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Abstract: Many clinical studies have shown wide performance variation in tests to identify coronary
artery disease (CAD). Coronary computed tomography angiography (CCTA) has been identified as
an effective rule-out test but is not widely available in the USA, particularly so in rural areas. Patients
in rural areas are underserved in the healthcare system as compared to urban areas, rendering it a
priority population to target with highly accessible diagnostics. We previously developed a machine-
learned algorithm to identify the presence of CAD (defined by functional significance) in patients
with symptoms without the use of radiation or stress. The algorithm requires 215 s temporally
synchronized photoplethysmographic and orthogonal voltage gradient signals acquired at rest. The
purpose of the present work is to validate the performance of the algorithm in a frozen state (i.e.,
no retraining) in a large, blinded dataset from the IDENTIFY trial. IDENTIFY is a multicenter,
selectively blinded, non-randomized, prospective, repository study to acquire signals with paired
metadata from subjects with symptoms indicative of CAD within seven days prior to either left heart
catheterization or CCTA. The algorithm’s sensitivity and specificity were validated using a set of
unseen patient signals (n = 1816). Pre-specified endpoints were chosen to demonstrate a rule-out
performance comparable to CCTA. The ROC-AUC in the validation set was 0.80 (95% CI: 0.78–0.82).
This performance was maintained in both male and female subgroups. At the pre-specified cut point,
the sensitivity was 0.85 (95% CI: 0.82–0.88), and the specificity was 0.58 (95% CI: 0.54–0.62), passing
the pre-specified endpoints. Assuming a 4% disease prevalence, the NPV was 0.99. Algorithm
performance is comparable to tertiary center testing using CCTA. Selection of a suitable cut-point
results in the same sensitivity and specificity performance in females as in males. Therefore, a
medical device embedding this algorithm may address an unmet need for a non-invasive, front-line
point-of-care test for CAD (without any radiation or stress), thus offering significant benefits to the
patient, physician, and healthcare system.
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1. Introduction

85 million Americans reside in rural areas, which are significantly underserved by the
healthcare system, leading to disparities in health outcomes compared to urban populations.
The healthcare provider gap is evident, with 44% more primary care physicians available
per 100,000 people located in urban areas compared to rural areas [1]. The situation is not
improving, as demonstrated by the closure of more than 100 rural hospitals, representing
4% of the total, between 2013 and 2020 [2]. When rural patients receive care, their disease
presentation is often much more advanced than that typically seen in urban settings,
indicating delayed access to care. This delay is often exacerbated due to the long distances
required to travel to appointments [3]. Specifically, only 31% of rural residents are within
20 km of an interventional cardiologist (as compared to 87% of urban residents), 19% of an
electrophysiologist (78% for urban) and 5% of a heart failure specialist (48% for urban) [4].
The reduced access translates clearly into outcomes, with the age-adjusted (rural population
is older) all-cause mortality being 18% higher than the urban population [1]. However,
rural patients of all ages are impacted, with younger rural patients experiencing notably
higher mortality from coronary artery disease (CAD) than their urban counterparts [5].

Current diagnostic techniques for CAD are costly and inconvenient, and they expose
the patient to risks. Several studies have evaluated the performance of the diagnostic tests
routinely utilized to assess CAD, such as a typical front-line test exercise ECG. However,
the studies are challenging to compare, given, for instance, the variation in subject entrance
criteria and differing disease definitions. The result is a large range in the reported per-
formance, including those cited in the ACC guidelines [6]. In one case, a meta-analysis
including 147 studies and comprising 24,074 individuals who had both an exercise ECG and
an invasive coronary angiography (ICA) found that exercise ECG had an average sensitivity
of 68% (range of 23–100%) and an average specificity of 77% (range of 17–100%) [7].

While the definition of “significant CAD” varies, ACC guidelines classify a significant
lesion as any lesion ≥50% in the left main coronary artery (LMCA) and ≥70% in the
left circumflex (LCX), left anterior descending (LAD), ramus, and right coronary (RCA)
arteries or their distributions. Further, functional measures of lesion significance are
increasingly being used in practice, with one such measure being fractional flow reserve
(FFR), whereby an FFR ≤ 0.80 is significant [8]. Instantaneous wave-free ratio (iFR) is a
similar functional measurement, with a significance threshold at iFR ≤ 0.89. Indeed, as the
specific lesion morphology and collaterals have a significant impact, it is unsurprising that
a significant occlusion as defined by an anatomic arterial narrowing of >50% is prognostic
of a functionally significant occlusion (FFR ≤ 0.80) only 68% of the time [9].

