This was performed for all the feature columns.
The survivability status, either alive or dead, was transformed to 1 s and 0 s. After
that, dealing with missing values, scaling the data, and eliminating duplicate data and
unnecessary columns from the dataset were all steps of preparing the data.

In order to prepare the dataset for advanced machine learning analysis, it was nec-
essary to transform categorical features into numerical values and fix any missing data.
The accuracy of our models in representing the complicated facts of breast cancer survival
outcomes is ensured by these processes, which involve interpreting and analyzing the
data. Our rigorous methodology lays the groundwork for investigating the interplay of
survivability-related variables, demonstrating the promise of machine learning as a tool for
improving patient care.
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Unsupervised data mining techniques such as cluster analysis can be used to divide
the patients into groups to determine which factors are more strongly associated with breast
cancer survival [20]. In this project, different clustering methods, including agglomerative
hierarchical clustering and K-means clustering, were used to find similarities between
the patient features for breast cancer survivability. Data points are organized using K-
means into discrete, non-overlapping groupings. So, K-means clustering was one of the
machine learning algorithms used in this project. Tree structures can be created from related
datasets using hierarchical clustering techniques such as AGNES. The relationships between
various sub-clusters and the distances between data points are visible. For both clustering
techniques in R, random sample sets from the data were taken, and then clustering was
applied to sample data. As the sample sets were selected randomly, they can be considered
a fairly accurate representation of the whole dataset.

Clustering, an unsupervised method, is frequently combined with other kinds of
analysis. Two supervised learning techniques were used: Logistic Regression and the
Decision Tree algorithm. Logistic Regression was used as the outcome of survivability
status was binary: either dead or alive. For the Logistic Regression algorithm, data were
divided into a test set and a training set, with 70% of the dataset going into the training
set and 30% going into the test set. The Decision Trees were pruned to minimize their size
by removing the branches that could not classify cases. Best pruned and minimum error
trees were found using xerror and xstd. Time series cross-validation was employed to
forecast the survivability of breast cancer patients. The time series was based on survival
months and was created using complete dates, including days. There were 107 months of
survival data.

3. Results
3.1. Results of Risk Assessment

To evaluate the performance of the different classification techniques applied to the
BCSC Dataset, such as Random Forests, Logistic Regression, Extra Trees, etc., the accuracy,
precision, and F-1 scores were derived. The accuracy scores are given in Table 1 and
Figure 5.

Table 1. Overall performance of the classifiers on BCSC Risk Factor Dataset.

Classifier Hyperparameters Training Data Accuracy Test Data Accuracy

Decision Tree default 0.971250087 0.723443296
Random Forest default 0.971236011 0.766493249
XG-Boost default 0.734065414 0.733957811
Decision Tree default 0.860784303 0.822131966
Random Forest default 0.860759939 0.820369645
Logistic Regression default 0.83735429 0.836679005
Extra Trees criterion = ‘gini’, n_estimators = 128 0.915882057 0.756212338
Extra Trees criterion = ‘gini’, n_estimators = 128 0.93007542 0.875298457
Extra Trees criterion = ‘entropy’, n_estimators = 128 0.93007542 0.875285824
Extra Trees criterion = ‘gini’, n_estimators = 96 0.93007542 0.875386889
Logistic Regression C = 100, max_iter = 500, solver = ‘newton-cg’ 0.839243851 0.838536074
Logistic Regression C = 10, max_iter = 500, solver = ‘newton-cg’ 0.839243851 0.838536074
Logistic Regression C = 1.0, max_iter = 500, solver = ‘lbfgs’ 0.839243851 0.838536074
Logistic Regression C = 0.01, max_iter = 500, solver = ‘newton-cg’ 0.83928175 0.83839711
Logistic Regression C = 100, max_iter = 500, solver = ‘lbfgs’ 0.839243851 0.838536074
Logistic Regression C = 10, max_iter = 500, solver = ‘lbfgs’ 0.839251972 0.838523441
Random Forest criterion = ‘entropy’, n_estimators = 150 0.93007542 0.874824715
Random Forest criterion = ‘gini’, n_estimators = 120 0.93007542 0.87433834
Random Forest criterion = ‘entropy’, n_estimators = 80 0.930067299 0.873713001
Random Forest criterion = ‘entropy’, n_estimators = 200 0.93007542 0.875260558
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With respect to their individual hyperparameter settings, the test data accuracy of
several classifiers used on the Breast Cancer Surveillance Consortium (BCSC) Dataset is
shown in this figure. Different hyperparameter configurations, including g‘ini, n = 128’,
e‘ntropy, n = 150’, and others, were tested for each classifier, which includes Decision
Trees, Random Forests, XG-Boost, Logistic Regression, and Extra Trees. In addition to
demonstrating the influence of hyperparameter modification on model performance, the
graph attempts to visually evaluate how well these classifiers predict the risk of breast
cancer. Finding the most accurate model configurations to improve the prediction accuracy
in the assessment of breast cancer risk is dependent on this comparison.

