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Abstract: Set-back modification represents a dependable method to reducing the wind effects on
high-rise buildings, but the flow mechanism and aerodynamic responses of set-back tall buildings
have not been explored systematically. Using the square building as the benchmark model, six
set-back building models with varying steps and sizes were chosen for numerical simulation in
this study. The results of mean wind pressure and local wind force distribution, power spectral
densities of base moment, flow field, and structural response of the proposed building models are
compared and analysed using the Large Eddy Simulation (LES) technique. The results demonstrate
that the aerodynamic performance of set-back tall buildings dramatically improved, with the actual
optimization in the cross-wind direction being more significant. Generally, a single set-back measure
can enhance the aerodynamic performance of high-rise buildings more effectively than a double
set-back measure. The outcome of this study provides an aerodynamic design guide for set-back
tall buildings.

Keywords: high-rise buildings; set-back shape; LES; wind force; wind response

1. Introduction

High-rise buildings are particularly susceptible to wind due to their slender shapes
and low damping ratios. Hence, estimating and mitigating wind effects are crucial for wind
and structural engineers [1]. The main wind resistance measures for high-rise buildings
include structural control, mechanical vibration control, and aerodynamic optimization.
Among them, aerodynamic optimization offers improved economic performance, enhanced
security, and greater efficiency [2,3]. It reduces the wind loads on the buildings by altering
the wind field around the structure [4].

There are two approaches: corner (minor) modification and outer shape (major)
modification for aerodynamic optimization. Major modification of buildings not only
facilitates access to natural light and enhances aesthetics but also provides more flexible
usage space [5]. Currently, major modification is the primary strategy for mitigating wind
force effects on high-rise buildings [6,7], such as tapered, helical, inclined, opening, and
set-back buildings (see Figure 1). Cooper et al. [8] have studied the wind effects on tapered
buildings through wind tunnel tests, and their results show that tapered measures could
diminish cross-wind aerodynamic forces. Kim et al. [9] have conducted wind tunnel
experiments using a rocking vibration model to investigate the aerodynamic damping of a
180◦ twisted super-tall building. It was shown that the helical model exhibited superior
aerodynamic behaviour compared to the square model. Chen et al. [10] have evaluated
the aerodynamic characteristics of an inclined square prism through wind tunnel tests and
Large Eddy Simulation (LES). The results showed that the inclination could suppress the
vortex shedding of the building. Wind loads and wind speed amplification on high-rise
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buildings with openings were investigated by Chen et al. [11]. The results show that the
opening could lessen the wind load in the along-wind direction.
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To a certain extent, set-back buildings exhibit superior aerodynamic performance
compared to the other major modifications mentioned above [12]. For example, Kim
et al. [13] have carried out wind tunnel tests on 13 super-tall buildings with various atypical
building shapes to assess wind load effects, and it was demonstrated that set-back buildings
had the lowest peak normal stresses. Tanaka et al. [14] have conducted a series of wind
tunnel experiments to determine the aerodynamic forces and wind pressures on high-rise
buildings with corner cut, set-back, or helical configurations, and they found that set-back
buildings could enhance aerodynamic performance in the along-wind and cross-wind
directions compared to other major modifications. The spatio-temporal characteristics of
pressure fluctuations on tapered and set-back buildings were investigated by Kim and
Kanda [15], and it was found that the fluctuating lift force on set-back buildings was
significantly lower than that on tapered buildings.