Given the wide ranges of sensitivity and specificity to identify CAD, test safety is
critically relevant. Regardless of whether the first assessment of patients with symptoms
that may be indicative of obstructive CAD (new onset chest pain, etc.) is with functional
testing, such as single photon emission computed tomography (SPECT) or coronary com-
puted tomography angiography (CCTA), 90% will ultimately have negative findings [8].
Here, a negative test typically augurs a superb long-term outcome (NPV > 96%) [10]. In
addition, patients who initially test positive usually receive additional assessment. In
patients who undergo invasive coronary angiography (ICA), the gold standard to confirm
the presence of CAD, only 32–42% truly have significant CAD [10,11]. Therefore, taken
in series, significant CAD is ultimately diagnosed in only 3–4% of patients who initially
presented with symptoms of obstructive CAD [10].

Clinically, although the initial CAD likelihood is low in symptomatic patients, it is
critical to detect the higher-risk subgroup. Consequently, sensitivity is usually sought
over specificity. Clinicians have frequently employed tests with an average sensitivity and
specificity of approximately 70% with a lower confidence interval of 60% or less [10,12].
This clinical utilization relies on the NPV being relatively high given the low disease
prevalence, and further, patients with test-positive results will typically undergo additional
testing, which best mitigates patient risk.
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The most used test for suspected CAD in the USA is SPECT, representing almost
80% of initial testing for CAD. A meta-analysis of non-invasive tests for CAD reported
the sensitivity of SPECT to be 73% (62–82%) and specificity to be 83% (71–90%) [9]; with
high specificity that exceeds sensitivity, SPECT is, therefore, a rule-in test. Conversely, the
reported performance of CCTA in identifying functionally significant CAD is a sensitivity
of 93% (89–96%) and specificity of 53% (37–68%) [9]; with high sensitivity that exceeds
specificity, CCTA is, therefore, a rule-out test. CCTA consequently has an exceptionally
high NPV, over 98%, assuming a 4% disease prevalence. Knuuti et al. suggest that “With
low prevalence of CAD the primary first task of imaging may be the accurate exclusion of
anatomic CAD, for which CCTA has demonstrated a strong role.” [9].

However, in the USA, CCTA makes up only 2% of initial tests, limited by its lack of
availability within a reasonable distance of where many patients live [13]. Though patients
from both urban and rural locales have difficulty in accessing CCTA, rural patients suffer
from particularly poor access. For instance, CCTA is available in only 22% of rural safety-
net hospitals, as compared to 57% in urban settings [12]. Further, only 7.7% of small centers
(6 to 49 beds), more typical of rural vs. urban care, provide CCTA, as compared to 88.9% of
large centers (at least 400 beds) [12]. Since travel to CCTA testing can be substantial in rural
settings, patients referred for this testing often do not present for their appointment, and
therefore, the diagnostic yield is reduced proportionally in this demographic. Consequently,
there would be significant benefits to patients, physicians, and the healthcare system if
there were a test that had similar performance to CCTA but which was readily available
at the point of care with results immediately available, minimizing the probability that
patients would be lost to follow-up.

We have previously designed a machine-learned algorithm to assess for the presence
of significant CAD using a non-invasive signal acquired with a portable device requiring
only an internet connection [14]. The test combines hardware with low capital cost and
cloud-based processing, along with point-of-care viewing of reports to enable access to
both the test and healthcare practitioners for rapid interpretation to any site that has WiFi
or cellular coverage. Therefore, the test is capable of serving the vast majority of the USA
and is particularly well suited to addressing the needs of the rural population.

The purpose of the present study is the validation of the algorithm (in a static, frozen
state, i.e., without any retraining) on a large blinded dataset. The primary statistical
validation endpoints have been set to ensure a front-line test comparable to CCTA, with
the lower confidence bounds for sensitivity and specificity set to 0.80 and 0.40, respectively.

The authors completed the STARD checklist [15] for reporting diagnostic performance
studies to ensure robust coverage (Supplement Section S1).

2. Materials and Methods
2.1. Clinical Data

IDENTIFY (NCT03864081, approved by the Western Institutional Review Board, pub-
lished on clinicaltrials.gov) is a multicenter, prospective, non-randomized, ongoing repos-
itory study designed to acquire physiological signals along with subject metadata from
subjects with cardiovascular symptoms indicative of obstructive CAD (see Supplement
Section S2 for inclusion/exclusion criteria). IDENTIFY enrolled subjects for the develop-
ment of machine-learned algorithms, followed by subsequent validation. All subjects
provided informed consent.