Table 2 shows the accuracy of the Random Forest classifier after applying the resam-
pling techniques SMOTE, RUS, ROS, and Tomek Link. The Random Forest algorithm
had the best performance out of all the classifiers with an accuracy of 87.53%. Out of the
different resampling techniques applied to the training dataset for using it to train the
Random Forest classifier, the Tomek Link had the best test accuracy, at 87.47%.

Table 2. Performance of Random Forest classifier after various resamplings.

Pre-Processing Training Data Accuracy Test Data Accuracy

SMOTE 0.9364 0.8526
RUS 0.9404 0.8064
ROS 0.9362 0.8494
Tomek Link 0.9300 0.8747

The BCSC Dataset was used to evaluate various classification techniques, including
Decision Trees, Random Forests, XG-Boost, Logistic Regression, and Extra Trees. The
accuracy of each classifier was measured using both training and test data to determine
how well the models learned from the training data and generalized to new data. The
Decision Tree and Random Forest models had a high training data accuracy, but a notable
overfitting issue was observed. The XG-Boost model had comparatively lower accuracy
scores, while the Logistic Regression model performed well on both the training and test
data. The Extra Trees classifier showed promising results after fine-tuning with specific
hyperparameters.
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As an example, while the Decision Tree classifier achieved a training data accuracy of
97.1%, its test data accuracy of 72.3% indicates that it may struggle to generalize to new data
points. On the other hand, the Random Forest classifier achieved a similar training data
accuracy but demonstrated a better generalization ability, with a higher test data accuracy
of 76.6%. These discrepancies in accuracy can be attributed to the inherent complexity of
the models and their susceptibility to overfitting or underfitting.

The Tomek Link approach improved the Random Forest classifier’s accuracy by
removing noisy and ambiguous examples from the training data, resulting in better class
distinction and more accurate predictions.

3.2. Results of Diagnosis

The overall performance of the classifiers on the Breast Cancer Wisconsin diagnostic
datasets is given in Table 3. From this, we can see that the KNN classifier exhibited
the best accuracy out of the three. And in the case of the dataset, the classifiers had a
better accuracy, sensitivity, specificity, and precision for the validation set by being trained
with the seven-principal-component dataset training set rather than the original dataset
training set.

Table 3. Overall performance of the classifiers on Breast Cancer Wisconsin diagnostic dataset.

Classification
Methods Dataset Accuracy Sensitivity Specificity Precision

LR Original dataset 0.9415 0.9626 0.9062 0.9450

KNN
Original dataset 0.9471 0.9365 0.9533 0.9219
Principal components
dataset 0.9529 0.9365 0.9626 0.9365

DT
Original dataset 0.9294 0.8730 0.9626 0.9322
Principal components
dataset 0.9471 0.9048 0.9720 0.9500

From the figures in Table 4, we can see lift charts and ROC curves for KNN and DT.
This leads us to better understand the performance of the models. For example, in the
decile-wise lift chart of the Decision Tree model for the principal component dataset, the
lift value of the leftmost bar is 2.5, meaning that for the top 35% of the validation cases with
the highest predicted probability of belonging to the target class, the model would identify
2.5 times as many target-class cases than if the cases were randomly selected.

An evaluation method for binary classification issues is the Receiver Operator Char-
acteristic (ROC) curve. The values for the area under the curve (AUC) are as follows:
Logistic Regression AUC = 0.9344, KNN AUC = 0.9868, KNN with PCA AUC = 0.9796,
DT AUC = 0.8826, DT with PCA AUC = 0.9302. Having a higher AUC means the model is
more accurate at classifying zero classes as 0 and classifying one class as 1.