Compared to wind tunnel tests, numerical simulation can capture the details of
a flow field around building models. Bairagi and Dalui [16,17] have investigated the
wind pressure distribution and wind speed characteristics of set-back buildings by using
Reynolds-averaged Navier–Stokes simulation (RANS), and they obtained the time average
wind load and flow. Rajasekarababu et al. [18] have studied the flow field distribution
of set-back tall buildings using Unsteady Reynolds-averaged Navier–Stokes simulation
(URANS), and the results indicated that URANS was capable of simulating the distribution
of mean and fluctuating wind pressure, but was unable to explicitly capture the distribution
of flow field in the downstream re-circulation. Subsequently, both Delayed Detached Eddy
Simulation (DDES) and Improved Delayed Detached Eddy Simulation (IDDES) were used
to evaluate the flow structure around set-back buildings by Rajasekarababu et al. [19], and
they found that IDDES could more accurately predict the downstream re-circulation of
set-back buildings than DDES. However, the aforementioned numerical simulations are
unable to capture the details of transient flow around the surface of set-back buildings.

It is known that LES can simulate near-wall flow and complex flow structures, thereby
enhancing the improvement in the resolution of a calculated flow field. Previous research
has confirmed the validity and accuracy of LES through comparisons with wind tunnel
tests and other numerical simulation methods [20–22]. The wind load and aerodynamic per-
formance of the square and trapped building models were estimated by using LES [23,24].
However, limited research has been conducted on the wind effect on set-back tall buildings
using the LES technique.

This paper presents a numerical investigation on the flow mechanism and aerody-
namic performance of set-back tall buildings by using LES. The results of mean wind
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pressure and local wind force distribution, power spectral densities of base moment, in-
stantaneous vortex structure, time-averaged flow field, and structural response of different
set-back measures are discussed comprehensively. The findings provide an aerodynamic
design guide for set-back tall buildings.

2. Methodology
2.1. Geometry and Measurement Taps

To facilitate comparison with the results from the existing wind tunnel test, the scale
ratio of the numerical model was set to 1:500. Seven high-rise building models, categorized
into two groups with an identical ratio of depth (D), width (W), and height (H) 1:1:6, were
studied. The benchmark model is a rectangular block with D = 100 mm, W = 100 mm,
and H = 600 mm (see Figure 2a). The first group (Group 1) comprised three single set-
backs (case 2, case 3, and case 4); the height of the set-back was H/2, and the edges of
set-back were distanced at 0.1D, 0.15D, and 0.2D far from the edge of base, respectively
(see Figure 2b). Similarly, the second group (Group 2) encompassed three double set-backs
(case 5, case 6, and case 7). The heights of the two set-backs were H/3, with the edges of
the first set-back at 0.05D, 0.075D, and 0.1D far from the edge of base, and the edges of
the second set-back were at 0.05D, 0.075D, and 0.1D far from the edge of the first set-back,
respectively (see Figure 2c).

Buildings 2024, 14, x FOR PEER REVIEW 3 of 20 
 

This paper presents a numerical investigation on the flow mechanism and aerody-
namic performance of set-back tall buildings by using LES. The results of mean wind pres-
sure and local wind force distribution, power spectral densities of base moment, instanta-
neous vortex structure, time-averaged flow field, and structural response of different set-
back measures are discussed comprehensively. The findings provide an aerodynamic de-
sign guide for set-back tall buildings. 

2. Methodology 
2.1. Geometry and Measurement Taps 

To facilitate comparison with the results from the existing wind tunnel test, the scale 
ratio of the numerical model was set to 1:500. Seven high-rise building models, catego-
rized into two groups with an identical ratio of depth (D), width (W), and height (H) 1:1:6, 
were studied. The benchmark model is a rectangular block with D = 100 mm, W = 100 mm, 
and H = 600 mm (see Figure 2a). The first group (Group 1) comprised three single set-
backs (case 2, case 3, and case 4); the height of the set-back was H/2, and the edges of set-
back were distanced at 0.1D, 0.15D, and 0.2D far from the edge of base, respectively (see 
Figure 2b). Similarly, the second group (Group 2) encompassed three double set-backs 
(case 5, case 6, and case 7). The heights of the two set-backs were H/3, with the edges of 
the first set-back at 0.05D, 0.075D, and 0.1D far from the edge of base, and the edges of the 
second set-back were at 0.05D, 0.075D, and 0.1D far from the edge of the first set-back, 
respectively (see Figure 2c). 

