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Abstract: Geopolymer concrete (GPC) serves as a sustainable substitute for conventional concrete by
employing alternative cementitious materials such as fly ash (FA) instead of ordinary Portland cement
(OPC), contributing to environmental and durability benefits. To increase the rate of utilization of
FA in the construction industry, distinctive characteristics of two machine learning (ML) methods,
namely, gene expression programming (GEP) and multi-expression programming (MEP), were
utilized in this study to propose precise prediction models for the compressive strength and split
tensile strength of GPC comprising FA as a binder. A comprehensive database was collated, which
comprised 301 compressive strength and 96 split tensile strength results. Seven distinct input
variables were employed for the modeling purpose, i.e., FA, sodium hydroxide, sodium silicate, water,
superplasticizer, and fine and coarse aggregates contents. The performance of the developed models
was assessed via numerous statistical metrics and absolute error plots. In addition, a parametric
analysis of the finalized models was performed to validate the prediction ability and accuracy of
the finalized models. The GEP-based prediction models exhibited better performance, accuracy,
and generalization capability compared with the MEP-based models in this study. The GEP-based
models demonstrated higher correlation coefficients (R) for predicting the compressive and split
tensile strengths, with the values of 0.89 and 0.87, respectively, compared with the MEP-based
models, which yielded the R values of 0.76 and 0.73, respectively. The mean absolute errors for the
GEP- and MEP-based models for predicting the compressive strength were 5.09 MPa and 6.78 MPa,
respectively, while those for the split tensile strengths were 0.42 MPa and 0.51 MPa, respectively. The
finalized models offered simple mathematical formulations using the GEP and Python code-based
formulations from MEP for predicting the compressive and tensile strengths of GPC. The developed
models indicated practical application potential in optimizing geopolymer mix designs. This research
work contributes to the ongoing efforts in advancing ML applications in the construction industry,
highlighting the importance of sustainable materials for the future.

Keywords: geopolymer concrete; compressive strength; split tensile strength; prediction model;
evolutionary algorithm

1. Introduction

Concrete is a vital material widely used in modern construction, which consists of fine
and coarse aggregates, cement, water, and admixtures [1]. Nevertheless, concerns over
global warming have underscored the need to reduce carbon dioxide (CO2) emissions,
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primarily attributed to cement production. In fact, each ton of produced ordinary Portland
cement (OPC) releases around one ton of CO2 [2]. Additionally, the disposal of construction
and demolition waste poses serious environmental issues [3,4]. Thus, the requirement
of both green construction and sustainability in the construction industry demands new
materials [5,6]. In response to these concerns, researchers have explored sustainable and eco-
friendly solutions such as geopolymer cement. This type of cement is produced from raw
materials containing aluminosilicate such as fly ash (FA), ground granulated blast furnace
slag (GGBFS), and metakaolin, treated with alkali and alkali silicates [7]. Geopolymer
concrete (GPC) reduces CO2 emissions by 80% and is more cost-effective since it utilizes
industrial and agricultural wastes. Its use also reduces the quantity of wastes sent to
landfill sites, benefiting the natural ecosystem [8]. Furthermore, GPC has shown superior
mechanical properties compared with conventional OPC-based concrete, including higher
compressive strength (CS) and split tensile strength (ST), as well as better resistance to acid,
fire, and high temperature. Geopolymerization, a fundamental chemical process integral
to the formation of GPC, unfolds through distinct stages. Firstly, the aluminosilicate
constituents are dissolved, resulting in the release of aluminate and silicate monomers such
as Al(OH)4 and Si(OH)4. These monomers then undergo condensation, forming initial gels
through sharing of oxygen atoms, resulting in mono cross-linked systems. In the final step,
the initial gels undergo polycondensation, transforming into geopolymer gels. The process
of geopolymerization is a vital step in the production of GPC, representing an eco-friendly
alternative to conventional concrete [8].