The validation population consisted of subjects consecutively enrolled from 31 July
2019 through 29 September 2022 (n = 1816) across 20 clinical sites (Supplement Section S3).
None of the subjects used in validation were available to the algorithm development team
nor used in algorithm development. Blinding based on enrollment date implements a
higher standard of validation than random selection as it better mimics real-world use of
the algorithm, and it is possible for clinical sites to participate only in development or only
in validation (Supplement Section S3). Thus, any peculiarities of a particular clinical site

clinicaltrials.gov
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may only be captured in either development or validation, increasing the generalizability
of the test.

2.2. Signal Capture Device

A proprietary signal capture device (CorVista Capture: Analytics for Life; Toronto,
ON, Canada & Bethesda, MD, USA) acquired the orthogonal voltage gradient (OVG) from
thorax electrodes, comprising three bipolar channels: front-rear, left-right, and top-bottom,
as shown in Figure 1. Simultaneously, the device captured a photoplethysmogram (PPG)
from a finger probe. The patient was supine and at rest. Signals were captured at 8 kHz for
215 s, packaged with a study-specific patient identifier, as well as patient height, weight,
birth gender, and date of birth.
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Figure 1. Process for validating machine-learned algorithm. The CAD algorithm is validated by
first using a proprietary capture device to collect a suitably large set of patient signals representing
the intended use population. The ground truth CAD label (positive or negative) is also collected
for each patient. The signals are processed by the machine-learned algorithm. The output scores
from the algorithm are converted into binary outputs, CAD positive or CAD negative, using a
pre-specified cut-point. Finally, the continuous and binary outputs are compared to the ground
truth labels to generate the reported performance of the algorithm, as described by ROC-AUC and
sensitivity/specificity, respectively.

2.3. Machine-Learned Algorithm

The second-generation machine-learned algorithm for the detection of functionally
significant CAD was developed using 290 features derived from the OVG and PPG
signals [16–18]. Elastic Net and Random Forest were ensembled to generate candidate
algorithms, which were assessed using cross-validation (five-fold) to optimize the param-
eters and select the final algorithm configuration. The algorithm cut-point, defining test
positivity vs. negativity, was selected and locked during development. This final algorithm
was embedded in a high-throughput processing system, which was then used to process the
validation dataset. Further details on the model development process and its performance
on the development data can be found in [14].

2.4. Validation Population Groups

The co-primary endpoints for algorithm validation assessed the validation population
through the use of two distinct test groups: Population A for sensitivity and Population
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B for specificity, as shown in Figure 2. Signal acquisition for all subjects was performed
within 7 days prior to the reference test (ICA/CCTA).
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B (specificity cohort), as derived from IDENTIFY.

Population A—Sensitivity Test Group: Cohort of subjects without any history of CAD
and already scheduled for ICA to evaluate new onset symptoms consistent with CAD. This
data set is constructed from subjects in IDENTIFY Group 2 for whom ICA results were
available. Subjects were classified as CAD positive using the following criteria:

(I) a stenosis of ≥50% located in the LMCA,
(II) a stenosis of ≥70%, or FFR ≤0.80, or iFR ≤ 0.89, located in the LAD, LCX, RCA, ramus,

or any of their distributions
(III) Functional assessment (FFR, iFR) superseded the lesion percentage when both were

available.

Population B—Specificity Test Group: Cohort of subjects with new-onset symptoms
suggestive of flow-limiting CAD with no known coronary artery disease. Note that current
acute myocardial infarction (MI) and previous MI are excluded, and, therefore, this popula-
tion does not contain MI with nonobstructive coronary arteries (MINOCA). These subjects
were determined to not have CAD by meeting the criteria of one of the following groups:

(I) IDENTIFY Group 2 subjects who were identified as CAD negative by meeting none
of the Population A criteria, as determined through assessment of the ICA report.

(II) IDENTIFY Group 4 subjects who underwent CCTA, with images overread by an inde-
pendent core lab (Global Institute for Research (GIR), Midlothian, VA) and determined
to be negative for significant CAD (CADRADS 0–2 and absent any recommendation
for further assessment).