Using the PCA dataset reduced the dimensionality of the dataset to less than one-third
(from 30 features to 7) and retained more than 91% of the information of the original dataset.
Although using PCA reduces the interpretability of a dataset, it reduces the collinearity
of the dataset by taking highly correlated variables and turning them into uncorrelated
variables. Other types of ensemble trees (such as Random Forests) could have been used
for the classification model, but as they are a combination of several Decision Trees, they
need rigorous training and a longer processing time. The use of Logistic Regression can be
justified because the classification problem is binary, that is, it diagnoses whether a sample
tumor cell from the FNA is benign (noncancerous) or malignant (cancerous).
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Table 4. Cumulative lift charts, decile-wise lift charts, and ROC curve for KNN and DT using the
Wisconsin Breast Cancer diagnostic dataset.

Classifier Figure Original Dataset PC1–PC7 Dataset

KNN

Cumulative lift chart

Diagnostics 2024, 14, x FOR PEER REVIEW 10 of 16 
 

 

Classifier Figure Original Dataset PC1–PC7 Dataset 

KNN 

Cumulative lift chart 

  

Decile-wise lift chart 

  

ROC curve 

 

DT 

Cumulative lift chart 

  

Decile-wise lift chart 

  

DT ROC curve 

  

Diagnostics 2024, 14, x FOR PEER REVIEW 10 of 16 
 

 

Classifier Figure Original Dataset PC1–PC7 Dataset 

KNN 

Cumulative lift chart 

  

Decile-wise lift chart 

  

ROC curve 

 

DT 

Cumulative lift chart 

  

Decile-wise lift chart 

  

DT ROC curve 

  

Decile-wise lift chart

Diagnostics 2024, 14, x FOR PEER REVIEW 10 of 16 
 

 

Classifier Figure Original Dataset PC1–PC7 Dataset 

KNN 

Cumulative lift chart 

  

Decile-wise lift chart 

  

ROC curve 

 

DT 

Cumulative lift chart 

  

Decile-wise lift chart 

  

DT ROC curve 

  

Diagnostics 2024, 14, x FOR PEER REVIEW 10 of 16 
 

 

Classifier Figure Original Dataset PC1–PC7 Dataset 

KNN 

Cumulative lift chart 

  

Decile-wise lift chart 

  

ROC curve 

 

DT 

Cumulative lift chart 

  

Decile-wise lift chart 

  

DT ROC curve 

  

ROC curve

Diagnostics 2024, 14, x FOR PEER REVIEW 10 of 16 
 

 

Classifier Figure Original Dataset PC1–PC7 Dataset 

KNN 

Cumulative lift chart 

  

Decile-wise lift chart 

  

ROC curve 

 

DT 

Cumulative lift chart 

  

Decile-wise lift chart 

  

DT ROC curve 

  

Diagnostics 2024, 14, x FOR PEER REVIEW 10 of 16 
 

 

Classifier Figure Original Dataset PC1–PC7 Dataset 

KNN 

Cumulative lift chart 

  

Decile-wise lift chart 

  

ROC curve 

 

DT 

Cumulative lift chart 

  

Decile-wise lift chart 

  

DT ROC curve 

  

DT

Cumulative lift chart

Diagnostics 2024, 14, x FOR PEER REVIEW 10 of 16 
 

 

Classifier Figure Original Dataset PC1–PC7 Dataset 

KNN 

Cumulative lift chart 

  

Decile-wise lift chart 

  

ROC curve 

 

DT 

Cumulative lift chart 

  

Decile-wise lift chart 

  

DT ROC curve 

  

Diagnostics 2024, 14, x FOR PEER REVIEW 10 of 16 
 

 

Classifier Figure Original Dataset PC1–PC7 Dataset 

KNN 

Cumulative lift chart 

  

Decile-wise lift chart 

  

ROC curve 

 

DT 

Cumulative lift chart 

  

Decile-wise lift chart 

  

DT ROC curve 

  

Decile-wise lift chart

Diagnostics 2024, 14, x FOR PEER REVIEW 10 of 16 
 

 