 
(a) 

 
(b) 

Figure 2. Cont.



Buildings 2024, 14, 1252 4 of 19Buildings 2024, 14, x FOR PEER REVIEW 4 of 20 
 

 
(c) 

Figure 2. Different set-back building models: (a) benchmark; (b) single set-back; (c) double set-back. 

To capture the details of the wind fields surrounding the set-backs accurately, meas-
urement taps were encrypted on the surface of set-backs. As shown in Figure 2, for the 
benchmark model and the first group, the measurement taps were arranged in 10 layers, 
while for the second group, the measurement layers were organized into 13 layers. 

2.2. Domain and Meshing 
The dimensions of the computational domain were set as 6H × 15H × 3H, and the 

origin coordinate was positioned at the bottom centre of the model, as shown in Figure 3. 
The distance between the inlet and the model centre was 5H, and the distance between 
the outlet and the model centre was 10H. In addition, the model centre was 3H away from 
both the lateral and top sides. In the numerical simulation, the blockage rate was set to not 
exceed 5%, which is in accordance with the requirement of specification [25]. 

The computational grid was fully structured. A child domain with a stretching ratio 
of 1.05 was constructed around the model to enhance the accuracy and trace small eddies 
[26]. The dimensions of the refined mesh region were (2H + D) × 3H × 1.5H, and the height 
of the first mesh cell of the surface was set as 8.00 × 10−5 m. The details of the mesh ar-
rangement of the benchmark model, single set-back model, and double set-back model 
can be found in Figure 4. 

 
Figure 3. The computational domain with boundary conditions. 
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To capture the details of the wind fields surrounding the set-backs accurately, mea-
surement taps were encrypted on the surface of set-backs. As shown in Figure 2, for the
benchmark model and the first group, the measurement taps were arranged in 10 layers,
while for the second group, the measurement layers were organized into 13 layers.

2.2. Domain and Meshing

The dimensions of the computational domain were set as 6H × 15H × 3H, and the
origin coordinate was positioned at the bottom centre of the model, as shown in Figure 3.
The distance between the inlet and the model centre was 5H, and the distance between
the outlet and the model centre was 10H. In addition, the model centre was 3H away from
both the lateral and top sides. In the numerical simulation, the blockage rate was set to not
exceed 5%, which is in accordance with the requirement of specification [25].
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The computational grid was fully structured. A child domain with a stretching ratio of
1.05 was constructed around the model to enhance the accuracy and trace small eddies [26].
The dimensions of the refined mesh region were (2H + D) × 3H × 1.5H, and the height
of the first mesh cell of the surface was set as 8.00 × 10−5 m. The details of the mesh
arrangement of the benchmark model, single set-back model, and double set-back model
can be found in Figure 4.
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Figure 5 displays the distributions of Y+ values on the surface of the benchmark model,
and it can be found that most of the Y+ values on the surface are below 5, satisfying the
requirement for LES [27]. For the set-back building models, the minimum mesh scheme
comprised 3.3 million cells within the computational domain.
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2.3. Boundary Conditions and Solver Settings

The inflow boundary was set as the velocity inlet. According to the logarithmic law,
the velocity profile can be defined as [28]

U(z) =
u∗
K

ln
(

z + z0

z0

)
(1)

where u* = 0.577 m/s is the frictional velocity, K = 0.42 is the Von Karman constant, and
z0 = 2.25 × 10−4 m is roughness length.

The turbulence intensity IU can be determined by

IU(z) =
{

0.05665 − 0.04316ln(z + z0), z ≥ 0.035
5.71(z + z0), z ≤ 0.035

(2)

The turbulence energy k and turbulent dissipation rate ε are given by

k(z) =
3
2
[U(z)IU(z)]

2 (3)

ε(z) = C3/4
µ

k(z)3/2

K(z + z0)
(4)

where Cµ = 0.09 is the model constant.
The non-slip wall was used to simulate the ground and the surface of the set-back

building models and the pressure outlet was applied at the outlet boundary. The symmetry
boundary was applied at the top and side walls of the domain. In addition, the empty
computational domain was used to validate the self-sustaining property of the atmosphere
boundary layer.