The defined groups were weighted using the below proportions for the primary
objective analysis, as per the ratios in the PROMISE study [10]:

• IDENTIFY Group 2 at 6%, representing the portion of subjects that would be re-
ferred to ICA (10% of the original symptomatic population), which were subsequently
determined to be CAD negative (60% of the ICA group).

• IDENTIFY Group 4 at 94%.

2.5. Statistics

The point performance and lower confidence bound for CCTA sensitivity have been
reported as 0.93 and 0.89, and 0.53 and 0.37 for specificity [9]. Consequently, endpoints for
this algorithm were set to demonstrate similar performance, with target point performance
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and lower confidence bound for sensitivity of 0.90 and 0.80 and those for specificity of 0.50
and 0.40.

As this validation uses two independent co-endpoints (sensitivity and specificity), to
power the validation with 81% confidence, each endpoint needs to be powered at 90%.
Assuming a sensitivity point performance of 0.90 with a one-sided alpha of 0.025 and 90%
power, at least 131 CAD-positive subjects were required. Assuming a specificity point
performance of 0.50 with the same constraints, at least 260 CAD-negative subjects were
required. To be included in the analysis, subjects must have met all inclusion criteria
and no exclusion criteria, undergone their reference test (CCTA/ICA) within 7 days after
signal collection, have had no major protocol deviations, and had a signal that passed
outlier detection and quality checks. Failing any of the previous resulted in the exclusion
of the subject.

In addition to the primary co-endpoints of sensitivity and specificity, the receiver
operator characteristic curve (ROC) and the corresponding area under the curve (ROC-
AUC) were assessed. Subgroup performance was evaluated. The algorithm output was
evaluated in tertiles within the test-negative and test-positive groups to determine the
relevance of the value of the score beyond the binary result (further calculation details in
Supplement Section S6).

Clinical investigators did not have access to outputs from the machine-learned algo-
rithm (was not acted upon clinically in this study), nor did technical staff invoking the
algorithm have access to any ICA/CCTA results. The algorithm output and ICA/CCTA
results were paired only by the third-party statistician (Technomics).

3. Results

A total of 1511 subjects were enrolled in Group 2, with CONSORT flow available
in Supplement Section S4. Of these, 3% (n = 44) were excluded due to a major protocol
deviation, including catheterization further than 7 days from signal collection and enroll-
ment without meeting study entrance criteria. Additionally, there were <1% that either
did not have ICA results available (n = 8) or the catheterization result was unable to be
determined (n = 2). There were 47 subjects (3%) that did not have a signal received due to
insufficient time to have the signal collection completed prior to the cardiac catheterization
procedure or due to internet connection problems or improper device use (e.g., device not
kept properly charged).

The remaining subjects (n = 1410) in Group 2 (Populations A and B) met all inclusion
and exclusion criteria and did not have any major protocol deviations. Of these, 9.4%
(n = 133) did not have passing signal quality, and 7.2% (n = 102) were deemed outlying by
an outlier detection module. The remaining subjects (n = 1175) were used for validation. In
particular, Group 2 Population A contained 488 (41.5%) subjects with significant CAD and
were used for sensitivity testing. Of the 488, 300 (61%) of the subjects exhibited multi-vessel
disease, and 188 (39%) had single-vessel disease. Group 2 Population B contained 687
(58.5%) subjects without significant CAD that were used for specificity testing.

The Group 4 CONSORT flow is available in Supplement Section S5. Adjudication as
either CAD negative or not CAD negative was conducted by an independent core lab. A
total of 1246 subjects were enrolled in IDENTIFY Group 4. Of these, 4% (n = 51) had major
protocol deviations. Additionally, 6% (n = 75) did not have imaging data available, and 28%
(n = 356) of the subjects had CADRADS other than 0–2 or a referral for additional testing.

The remaining subjects (n = 764) in Group 4 Population B met all inclusion and exclu-
sion criteria and did not have any major protocol deviations. Less than 1% (n = 8) did not
have a signal. Of the remaining, 9.5% (n = 72) did not have a signal meeting signal quality
requirements. Additionally, 5.6% (n = 43) had outlying signals. The remaining 641 subjects
were used for specificity testing. Table 1 describes the demographic characteristics of
Populations A and B. Distributions of age and BMI are provided in Supplement Section S8.
A comparison of the key demographics between development and validation is provided
in Supplement Section S7. Population A, across development and validation, showed
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significant differences in age, BMI, and hyperlipidemia. Population B, across development
and validation, showed a significant difference in BMI. The significant changes across
development and validation illustrate the enhanced difficulty of the date-based blinding
strategy, as these differences would not be expected to appear by chance when using
randomization.