FA, a byproduct of coal combustion, has been utilized for many years as a partial
replacement for OPC [9]. Because of its aluminous and siliceous composition, FA can form
a compound similar to OPC when mixed with water and lime. This makes it a suitable
material for blended cement, mosaic tiles, and hollow blocks [10]. FA has lower embodied
energy compared with other pozzolanic precursors such as metakaolin and GGBFS [11].
Moreover, FA has a good solidification effect on heavy metal pollutants, making it suitable
to be used as an alternative cementitious material in concrete [12]. Amid the growing
environmental concerns and the demand for sustainable construction materials, there has
been a noteworthy rise in interest in FA-based GPC in the construction industry. GPC is
produced by treating raw materials rich in aluminosilicates with alkali and alkali silicates.
The process not only reduces CO2 emissions but also exploits industrial or agricultural
wastes. FA-based GPC ensures high strength, lower exploitation of natural resources, and
low CO2 emissions, making it an innovative and sustainable alternative to conventional
concrete systems.

Optimizing the mix design of GPC proves to be a complex task, given the involvement
of numerous parameters, including the types and concentrations of silicates, replacement
material used for cement, admixtures, curing conditions, and curing time. Traditional exper-
imental procedures for achieving optimal results are labor-intensive and time-consuming,
requiring extensive laboratory-based experiments and significant resources. Therefore,
the development of time- and cost-effective techniques to determine the correct propor-
tions of constituents required for GPC formulations is necessary. These techniques can
help streamline the optimization process and enhance the overall sustainability of the
construction industry.

In recent years, machine learning (ML) techniques have been increasingly employed
in civil engineering, among other fields, to drive advancements and contribute to societal
progress. Traditional methods for predicting the mechanical properties of concrete relied
on mathematical and statistical forecasting, along with non-linear prediction methods.
However, the development of ML techniques has revolutionized the creation of accu-
rate and reliable models for addressing civil engineering problems [13]. ML processes,
rooted in natural phenomena, are implemented via various techniques such as the genetic
algorithm (GA), genetic programming (GP), gene expression programming (GEP), multi-
expression programming (MEP), adaptive neuro-fuzzy interface (ANFIS), fuzzy logic (FL),
grey wolf optimization (GWO), random forest regression (RFR), artificial neural networks
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(ANNs), and support vector machine (SVM) [14]. Leveraging the pattern recognition
capabilities of ML, these techniques produce simplified models of intricate patterns, facil-
itating the optimization of the mix design of GPC [15,16]. ML-based approaches offer a
time and cost-effective alternative by minimizing the dependence on extensive laboratory-
based experiments, which typically involves substantial resources such as materials, time,
and labor.

Several studies have utilized ML techniques to estimate the mechanical properties of
various kinds of concrete. Khan et al. [17] proposed a GEP-based model to predict CS of
FA-based GPC. The results were in a good agreement with the experimental investigations
considered in the study. In addition, parametric analysis was performed to demonstrate
that the developed model takes into account the underlying physical relationship in the
considered system. Chu et al. [18] utilized GEP and MEP algorithms for the prediction
of CS of FA-based GPC. It was concluded that the GEP-based model has a higher corre-
lation coefficient (R) and minimal statistical errors compared with MEP. Similarly, Khan
et al. [19] applied GEP and RFR algorithms to predict CS of FA-based GPC. It was reported
that RFR outperformed GEP by giving a higher R value and minimal statistical errors,
while GEP provided a simple empirical equation to estimate CS of GPC. Following this,
Khan et al. [20] established numerous prediction models for the prediction of FA-based
GPC by employing ANN, ANFIS, and GEP. The three models met the verification criterion
proposed in the literature. However, the GEP-based model was considered ideal and
robust because it provided a simple mathematical formulation and a higher generalization
capability compared with others. Recently, Zhang et al. [21] proposed a hybrid RFR-GWO-
XGBoost algorithm for predicting CS of GPC. The results were compared with stand-alone
RFR and XGBoost models to display the supremacy of the proposed methodology. The GEP
algorithm was utilized by Iqbal et al. [2] to estimate CS, ST, and elastic modulus of waste
foundry sand (WFS)-based green concrete. GEP-based results were compared with linear
and non-linear regression models to validate the proposed models. In another study, Iqbal
et al. [16] applied MEP to predict ST and modulus of elasticity of WFS-based concrete. Both
studies involved model validation and parametric studies to exhibit the accurate prediction
of the systems under consideration. Meanwhile, the concrete strength comprising rice
husk ash was evaluated by employing ANN in [22]. The Bayesian ANN technique was
exploited to determine the strength of alkali-activated GPC comprising FA and bottom
ash [8]. Shahmansouri et al. [23] incorporated natural zeolite and silica fume in ground
GGBFS-based GPC to evaluate their effects on CS and developed an ANN prediction
model for its mechanical properties. Peng and Unluer [24] assessed the performance of
numerous ML algorithms for predicting CS of GPC incorporating waste glass powder
and slag. Their results indicated that the support vector regression and random forest
models outperformed the other algorithms applied in the study. It was further concluded
that the addition of waste glass powder and slag improved CS of GPC. Ahmad et al. [25]
utilized ANNs to develop a model for predicting the strength of GPC incorporating waste
ceramic tiles and quarry dust as a partial replacement for fine aggregates. The ANN model
illustrated better accuracy in predicting compared with traditional statistical models.