Figure 6 presents a comparison of the wind profile from inlet, outlet, and the cross-
section at the centre of the model obtained from the empty computational domain, with the
results calculated by Equations (1) and (2). The numerical simulation results demonstrate
a strong correlation with the theoretical values, which indicates that the atmospheric
boundary layer has a good self-sustaining ability. Consequently, the proposed LES model
is capable of simulating the wind field around set-back tall buildings.
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The k-epsilon model was selected to generate the initial flow field for the transient
simulation of LES, and the Smagorinsky–Lilly (SM) model was utilized for a LES subgrid
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scale model with Cs = 0.1. The velocity–pressure coupling was calculated through the
SIMPLEC algorithm, all residuals were set to 10−5, and the second-order implicit scheme
was taken into account in the solver. To maintain the CFL number below 5, the time step
was set as 5 × 10−5 s. The simulation comprises 40,000 steps so that the total duration
reaches three Flow Through Domains (FTDs) [29].

2.4. Grid Sensitive Test

After the dimensionless treatment, the wind pressure coefficients Cpi,mean and Cpi,rms
can be obtained from the wind pressure on the surface of the set-back building; that is,

Cpi,mean =
Pi − P0
1
2 ρU2

H
(5)

Cpi,rms =
σpi

1
2 ρU2

H
(6)

where Pi is the measured wind pressure at i tap, P0 = 0 Pa is the pressure at the reference
height, UH is the velocity of the incoming wind at the top of the model, and σpi is the root
mean square of the pulsating pressure.

Two additional grid types, with the thickness of the first layer boundary mesh of
5.00 × 10−5 m and 1.00 × 10−4 m, were selected for grid sensitive analysis to verify the
resolution of the model. When the mesh sizes did not exceed 8.0 × 10−5 m, the results of
numerical simulation were close. To assess the accuracy of the proposed models, the results
of benchmark model (case 1) were compared to that of the wind tunnel test performed
by Zheng et al. [28]. It can be observed that the mean wind pressure coefficient Cpi,mean
obtained from the LES exhibits strong concordance with the experimental results (see
Figure 7a). The fluctuating wind pressure coefficient Cpi,rms obtained from the LES is
slightly larger than that from the wind tunnel test (see Figure 7b). Nevertheless, all the
curves display a consistent trend, suggesting that the proposed LES models are dependable
for evaluating the aerodynamic performance of set-back tall buildings.
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3. Results and Discussion

A thorough evaluation of the relevant flow mechanisms and aerodynamic performance
was conducted due to the complexity of the flow structure around set-back tall buildings.
The results of the mean wind pressure and local wind force distribution, power spectral
densities of base moment, instantaneous vortex structure, time-averaged flow field, and
structural response are discussed in the following section.
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3.1. Mean Wind Pressure and Local Wind Force Distribution

The influence of set-back measures on the mean wind load was assessed through the
distribution of the mean wind pressure coefficient (see Figure 8). Although the frontal vortex
was generated on the windward surface and the negative pressure decreased slightly on
the leeward surface for the set-back building models, the difference in Cpi,mean between the
set-back building models and the benchmark model on these two sides was not significant,
as shown in Figure 8a,c.
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The contour representing the mean wind pressure coefficient on the sideward is
displayed in Figure 8b. It can be found that Cpi,mean was negative on the sideward surface
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due to the effect of flow separation, and the maximum value appeared at the leading
edge. Compared to the benchmark model, the zone of peak negative pressure coefficient
in the set-back buildings remarkably decreased. For Group 1, Cpi,mean at the trailing edge
exhibited a rebound near the steps and ground due to the reattachment of the separated
flow, resulting in a further reduction in the fluctuating cross-wind pressure.