Table 1. Demographic characteristics by population.

Characteristic Population A
(n = 488)

Population B
(n = 1328)

Total
(n = 1816)

Age at consent
Mean ± SD 66.1 ± 9.2 58.3 ± 11.4 60.4 ± 11.4

<65 40.6% (198/488) 67.6% (898/1328) 60.4% (1096/1816)
≥65 59.4% (290/488) 32.4% (430/1328) 39.6% (720/1816)

Sex
Female 30.9% (151/488) 56.3% (747/1328) 49.4% (898/1816)
Male 69.1% (337/488) 43.8% (581/1328) 50.6% (918/1816)

Ethnicity
Not Hispanic or Latino 97.5% (473/485) 98.3% (1303/1326) 98.1% (1776/1811)

Hispanic or Latino 2.5% (12/485) 1.7% (23/1326) 1.9% (35/1811)
Race

American Indian
or Alaska Native 1.0% (5/482) 0.1% (1/1323) 0.3% (6/1805)

Asian 0.8% (4/482) 0.4% (5/1323) 0.5% (9/1805)
Black or African

American 8.7% (42/482) 20.2% (267/1323) 17.1% (309/1805)

Native Hawaiian or
Pacific Islander 0.4% (2/482) 0.3% (4/1323) 0.3% (6/1805)

White/Caucasian 87.3% (421/482) 77.2% (1022/1323) 79.9% (1443/1805)
Other 1.7% (8/482) 1.8% (24/1323) 1.8% (32/1805)

Prefer Not to Answer 1.2% (6/488) 0.4% (5/1328) 0.6% (11/1816)
BMI

Mean ± SD 30.7 ± 6.1 32.9 ± 7.5 32.3 ± 7.2
<30 50.5% (246/487) 39.4% (523/1328) 42.4% (769/1815)
≥30 49.5% (241/487) 60.6% (805/1328) 57.6% (1046/1815)

Tobacco Use 56.6% (276/488) 46.2% (613/1328) 49.0% (889/1816)
Family History of Heart Attack 36.5% (178/488) 35.8% (476/1328) 36.0% (654/1816)
Hypertension 77.9% (380/488) 65.8% (874/1328) 69.1% (1254/1816)
Diabetes 38.9% (190/488) 24.0% (319/1328) 28.0% (509/1816)
Hypercholesterolemia/
Hyperlipidemia 83.6% (408/488) 63.6% (845/1328) 69.0% (1253/1816)

One subject did not have a height (and therefore, also BMI) recorded. BMI in (kg/m2). Tobacco use contains both
past and present vs. never. Coloring identifies grouped rows.

In summary, after removal for signal quality, outlier status, and major protocol devia-
tions, Population A (sensitivity) was composed of 488 subjects, and Population B (speci-
ficity) was composed of 1328 subjects. The total of 1328 in Population B consisted of
687 determined to be CAD negative with ICA and 641 with CCTA. No treatment-emergent
adverse events occurred during signal acquisition, nor CCTA/ICA.

Table 2 demonstrates that the null hypothesis can be rejected for both sensitivity
and specificity and, therefore, the algorithm passes the pre-defined endpoints at the 95%
confidence level. The performance in each component of the specificity population is also
presented. The algorithm ROC-AUC was 0.80 (0.78–0.82), with the ROC curve presented
in Figure 3.
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Table 2. Primary endpoint results.

CAD Positive
Population A

CAD Negative
Population B

Group 2 Group 4 Overall

Predicted CAD
Positive 414 546 255 801

Predicted CAD
Negative 74 141 386 527

Sensitivity 0.85 (0.82, 0.88)
p-value = 0.002 n/a

Specificity n/a 0.21 (0.18, 0.24) 0.60 (0.56, 0.64) 0.58 (0.54, 0.62)
p-value < 0.001

p-values are in comparison to the pre-determined endpoints of sensitivity > 0.80 and specificity > 0.40 (one-sided,
α = 0.025, normal approximation). Overall specificity is the weighted combination of Group 2 (6%) and Group
4 (94%).

Diagnostics 2024, 14, x FOR PEER REVIEW 8 of 13 
 

 

Table 2. Primary endpoint results. 