The review of the above-mentioned studies reveals that the modeling of CS was the
primary focus of the published studies. These modeling efforts have largely overlooked
ST of GPC, which is a crucial property that influences the performance, durability, and
applicability of FA-based GPC in various construction scenarios. The majority of the
studies have predominantly used ANNs, support vector regression models, XGBoost, and
others. While these algorithms are more accurate than evolutionary algorithms, they do not
provide simple mathematical formulations, which limit their utility for other researchers.
Meanwhile, most of the aforementioned studies are restricted to smaller databases than
what is typically used for a comprehensive analysis. It is worth noting that increasing the
number of datasets improves the quality of ML-based models.

This research work seeks to address the above-mentioned gaps by developing predic-
tion models utilizing the GEP and MEP algorithms to predict CS ( f ′c) and ST ( f ′st) of GPC
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containing FA as a binder. For this purpose, a comprehensive database was collated from
internationally published experimental results. Numerous combinations of input parame-
ters were employed, and the results obtained from both algorithms were compared. The
performance of the developed models was assessed using parametric and comprehensive
statistical analyses. The accuracy and reliability of the models were validated with the
experimental data. The significance of this study lies in its exploration of ML models, which
have not been extensively utilized in the context of GPC. This study provides valuable
insights into the applicability and accuracy of GEP and MEP for predicting the mechanical
properties of GPC via simple mathematical formulations. The practical application poten-
tial of the developed models is evident in their ability to guide engineers and practitioners
in selecting optimal GPC formulations, reducing material waste, and promoting the use of
eco-friendly alternatives in the construction industry.

2. GP and Its Variants

Computer scientists draw inspiration from the power of natural evolution when
developing automated problem solvers, i.e., algorithms. Nowadays, algorithms serve as
central themes in modern problem-solving techniques [26]. An excellent example of the
mimicking of evolutionary processes is GP, which is a branch of evolutionary algorithms.
It was developed by Koza [27] to overcome the limitations of pattern recognition methods
such as ANNs, FL, SVM, and ANFIS [28]. GP is the successor of GA developed by John
Holland [29]. For the last two decades, GP and its variants, including GEP and MEP,
have emerged as powerful techniques for modeling complex physical phenomena in civil
engineering discipline. The following sections provide a detailed explanation of GEP
and MEP.

2.1. GEP

As mentioned above, GEP belongs to the kin of evolutionary algorithms and is a direct
descendent of GP. It was proposed by Ferreira [30], wherein individuals, i.e., candidate
solutions, are encoded as linear strings of constant size known as a genome. The strings are
later presented as non-linear entities with changing shapes and sizes called expression trees
(ETs). GEP consists of a genotype–phenotype system in which a simple genome is stored
and passes on genetic information, while a complex phenotype explores and acclimates to
the environment, akin to a living organism. Models generated by GEP consist of multiple
parse trees, owing to the multigenic nature of its genotype–phenotype system, which
enables the assessment of complex programs comprising multiple sub-programs. The
key difference between GEP and classical GP lies in the fixed-length string representation
of candidate solutions generated by GEP, which are subsequently expressed as parse
trees of varying sizes and shapes during the fitness evaluation. Chromosomes and ETs
are two fundamental parameters of GEP, and the translation process involves decoding
information from chromosomes to ETs based on a set of rules. ETs usually consist of a
single chromosome, which comprises one or multiple genes. It should be noted that a gene
comprises a head and a tail [31].