According to the wind pressure distribution on the building surface, the dimensionless
local wind coefficients CD,mean(zi), CD,rms(zi), and CL,rms(zi) were used to further evaluate
the actual aerodynamic optimization effects of the set-back measures; that is,

CD,mean(zi) =
FD,mean(zi)
1
2 ρU2

H A(zi)
(7)

CD,rms(zi) =
σFD(zi)

1
2 ρU2

H A(zi)
(8)

CL,rms(zi) =
σFL(zi)

1
2 ρU2

H A(zi)
(9)

where FD,mean(zi) is the mean drag force at the measurement layer i; σFD(zi) and σFL(zi) are
the root mean square of drag force and lift force at the measurement layer i, respectively.
A(zi) is the frontal area of the measurement layer i.

Figure 9 provides a comparison of the local wind force coefficients for the proposed
building models. It can be found from Figure 9a that the effect of set-back measures on the
mean drag coefficient was negligible. Meanwhile, the effect of set-back measures on the
fluctuating drag coefficient was greatest at 0.7 H (see Figure 9b). It should be mentioned
that the fluctuating lift coefficient dropped significantly with the increase in set-back length,
as shown in Figure 9c. Moreover, the actual aerodynamic optimization effect of Group 1
was more stable than that of Group 2.
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3.2. Power Spectral Densities of Base Moment

The time history of the dimensionless base moment coefficients was used to reflect the
integral transient wind effects of building, which can be defined as

CMx =
Mx

1
2 ρU2

H DH2
(10)

CMy =
My

1
2 ρU2

H DH2
(11)

CMz =
Mz

1
2 ρU2

H BDH
(12)

where CMx, CMy, and CMz are the mean base moment coefficients of the along-wind, cross-
wind, and torsional directions. Mx, My, and Mz are the corresponding base moments
obtained from the LES.

The time history of the base moment coefficients can be converted into power spectral
densities (PSDs) by using Fourier transform; thus, the variation in the wind effects of the
proposed building models in the frequency domain can be examined. Figure 10 illustrates
a comparison of the PSDs of base moment for the proposed building models in the along-
wind, cross-wind, and torsional directions, in which the ordinate denotes the power spectral
densities and the abscissa denotes the reduced frequency. It can be found in Figure 10a that
the spectrum exhibited broadband characteristics without obvious peaks for all building
models in the along-wind direction. Figure 10b shows that the PSDs diminished with
the increase in the length of set-back for both of the two groups of set-back building
models, with the maximum peak of the spectrum at 0.128 occurring in case 1 and the
minimum peak at 0.009 occurring in case 7. The spectrum of the set-back building models
developed from narrowband to broadband, while the spectrum of the benchmark model
maintained narrowband characteristics in the cross-wind direction. This indicates that the
periodic vortex shedding of set-back buildings was suppressed, leading to a more irregular
vortex shedding process. In addition, with the increase in the set-back length, the reduced
frequency of the peak spectral energy became higher and the vortex shedding frequency
increased. It can be observed in Figure 10c that the spectral energy of the building models
was not affected by set-back measures in the torsional direction, indicating that the spectral
energy of the building models in the torsional direction was negligible compared to that in
the along-wind and cross-wind directions.

3.3. Instantaneous Vortex Structure

The Q-criterion is regarded as a general approach to visually analysing the vortex
structure in a flow field, and it can be defined as follows:

sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, rij =

1
2

(
∂ui
∂xj

−
∂uj

∂xi

)
(13)

where sij and rij are the strain rate and the rotation rate, respectively.
In order to accurately capture the representative vortex structures in different set-