 CAD Positive 
Population A 

CAD Negative 
Population B 

Group 2 Group 4 Overall 
Predicted CAD 

Positive 414 546 255 801 

Predicted CAD 
Negative 

74 141 386 527 

Sensitivity 0.85 (0.82, 0.88) 
p-value = 0.002 n/a 

Specificity n/a 0.21 (0.18, 0.24) 0.60 (0.56, 0.64) 
0.58 (0.54, 0.62) 
p-value < 0.001 

p-values are in comparison to the pre-determined endpoints of sensitivity > 0.80 and specificity > 0.40 
(one-sided, α = 0.025, normal approximation). Overall specificity is the weighted combination of 
Group 2 (6%) and Group 4 (94%). 

 
Figure 3. ROC curve showing model performance against the validation population. 

Table 3 presents the subgroup performances. A significant difference (p < 0.01) in 
sensitivity was observed between males and females. Significant differences in specificity 
(p < 0.01) were observed between females and males by age (age ≥ 65 years vs age < 65 
years), hypertension status, and hyperlipidemia status. 

A portion of the validation population has previously been used in the assessment of 
a previous-generation CAD algorithm [18]. The authors impose strict controls on the use 
and access to results from the validation dataset that could be used to tune future 
algorithms. To further demonstrate that no such knowledge has leaked across this 
boundary, the results of an assessment of the previously used vs. previously unused 
components of the validation population are also presented in Table 3. 

  

Figure 3. ROC curve showing model performance against the validation population.

Table 3 presents the subgroup performances. A significant difference (p < 0.01) in
sensitivity was observed between males and females. Significant differences in speci-
ficity (p < 0.01) were observed between females and males by age (age ≥ 65 years vs.
age < 65 years), hypertension status, and hyperlipidemia status.

A portion of the validation population has previously been used in the assessment of a
previous-generation CAD algorithm [18]. The authors impose strict controls on the use and
access to results from the validation dataset that could be used to tune future algorithms. To
further demonstrate that no such knowledge has leaked across this boundary, the results of
an assessment of the previously used vs. previously unused components of the validation
population are also presented in Table 3.

When the algorithm test-negative scores were segmented into tertiles, a trend was
observed of lower negative likelihood ratios in score ranges further away from zero as
compared to closer to zero (Table 4). Inversely, the test-positive segmentation showed higher
positive likelihood ratios further away from zero as compared to closer to zero (Table 4).
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Table 3. Subgroup performance.

Subgroup
Sensitivity

(95% CI)
(n/N)

p-Value
G2

Specificity
(n/N)

G4
Specificity

(n/N)

(6% G2, 94% G4)
Overall Specificity

(95% CI)
p-Value

Female
0.77

(0.70–0.84)
(117/151) 0.002

0.24
(82/336)

0.65
(266/411) 0.63 (0.59–0.67)

Male
0.88

(0.85–0.91)
(297/337)

0.17
(59/351)

0.52
(120/230) 0.50 (0.44–0.56)

0.001

BMI ≥ 30
0.85

(0.80–0.90)
(204/241) 1.000

0.21
(90/429)

0.61
(229/376) 0.59 (0.54–0.64)

0.592

BMI < 30
0.85

(0.81–0.89)
(209/246)

0.20
(51/258)

0.59
(157/265)

0.57
(0.51–0.63)

Age ≥ 65
0.87

(0.83–0.91)
(251/290) 0.131

0.14
(40/291)

0.48
(67/139)

0.46
(0.38–0.54)

Age < 65
0.82

(0.77–0.87)
(163/198)

0.26
(101/396)

0.64
(319/502)

0.62
(0.58–0.66)

<0.001

Diabetic
0.87

(0.82–0.92)
(166/190) 0.231

0.18
(36/196)

0.54
(66/123) 0.52 (0.44–0.60)

0.062

Non-Diabetic
0.83

(0.79–0.87)
(246/296)

0.21
(104/489)

0.62
(320/518) 0.60 (0.56–0.64)

Hypertensive
0.84

(0.80–0.88)
(321/380) 0.609

0.18
(89/494)

0.54
(207/380) 0.52 (0.47–0.57)

Non-
Hypertensive

0.86
(0.79–0.93)
(93/108)

0.27
(51/192)

0.69
(179/261) 0.66 (0.61–0.71)

<0.001

Hyperlipidemic
0.85

(0.82–0.88)
(347/408) 0.820

0.18
(83/470)

0.56
(210/375) 0.54 (0.49–0.59)

0.009
Non-

Hyperlipidemic

0.84
(0.76–0.92)

(67/80)

0.27
(58/215)