Like other evolutionary algorithms, the chromosomes of the individuals of the initial
population are randomly generated via the functions and terminals deemed suitable to
solve a problem in the GEP algorithm. These founder individuals are completely random
and are yet to be toughened by the environment. Hence, they often prove to be inadequate
solutions. To generate new individuals/candidate solutions, ETs undergo a selection
process directed by their fitness utilizing roulette wheel selection, which ensures the
replication and survival of the fittest individual to the next generation. These individuals
are exposed to the same developmental process, i.e., expressing chromosomes as ETs,
fitness evaluation, selection, and reproduction with modification. A flowchart of working
of the GEP algorithm is depicted in Figure 1. The best individuals (i.e., those with the
highest fitness scores) obtained from a generation are always kept for the next generation,
often through a process known as elitism. This helps ensure that good solutions found in



Buildings 2024, 14, 1347 5 of 26

previous generations are not lost and can continue to be improved upon. Genetic operators
such as crossover, rotation, and mutation are employed by the GEP algorithm to initiate
variations in the population by altering the chromosomes at the reproduction stage [32].
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2.2. MEP

MEP was proposed by Oltean and Dumitrescu [33]. It has gained substantial consid-
eration in recent years as it offers a unique approach to problem-solving by utilizing a
linear genome structure (similar to GEP) and multiple expressions or sub-programs. The
latter gives MEP a unique capability to encode multiple solutions for a problem under
consideration in a single chromosome. This ability renders this technique highly efficient,
especially when the complexity of the problem is not known.

The algorithm process begins by generating a random population of chromosomes.
Subsequently, a binary procedure is used to select two parents from this population. The
parents undergo recombination, while the resulting offspring undergoes mutation. Finally,
the least fit individuals are replaced with the newly generated offspring [34]. The process
continues until a termination condition is reached. A flowchart of the MEP process is
shown in Figure 2.

In MEP, the length of a chromosome is determined by a fixed number of genes per
chromosome. Each gene within the chromosome encodes the elements existing in the
function and terminal set. The output from MEP is in the form of linear string of instruc-
tions. These instructions are formed by combining functions (mathematical variables) and
terminals (variables). In the chromosome structure, initial symbol represents a terminal
symbol. A function gene, on the other hand, consists of pointers that the reference function
arguments. The function parameters have indices corresponding to values lower than the
position of the function within the chromosome. This can be better understood from the
example given below considering the set of terminals as T = {Z1, Z2, Z3, Z4} and the set of
functions F = {+, x, ˆ}.

0: Z1.
1: Z2.
2: + 0, 1.
3: Z3.
4: × 2, 3,
5: Z4.
6: ˆ 4, 5.
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Genes 0, 1, 3, and 5 encode simple expressions formed by a single terminal symbol.
The expressions formed are given below:

G0 = Z1; G1 = Z2; G3 = Z3; G5 = Z4

From the above, we can interpret that gene 2 indicates the operation “+” applied to the
operands situated at the positions 0 and 1 within the chromosome (Equation (1)). Likewise,
genes 4 and 6 in the chromosome correspond to the operators “x” and “ˆ” applied to the
operands situated at the positions 2, 3, and 4, 5, respectively (Equations (2) and (3)). Thus,
the expressions encoded by the genes are as follows:

G2 = Z1 + Z2 (1)

G4 = (Z1 + Z2) Z3 (2)

G6 = [(Z1 + Z2) Z3]
Z4 (3)

The MEP chromosome encodes multiple solutions or expressions (G0, . . ., G6), allow-
ing for a diverse range of solutions within a single chromosome. This multi-expression
representation in MEP results in a chromosome that can be regarded as a forest of trees,
unlike in GEP, where a single tree structure is utilized. Figure 3 displays the forest of
expressions encoded by the chromosome, as described earlier.
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3. Research Methodology
3.1. Database Development and Data Curation