Classifier Figure Original Dataset PC1–PC7 Dataset 

KNN 

Cumulative lift chart 

  

Decile-wise lift chart 

  

ROC curve 

 

DT 

Cumulative lift chart 

  

Decile-wise lift chart 

  

DT ROC curve 

  

Diagnostics 2024, 14, x FOR PEER REVIEW 10 of 16 
 

 

Classifier Figure Original Dataset PC1–PC7 Dataset 

KNN 

Cumulative lift chart 

  

Decile-wise lift chart 

  

ROC curve 

 

DT 

Cumulative lift chart 

  

Decile-wise lift chart 

  

DT ROC curve 

  

DT ROC curve

Diagnostics 2024, 14, x FOR PEER REVIEW 10 of 16 
 

 

Classifier Figure Original Dataset PC1–PC7 Dataset 

KNN 

Cumulative lift chart 

  

Decile-wise lift chart 

  

ROC curve 

 

DT 

Cumulative lift chart 

  

Decile-wise lift chart 

  

DT ROC curve 

  

Diagnostics 2024, 14, x FOR PEER REVIEW 10 of 16 
 

 

Classifier Figure Original Dataset PC1–PC7 Dataset 

KNN 

Cumulative lift chart 

  

Decile-wise lift chart 

  

ROC curve 

 

DT 

Cumulative lift chart 

  

Decile-wise lift chart 

  

DT ROC curve 

  

3.3. Results of Survival Analysis

The agglomerative hierarchical clustering Ward method was used on the SEER Breast
Cancer Dataset, and the agglomerative coefficient was 0.981667. Clustering was performed
on a sample dataset of 50.
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A graphic representation known as a “banner plot” was created during the AGNES
clustering procedure. In this diagram, the observations are displayed as red bars, with
spaces between them denoting possible clusters. The banner plot sheds light on cluster
formation by highlighting areas of separation, similar to the idea of cutting a dendrogram
to obtain the desired amount of clusters (Figures 6 and 7).
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From observing the banner plot, K was set to 2. The summary of the cluster analysis is
as follows (Figure 8):
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K-means clustering was performed for comparison. Here, again, K was set to 2.
The following are the cluster plot and silhouette plot showing the results of the K-means
clustering (Figures 9 and 10).
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Two types of supervised learning techniques, Logistic Regression and Decision Trees,
were used for predicting the survivability of breast cancer. The whole dataset was used for
this. The overall performance of the classifiers on the datasets is given in Table 5.

Table 5. Overall performance of the classifiers on SEER Breast Cancer Dataset.

Classification
Method Accuracy Sensitivity Specificity Precision AUC

LR 0.8998 0.4703 0.9775 0.7909 0.7239
DT 0.9080 0.9797 0.4706 0.9186 0.7412

The table shows that the Decision Tree classifier has a better accuracy and a larger area
under the curve than Logistic Regression. The ROC curve for both LR and DT are given in
the following Figures 11 and 12:
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Finally, a forecasting method, time series cross-validation, was used. The time series
was survivability months. The performance measures are given in Table 6.

Table 6. Performance measures of time series cross-validation.

Time Series Cross-Validation ME RMSE MAE MASE

Training set 2.141162 × 10−17 0.4152110 0.3448004 1.120601
Test set 2.002756 × 10−1 0.5176724 0.3775180 1.226933
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A data pre-processing technique such as PCA was not used as the dataset only had 15
columns. For applying the forecasting methods, it would be best to use a dataset related
to breast cancer survivability over time. Although we used the SEER BC Dataset for time
series cross-validation, it is not entirely appropriate for forecasting. Other ensemble tree
types, like Random Forest, may have been used for the classification model. Still, because
they combine multiple Decision Trees, they require extensive training and take longer
to process.

4. Discussion

In this study, we addressed the challenge of unbalanced data in breast cancer risk
factor assessment by employing various classifiers, including Decision Trees (DTs), Random
Forests (RFs), Extreme Gradient Boosting (XGBoost), Support Vector Machines, and more.
Although the training data accuracy was considerable, there is room for much improvement
regarding the test data accuracy. Our findings, based on a thorough evaluation of the current
literature, contribute to an improved understanding of machine learning applications in
breast cancer risk assessment and diagnosis. Previous research by Kabir et al. [8] and Gupta
et al. [11] has highlighted the impact of resampling techniques on classifier performance,
but our study delves deeper into the specific effectiveness of techniques such as Tomek
Link in improving Random Forest classifier outcomes for breast cancer datasets.