backs, the value of Q was set to 3000 in this study. Figure 11 displays typical diagrams of
three-dimensional transient vortex structures around the proposed building models. The
flow field of the set-back building models was similar to that of the benchmark model,
which was characterized by the generation of z horseshoe vortex on the ground, z separated
vortex at the roof, and an elevated vortex on the sideward surface. It is noteworthy that
the set-back measures disrupted the coherence of the vortex structures, resulting in more
fragmentary vortex structures around the set-back building models. Furthermore, the
coherence of the vortex structure in Group 1 was less obvious than that in Group 2. This
is primarily attributed to the abrupt change in the cross-section of the single set-back
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buildings. When compared to the benchmark building, the extension of the wake vortex
around the set-back buildings was shorter. The wake region of the set-back building models
could not generate strong vortex shedding.
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3.4. Time-Averaged Flow Field

In order to obtain the time-averaged flow field of the representative plane, the X–Y
horizontal planes at Z/H = 0.467, 0.633, and 0.967 were extracted from the benchmark
model. Similarly, the X–Y horizontal planes at Z/H = 0.467 and 0.967 were obtained from
Group 1, and the X–Y horizontal planes at Z/H = 0.633 and 0.967 were derived from
Group 2. Figure 11 shows the streamline diagram of the mean velocity of the proposed
building models at different horizontal planes. It can be observed that the inflow reached
the windward surface first and spread to both sides, and then the flow separated at the
leading edge of the sideward surface. Finally, a pair of symmetrical swirling vortexes were
generated in the wake region of the model on the leeward. The streamline at the height of
Z/H = 0.967 for the building models adhered to the leeward surface due to the influence of
the three-dimensional vortex.
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It can be observed in Figure 11a,d,g that the set-back measures could decrease the
width of the wake region on the leeward by reducing the contact area. Furthermore, the
aerodynamic performance in the cross-wind direction improved due to the decrease in
the separation vortex sizes in the sideward surface of the set-back building models (see
Figure 11a,b,e). It can also be observed from Figure 11b–d that the reattachment of the
separated shear layers occurred sideward of the single set-back building models (Group 1),
and the flow reattachment reduced the turbulence intensity and aerodynamic force in the
cross-wind direction.
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3.5. Structural Response

To take account of the amplification effect, the base peak dynamic moment MD,max
was used to describe the comprehensive structural response of full-scale building in this
study, which can be defined as

MD,max = Mmean + gσMD (14)

where Mmean is the mean value of the base dynamic moment M; g = 3~4 denotes the
peak factor; and σMD is the root mean square of the base dynamic moment, which can be
calculated by

σMD =

√ ∫ ∞

0

∣∣∣∣H( f )
∣∣∣∣2SM( f )d f ≈

√
σ2

M,B + σ2
M,R (15)

where SM(f ) is the PSD of the base peak dynamic moment, and |H(f )|2 is the mechanical
admittance function. σM,B and σM,R are the background and resonant response of building,
respectively.

In order to obtain MD,max, the first-order and second-order inherent frequencies were
set as 0.16 Hz, and the structural damping (ζ0) was chosen as 3.5%. The base peak dynamic
moments of the proposed building models (case 1–case 7) in both the along-wind and
cross-wind directions can be found in Figures 12a and 12b, respectively.
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Figure 12. Comparison of base peak dynamic moment of different set-back building models: (a) along-
wind direction; (b) cross-wind direction.

For the along-wind direction, the base peak dynamic moment decreased slowly with
the increase in the set-back length in each group. In addition, the effect of step numbers on
the base peak dynamic moment was limited. The maximum reduction in the base peak dy-
namic moment of the set-back building reached 40.4% compared to the benchmark model.