To predict CS and ST of GPC through GEP and MEP, a database was compiled from the
published literature. After conducting a comprehensive literature review and performing
initial trials, key input parameters having a substantial impact on f ′c of GPC were identified.
Based on our preliminary findings, we determined that f ′c and f ′st are a function of the
factors listed in Equations (4) and (5), respectively. The purpose of this study is to explore
the effects of these input parameters on f ′c and f ′st of GPC and propose new models for
their prediction.

f ′c = f
(

FA, Cagg, Fagg, NaSi, NaOH, SP, w
)

(4)

f ′st = f
(

FA, Cagg, NaOH, w, GGBFS
)

(5)

For the 28-day f ′c, 301 data points were collected from the literature [3,8,9,11,17,23,35–39].
The input parameters comprised the contents of fly ash (FA), fine aggregate (Fagg), coarse
aggregate (Cagg), sodium hydroxide (NaOH), sodium silicate (NaSi), water content (w), and
superplasticizer (SP). The f ′st model was developed using 96 data points, and an additional
parameter, GGBFS, was included in this dataset, given its common usage as an alternative
to cementitious materials in GPC. The input parameters were consistently recorded or
converted in kg/m3 units, where applicable. Table 1 summarizes the primary sources
of the database. The database was constructed through a meticulous search on Google
Scholar, employing keywords associated with FA-based GPC. This initial search yielded
around 50 articles. Given the variety of binders available for GPC development, a detailed
analysis was carried out to ensure the articles selected primarily focused on FA-based GPC.
Criteria were established to narrow down the selection, with an emphasis on the number
of the input variables, capping it at seven, as indicated in Equation (4). The data collection
was systematically approached, ensuring each article provided data on at least five or six
essential input variables such as FA, Cagg, Fagg, NaSi, NaOH, and w. SP was deemed as a
secondary input.

Tables 2 and 3 provide the descriptive statistics for the input variables utilized in the
f ′c and f ′st models’ development. These statistics, including measures of central tendency
and variability such as the standard deviation, as well as distribution shape indicators like
skewness, offer deep insights into the variables’ range and distribution characteristics. The
range of these variables can act as a preliminary guide before applying the developed models.
In addition, the even distribution of the input variables suggests that they are well-suited for
training ML models, enhancing the models’ ability to learn and predict accurately.
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Table 1. Data sources used for modeling study.

Source Theme of Article Output Parameter

Aneja et al. [8] Experiment and ANN models to predict
strength of GPC f ′c

Gomaa et al. [11] Experiments on FA-based GPC f ′c and f ′st
Shahmansouri et al. [23] Experiment and ANNs on GPC f ′c

Nguyen et al. [35] Experimental and neural network
approaches f ′c

Naghizadeh et al. [36] Experiments on FA geopolymer binder f ′c

Hardjito et al. [37] Development of low-calcium FA-based
GPC f ′c and f ′st

Rangan et al. [38] FA-based GPC f ′c and f ′st

Gomaa et al. [39] Experiments on high-calcium
alkali-activated FA mortar f ′c

Amran et al. [9] Review of FA-based GPC f ′c and f ′st
Khan et al. [17] ML models for CS of GPC f ′c and f ′st

Table 2. Descriptive statistics of input variables used for f ′c modeling.

Parameter FA Cagg Fagg NaOH NaSi w SP

Mean 417.77 995.49 726.64 59.03 128.28 18.06 4.37
Standard error 9.69 23.93 19.01 3.41 4.93 1.12 0.41

Median 408.00 1170.00 647.00 52.90 119.00 16.50 0.70
Mode 408.00 1170.00 630.00 41.00 103.00 0 0

Standard deviation 168.61 416.57 330.92 59.44 85.77 19.43 7.21
Sample variance 28,430.07 173,531.60 109,505.13 3533.21 7356.41 377.57 51.94

Kurtosis 37.90 0.99 9.58 50.96 25.10 3.28 3.86
Skewness 5.65 −1.58 2.69 6.30 3.77 1.29 2.14

Range 1368.00 1591.00 2085.00 600.00 800.00 113.60 28.00
Minimum 232.00 0 315.00 0 0 0 0
Maximum 1600.00 1591.00 2400.00 600.00 800.00 113.60 28.00

Table 3. Descriptive statistics of input variables utilized for f ′st modeling.