After applying the resampling techniques, the accuracy scores of the test data de-
creased even if the training data accuracy increased. This paradox highlights the nuanced
challenge of balancing model generalizability and overfitting, a key area where our study
contributes to the conversation beyond the findings of Louro et al. [9] and Behravan
et al. [10], who emphasized predictive accuracy without a strong focus on the balancing act
required for generalizable model performance.

The goal is to build better models that can predict more accurately and provide a
better performance. In the future, we want to find out how different biases in the dataset
toward age, race, and BMI index can affect the classification techniques and find out which
of the variables has the most impact on predicting the risk of developing breast cancer.

According to the World Health Organization (WHO), 2.3 million women were diag-
nosed with breast cancer in 2020 globally. The use of machine learning algorithms for
diagnosing breast cancer can improve the efficiency of the diagnosis and help with early de-
tection. By addressing a gap in the use of computer-aided diagnosis systems as described by
McKinney et al. [5], our comparative examination of machine learning algorithms indicates
the potential for dramatically reducing the high percentage of errors and inconsistencies in
radiology practice.

For this project, Logistic Regression, KNN, and Decision Tree algorithms were used
with several data pre-processing techniques. The aim was for the models to classify the
incidence of breast cancer from the dataset of FNA biopsy image features. This multi-
disciplinary approach not only improves the diagnostic process, but it also provides a
road map for incorporating machine learning into clinical processes, as proposed by the
scientific community.

Early precautions can be taken if demographic factors indicating high risk of breast
cancer mortality are identified. It can be used to direct management for women with all
breast cancer stages. Our study into the impact of demographic parameters on model
accuracy and survival analysis adds to a more tailored, data-driven approach to breast
cancer management, which represents a significant advancement in the field.

Defining a similarity measure between patient data is a crucial first step to strati-
fying patients into clinically significant subgroups and enabling individualized therapy.
By utilizing advanced machine learning techniques, our research lays the groundwork
for future studies to investigate individualized treatment strategies based on breast can-
cer’s phenotypic differences, addressing the need for innovation in the personalized
medicine environment.
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The results must be thoroughly scrutinized for accuracy when discussing a subject
like cancer, so trying different types of prediction and classification techniques would
help in the diagnostic process. This study, therefore, not only presents a comprehensive
assessment of machine learning’s role in breast cancer research but also sets the stage for
future innovations that can further refine predictive models, making them more adaptable
and accurate.

Lastly, we highlight the novel characteristics of our machine learning approach to
breast cancer research by placing our results in the context of the larger literature and
emphasizing the particular contributions of our study. By laying the groundwork for
future research that may fully utilize machine learning in oncology, our study advances the
continuous development of more efficient, individualized cancer care solutions.

5. Conclusions

To summarize, this study highlights the significant capabilities of machine learning in
assessing and diagnosing breast cancer risk. Additionally, it tackles important challenges
such as imbalanced data and the ability of the model to be applied to different scenarios.
Our comparative investigation has demonstrated that the utilization of unique resampling
strategies, particularly the Tomek Link method, leads to a substantial enhancement in the
performance of machine learning classifiers, such as Random Forests, when applied to
breast cancer datasets.

Our research combines theoretical developments in machine learning with actual
clinical applications. We argue for the integration of AI technologies in healthcare to
improve diagnostic accuracy and detect diseases at an early stage. Moreover, we suggest
establishing a basis for future investigations into how demographic characteristics affect
the precision of models, highlighting the significance of individualized medication that
takes into consideration the diverse nature of breast cancer.

This contribution seeks to expand the utilization of machine learning in the field of
oncology, advocating for a patient-focused, data-oriented approach to cancer treatment.
Going forward, prioritizing the improvement of these models to accurately represent the
diverse patient groups they cater to is crucial, as it signifies progress in fully utilizing the
possibilities of machine learning in the field of oncology.
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