For the cross-wind direction, the base peak dynamic moment decreased rapidly with
the increase in the set-back length in each group except case 3. Furthermore, the aerody-
namic performance of the single set-back buildings was superior to that of double set-back
buildings. The aerodynamic performance of case 4, which has the longest distance between
the edges of set-back and base, proved to be the most outstanding one. It should be noted
that MD,max rebounded to 5592 MN·m, which was 31.3% higher than that in the along-wind
direction for case 3 due to the vortex-induced vibration (VIV). Specifically, the unusual
phenomenon in case 3 was primarily ascribed to the growth in the resonant response.
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Figure 13 further analyses the impact of VIV on the structural response in the cross-
wind direction, in which the top peak acceleration response amax of the set-back tall build-
ings can be obtained from Equation (16):

amax =
g

kp H

√∫ ∞

0
(2π f )4

∣∣∣H( f )
∣∣∣∣2SM( f )d f (16)

where kp is the modal stiffness.
It can be found from Figure 13 that the top peak acceleration response of case 3 was

30% larger than that of the benchmark model in the cross-wind direction due to VIV, which
might severely impact human comfort. Meanwhile, the effects of the set-back measures on
the top peak acceleration response of the other cases (case 2, 4, 5, 6, 7) in the cross-wind
direction were limited.
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VIV exerts a detrimental effect on the structural responses of high-rise buildings in
the cross-wind direction. However, the effect of cross wind was always ignored by wind
engineers. In this study, the PSDs of modal-weighted aerodynamic force Fm were studied
to understand the influence of cross-wind aerodynamic forces on the structural response of
set-back tall buildings. Fm can be calculated as follows:

Fm = φF(z, t) (17)

φ = z/H (18)

where F(z,t) is the time-history of the wind force and φ is the first-order modal of the building.
Figure 14 illustrates the distribution of PSDs of Fm and SFm(f ) along the height of

the proposed building models in the cross-wind direction. The peak spectral energy for
Group 1 was observed at 0.82 H, 0.82 H, and 0.40 H, while for Group 2, it appeared at 0.83
H, 0.50 H, and 0.43 H, respectively. This indicates that the dominant aerodynamic forces
occurred at the middle-upper part of the set-back building models. Hence, additional local
aerodynamic optimization needs to be adopted in the corresponding positions to avoid
VIV. Furthermore, according to Figure 14d,g, increasing the length of set-back could reduce
the probability of the occurrence of VIV. This is attributed to the vortex shedding frequency
of the wake becoming disordered when the energy spectrum was divided into two parts.
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4. Conclusions

In this paper, the flow mechanism and aerodynamic performance of set-back tall
buildings were investigated through LES technique. The results of the mean wind pressure
and local win force distribution, power spectral densities of base moment coefficients, flow
field distribution, and structural responses of set-back building models were discussed.
The main conclusions can be drawn as follows:

(1) The set-back measures can reduce the mean wind pressure coefficients on the surface
of high-rise buildings, especially for the sideward surface. The set-back measures
have an actual optimization effect on the CD,rms and CL,rms, while the effect on the
distribution of CD,mean is limited.

(2) The set-back measures have a significant impact on the power spectral densities of
cross-wind base moment coefficients of a building, and the maximum reduction can
reach 93%. As the length of set-back increases, the spectrum of set-back building
models develops from narrowband to broadband and the intensity of vortex shedding
weakens.

(3) As the length of set-back increases in each group, more fragmentary vortex structures
are generated so that the regular and strong vortex shedding are suppressed. The
set-back measures in Group 1 can weaken the coherence of the vortex structure more
than that of Group 2.

(4) The reduction in wake width of the set-back building models mainly comes from
the decrease in contact area. The set-back measures motivate the reattachment of
separated shear layers on the sideward surface of buildings in Group 1, thus the
cross-wind forces decrease.

(5) As the length of set-back increases, the base peak dynamic moment in the cross-wind
direction decreases more significantly than that in the along-wind direction in each
group, and the maximum reduction can reach 53.2% in the cross-wind direction while
reaching only 40.4% in the along-wind direction. On the whole, the comprehensive
aerodynamic performance of single set-back structures is slightly better than that
of the double set-back structures. The amplification of structural response in the
cross-wind direction caused by VIV can be avoided by additional local aerodynamic
optimization at the middle-upper part of the set-back building.
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