Parameter Cagg FA GGBFS NaOH w

Mean 987.05 358.29 101.74 77.84 35.75
Standard error 48.24 39.41 8.87 12.76 5.93

Median 1142.60 286.00 110.00 54.73 0
Mode 1143.00 286.00 0 54.73 0

Standard deviation 472.65 386.13 86.90 125.06 58.08
Sample variance 223,395.17 149,095.50 7551.93 15,639.88 3373.56

Kurtosis −0.41 6.54 −1.29 14.82 0.09
Skewness −0.58 2.79 0.17 3.56 1.31

Range 1870.00 1600.00 270.00 800.00 175.00
Minimum 0 0 0 0 0
Maximum 1870.00 1600.00 270.00 800.00 175.00

The data were split into a training set comprising 80% of the samples and a validation
set consisting of the remaining 20% of the samples. For the f ′c model, 239 data points were
utilized for training and the remaining 62 points were utilized for validation. Similarly, for
the f ′st model, 79 and 17 data points were allocated for training and validation, respectively.
It should be noted that the validation data comprised a combination of data used for vali-
dation during training (10%) to meet the performance criteria, and the manual verification
of the unseen data (10%) after training was completed by the algorithm. Additionally,
the data were randomly arranged for both the models to maintain objectivity and ensure
reliable results [40,41]. The interdependency of variables in a model is a critical concern, as
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it can lead to difficulties in accurately interpreting results and, consequently, to suboptimal
the performance of the model. This challenge, often referred to as the “multicollinearity
problem”, arises when the input variables are not independent [15]. To ensure the develop-
ment of a reliable model, it is recommended that the correlation between any two input
variables should not exceed 0.80 [32]. As a result, R values for every possible pair of the
input variables were computed, as detailed in Tables 4 and 5. The findings exhibited that
both positive and negative correlations between various parameters are well below the 0.80
threshold, effectively reducing the potential impact of multicollinearity.

Table 4. R values among input variables used for f ′c modeling.

FA Cagg Fagg NaOH NaSi w SP

FA 1 −0.40 0.76 0.68 0.63 0.17 0.06
Cagg −0.40 1 −0.72 −0.05 −0.42 −0.04 −0.22
Fagg 0.76 −0.72 1 0.39 0.70 0.26 0.16

NaOH 0.68 −0.05 0.39 1 0.28 −0.07 0.22
NaSi 0.63 −0.42 0.70 0.28 1 0.20 0.05

w 0.17 −0.04 0.26 -0.07 0.20 1 −0.02
SP 0.06 −0.22 0.16 0.22 0.05 −0.02 1

Table 5. R values among input variables utilized for f ′st modeling.

Cagg FA GGBFS NaOH w

Cagg 1 −0.66 −0.05 −0.42 −0.10
FA −0.66 1 −0.41 0.80 0.54

GGBFS −0.05 −0.41 1 −0.29 −0.62
NaOH −0.42 0.80 −0.29 1 0.43

w −0.10 0.54 −0.62 0.43 1

3.2. GEP’s Optimal Parmeter Settings

Table 6 provides a detailed overview of the specific parameters employed in the GEP
algorithm, which were finalized after conducting 47 different trials. The conducted trials
encompassed adjustments of several parameters, as outlined in the table, including the
number of chromosomes, ranging from 30 to 450 across different models, and the number
of genes, ranging from 0 to 6 with a step size of 1. It should be noted that the models
for CS and ST were denoted as MG-CS and MG-ST, respectively. Additionally, the head
size, determining the ultimate complexity of the models or formulations, was set at 12
for the CS model and 8 for the ST model. The addition “+” function was selected as the
linking function in both the models to ensure simplicity in the final equations. Different
mathematical operators and function sets were utilized to achieve the desired accuracy.
The number of generations in the trial models was kept at an optimum value to allow the
algorithm to evolve properly.