0.66
(176/266) 0.64 (0.59–0.69)

White/Caucasian
0.85

(0.82–0.88)
(357/421) 0.732

0.20
(115/571)

0.62
(281/451) 0.59 (0.55–0.63)

Black or
African

American

0.83
(0.72–0.94)

(35/42)

0.21
(19/92)

0.55
(96/175) 0.53 (0.46–0.60)

0.191

Tobacco Use
(Past/Present)

0.83 (0.79–0.87)
(228/276) 0.1266

0.16
(55/343)

0.56
(151/270) 0.54 (0.48–0.60)

0.0563Tobacco Use
(Never)

0.88 (0.84–0.92)
(186/212)

25
(86/344)

0.63
(235/371) 0.61 (0.56–0.66)

Used in
Previous

Validation

0.85
(0.81–0.89)
(209/246) 1.000

0.24
(88/374)

0.54
(114/213) 0.52 (0.46–0.58)

Not Used in
Previous

Validation

0.85
(0.80–0.90)
(205/242)

0.17
(53/313)

0.64
(272/428) 0.61 (0.57–0.65)

0.017

BMI is in kg/m. p-value calculated using the normal approximation test (two-sided). Confidence interval from
normal approximation. Coloring identifies grouped rows.
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Table 4. Likelihood ratios by tertiles.

Test-Negative

Tertile Score Range Negative Likelihood Ratio

1st (−0.446, −0.142) 0.118
2nd (−0.141, −0.068) 0.265
3rd (−0.065, −0.001) 0.366

Test-Positive

Tertile Score Range Positive Likelihood Ratio

1st (0.000, 0.094) 1.507
2nd (0.095, 0.191) 2.289
3rd (0.192, 0.619) 3.639

4. Discussion

The results presented here were in a large, blinded population consisting of 1175 ICA
subjects and 641 CCTA subjects. For comparison, one of the largest studies to date of CCTA
and SPECT performance is the PROMISE study, which had an ICA population of 1015, rep-
resenting approximately 10% of the incoming population (10,003) [10]. Recruiting patients
already scheduled for either ICA or CCTA does not introduce bias into the sensitivity and
specificity populations. Calculating sensitivity solely requires patients that can be identified
as having significant CAD. The ICA population, by definition, provides all patients that
can be identified as such when following the standard of care.

Calculating specificity solely requires patients who can be identified as not having
significant CAD. A 6% weighted component of the ICA specificity population is added to
match the ratios observed in the PROMISE study [10]. The specificity population, therefore,
reflects the anticipated intended use population, comprising patients with symptoms of
cardiovascular disease with no previous indication for significant CAD. The pre-specified
endpoints were designed to demonstrate similar performance to CCTA as a rule-out
test for CAD. With point performances for sensitivity of 0.85 and specificity of 0.58, and
lower confidence bounds that passed the endpoints, this validation has demonstrated
that the algorithm can be applied to the intended use population and deliver comparable
performance to CCTA.

Minority groups and women are historically under-represented in cardiology [19].
The results show similar overall performance between males and females, with a different
skew between sensitivity and specificity. Therefore, the overall algorithm performance is
similar in both men and women, but the cut-point could be adjusted for females to align
to the male performance profile. A cut-point in the female subgroup -0.045 lower than
the pre-specified cut-point produces a sensitivity of 0.87 and specificity of 0.52, which is
one point lower than males for sensitivity and two points higher for specificity, which
are not significantly different. Given that females are underserved by current tests for
CAD, implementing a solution that provides equal performance in both genders would be
highly beneficial.

The algorithm specificity is lower in the population greater than 65 years old, whereas
sensitivity is the same in both the older and younger groups. The algorithm specificity
was also significantly different between those with/without hypertension as well as those
with/without hyperlipidemia. In these cases, however, the differences were in terms of
degree of exceeding the endpoints. Finally, the proportion of Black or African American
subjects exceeded 15%, with no significant difference observed in algorithm performance
between Black or African American subjects and White/Caucasian subjects.

Considering the modification of disease probability from pre-test to post-test when
applying this algorithm, the likelihood ratios are LR+ = 2.02 and LR− = 0.26. As anticipated
from the sensitivity and specificity, the likelihood ratios of the algorithm and CCTA are
not dissimilar. Further, the continuous nature of the algorithm output enables further
granularity to the test result beyond test-negative and test-positive. As described, the
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negative likelihood ratio is lower in more strongly negative ranges of the scores and vice
versa in test-positive. Therefore, the assessment of the post-test probability of disease could
be based on a more precise range of scores beyond simple test negativity/positivity.