Table 6. GEP algorithm’s parameter settings for both models.

Parameter MG-CS MG-ST

Chromosomes 450 350
Genes 06 03

Head sizes 12 08
Linking function + +

Mathematical operators +, −, ×, ÷,
√

+, −, ×, ÷,
√

Function set Average, square root, tangent,
sine, cosine Average, square root

Constants per gene 10 10
Number of generations 1000 1000
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3.3. MEP Optimal Parmeter Settings

Table 7 summarizes the settings of the models for CS and ST that were finalized after
running numerous trials. The size and number of the subpopulation are crucial parameters
that determine the overall accuracy and complexity of the models. If these parameters
have larger values, a model will take more time to converge and yield accurate results.
Nonetheless, there is a risk of overfitting and poor performance on unseen data. It should
be noted that the models for CS and ST are denoted as MM-CS and MM-ST, respectively.
For the MM-CS model, the number of generations was determined by observing the
fitness function, and it was found that no substantial improvement occurred beyond
1000 generations, which was considered the optimal value. On the other hand, the MM-ST
model did not provide substantial improvement in R beyond 500 generations. Hence,
500 was chosen as the optimal value. In both the models, the mutation rate was set to 0.01,
and the crossover rate was set to 0.90. These rates were chosen to ensure that offspring
undergo mutation and crossover operations during the modeling process. Moreover, the
code length was determined as 40 for both the models. However, the final models were
simplified employing basic mathematical rules. Table 7 lists the selected settings for each
model, which were determined by testing different combinations of these parameters on
the training data.

Table 7. MEP algorithm’s parameter settings for both models.

Parameter MM-CS MM-ST

Number of subpopulations 40 40
Size of subpopulations 300 250

Code lengths 30 20
Crossover probability 0.90 0.90

Mathematical operators +, −, ×, ÷,
√

+, −, ×, ÷
Mutation probability 0.010 0.01

Tournament sizes 4 3
Operators 0.50 0.50
Variables 0.50 0.50

Number of generations 1000 500

4. Performance Evaluation Criteria for Models

The inclusion of statistical error measures is crucial to evaluate the accuracy and
effectiveness of empirical models. These measures ensure that the models are reliable for
predicting the properties of GPC. In this research work, error measures such as the mean
absolute error (MAE), root mean square error (RMSE), R, and relative root mean square
error (RRMSE) were considered, as used commonly in the literature [42]. To determine the
accuracy of the proposed models, a statistical study utilizing these measures was conducted,
and a performance indicator (ρ) that considered both R and RRMSE was employed [15].
The mathematical formulas for these errors and the acceptable range for an accurate model
are demonstrated in Table 8.

Table 8. Summary of statistical parameters and recommended criteria for an accurate empirical model.

Parameter Expression Criteria

R ∑n
i=1 (ei−ei)(mi−mi)√

∑n
i=1 (ei−ei)

2 ∑n
i=1(mi−mi)

2
>0.80

MAE ∑n
i=1|ei−mi |

n Minimum

RMSE
√

∑n
i=1(ei−mi)

2

n
Minimum

RRMSE 1
|e|

√
∑n

i=1(ei−mi)
2

n

0–0.10 (Excellent)
or 0.11–0.20 (Good)

ρ ρ = RRMSE
1+R <0.20
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In Table 8, n represents the total number of samples, ei denotes the ith model output,
and mi designates the corresponding experimental output. The mean values of the experi-
mental and model outputs are denoted by ei and mi, respectively. The accuracy of a model
is directly proportional to R and inversely proportional to MAE, RMSE, and RRMSE. The
value of ρ ranges from 0 to +∞, and as it approaches 0, the accuracy increases. Likewise,
the R value ranges from 0 to 1, and an R value of 0.80 is considered indicative of a good
correlation between the inputs and output.