The specificity in the ICA component (Group 2) is lower than that in the CCTA
component (Group 4). This is the logical consequence of removing truly negative patients,
as identified by the standard of care prior to catheterization. An analysis of the performance
of CCTA in filtered ICA populations shows that when only patients with lesions greater
than 50% are referred to ICA, CCTA specificity is 0.25 (0.13–0.29) [20]. This is nearly
identical to that observed in the IDENTIFY trial, with CCTA specificity being 0.26 (0.19–
0.33) when the standard of care is used to refer patients to ICA. The algorithm performance
in the ICA population, 0.21 (0.18–0.24), is directly comparable to these performances.

When analyzing the performance of machine-learned algorithms, it is critical to con-
sider the biases, both intrinsic and extrinsic, that may potentially become integrated into the
algorithm [19]. Typical issues include the heterogeneity in reference standard methodology
between institutions and geographical differences in prevalence. The validation population
encompasses areas with varying prevalence rates: higher (New York, Louisiana, Oklahoma,
Mississippi, Texas), moderate (Florida, South Carolina), and comparatively lower (Georgia,
North Carolina, Nebraska, Kansas) [21]. Therefore, the validation dataset is expected to
represent the intended use population. Further, it was sourced from 20 distinct sites as
another measure of bias reduction.

A potential machine-learning pitfall is overfitting [19]. The presented results represent
performance on a blinded validation set consecutively enrolled after all development
was completed. Further, there is also variation in staff and clinical sites between the
development and validation datasets, which provides further confidence that the validation
results are generalizable to the intended use population.

The results of an earlier-generation CAD algorithm were previously published [18].
Improvements that contributed to the higher performance of this generation included the
use of different machine-learning methods and access to a larger volume of development
data with equal weighting of males and females.

The first limitation of the algorithm presented herein is the imbalance in sensitivity
and specificity between men and women despite equal overall performance. As discussed
above, this potential limitation will be addressed in the commercial version of the algorithm
through the implementation of an alternative cut-point for females, which corrects any
sex-based difference in sensitivity/specificity performance. The second limitation is that
the algorithm validation is limited to the population defined by the inclusion/exclusion
criteria, and, therefore, no assessment or estimation of performance can be performed
on populations not meeting these criteria. For instance, patients with prior (critical/non-
critical) CAD were excluded, and, therefore, nothing is known about how the algorithm
will perform on this cohort. However, this cohort is among those who may be targeted for
future study.

5. Conclusions

The previously developed algorithm was frozen and assessed in a static manner on
a large blinded dataset and exhibited robust performance. The algorithm performance
is comparable to CCTA, the standard of care rule-out test for CAD. However, unlike
CCTA or SPECT, the results are available before the patient leaves the office (at the point
of care), minimizing the fraction lost to follow-up. Rapid testing at the point of care is
enabled by embedding the algorithm within the CorVista System, an FDA-cleared medical
device comprising the CorVista Capture (signal acquisition), CorVista Analyzer (software
to analyze the signal, including the CAD algorithm described herein), and CorVista Portal
(web portal with which to access the results). The signals are transmitted from the CorVista
Capture to the CorVista Analyzer automatically via WiFi or cellular connection, and results
are returned on the CorVista Portal within 15 min. In rural areas, due to fear, scheduling
limitations, and travel requirements, up to 50% of patients never complete the CCTA
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or SPECT test (personal communication, rural cardiologist), partially accounting for the
significantly lower life expectancy in rural regions of the US. The performance was validated
in a population modeling the intended use population, comprising symptomatic patients
with no previous CAD diagnosis. Importantly, the overall performance in females is equal
to that of males. This system addresses the need for a non-invasive, no-stress, no-radiation
front-line test available at the point of care with significant advantages to the patient,
physician, and healthcare system.
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//www.mdpi.com/article/10.3390/diagnostics14100987/s1, Section S1: STARD Checklist; Section S2:
Inclusion/Exclusion Criteria; Section S3: Clinical study sites and locations; Section S4: CONSORT
Flow for IDENTIFY Group 2; Section S5: CONSORT Flow for IDENTIFY Group 4; Section S6:
Relevance of CAD Score Beyond Binary Results. Section S7: Comparison Between Development and
Validation Key Demographics; Section S8: Distribution of Age and BMI in the Validation Population.
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