5. Results and Discussion

In this section, the modeling results of the GEP and MEP algorithms are separately
presented and discussed. We begin by discussing the results obtained from the GEP
algorithm, followed by an in-depth analysis of the MEP results.

5.1. Modeling Results of GEP
5.1.1. MG-CS

To ensure reliability of the model, it is advisable that the ratio of data points to input
variables be greater than three [43]. Alternatively, reducing the (Kolmogorov) complexity
of the data points could facilitate faster network convergence, particularly if trained with
a smaller dataset [44]. As a result, in this study, the model had a ratio of 43, displaying a
satisfactory sample size. A total of 47 trials were conducted to optimize the model’s accuracy
and simplify the formulation, with the GEP algorithm generating ETs, as illustrated in
Figure 4. The variables used in ETs are defined in Table 9 and were decoded to develop
an empirical equation for the f ′c prediction based on the given input. The final simplified
equations for predicting CS are given in the following.

f ′c (MPa) = A + B + C + D + E + F (6)

where

A =
tan
(

FA+NaOH−4.8
3

)2
+
√

Fagg + tan9.5FA

3
(7)

B = tan

(
SP +

w5 + FA + Fagg + tanCagg

3

)0.25

(8)

C = tan

(
sin

1.28 + Cagg
FA + FA − 5.59Fagg

4

)5

(9)

D =
(

FA +
(
tan 2.37Cagg + 4

)0.66
)0.33

(10)

E =
tanFagg − 0.54NaOH + tanNaOH + 17 − SP

12
+ 68 (11)

F =

(
FA + 2NaOH + 10Cagg × SP + NaSi2 − 35115

9

)0.33

(12)
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Figure 4. ETs of MG-CS model. Note: Signs ‘-‘, ‘*’, and ‘/’ refer to minus, multiplication, and division,
respectively.

Table 9. Description of input variables presented in ETs of MG-CS model.

Variable d0 d1 d2 d3 d4 d5 d6

Corresponding input FA Cagg Fagg NaOH NaSi w SP

The modeled and experimental results are indicated in Figure 5, along with the linear
fit regression trend lines for both the training and validation sets. The accuracy of the
developed model can be reliably assessed by the slope of the regression line. It can be
observed that the slope of the regression line was approximately 0.80 and 0.75 for the
training and validation sets, respectively. Moreover, R for both sets was considerably high,
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with the values of 0.89 and 0.83 for the training and validation sets, respectively. According
to Table 8, an R value greater than 0.80 demonstrates a highly accurate model. These results
pointed out that the model performed well not only on the training data but also on the
validation or unseen data.

Buildings 2024, 14, x FOR PEER REVIEW 13 of 27 
 

Figure 4. ETs of MG-CS model. Note: Signs ‘-‘, ‘*’, and ‘/’ refer to minus, multiplication, and division, 
respectively. 

Table 9. Description of input variables presented in ETs of MG-CS model. 

Variable d0 d1 d2 d3 d4 d5 d6 
Corresponding input FA Cagg Fagg NaOH NaSi w SP 

The modeled and experimental results are indicated in Figure 5, along with the linear 
fit regression trend lines for both the training and validation sets. The accuracy of the de-
veloped model can be reliably assessed by the slope of the regression line. It can be ob-
served that the slope of the regression line was approximately 0.80 and 0.75 for the train-
ing and validation sets, respectively. Moreover, R for both sets was considerably high, 
with the values of 0.89 and 0.83 for the training and validation sets, respectively. Accord-
ing to Table 8, an R value greater than 0.80 demonstrates a highly accurate model. These 
results pointed out that the model performed well not only on the training data but also 
on the validation or unseen data. 

 
Figure 5. Comparison of experimental and predicted values of MG-CS model. 

The performance of the model on the training and validation data can be analyzed 
by looking at various metrics summarized in Table 10. For the training data, the R value 
was found to be 0.89, exhibiting a strong linear relationship between the actual and pre-
dicted values. MAE and RMSE were 4.88 and 6.16, respectively. RRMSE was calculated to 
be 0.15. These results illustrated that the model performed well on the training data with 
low error and high accuracy. 

On the other hand, for the validation data, the R value was resulted as 0.83, display-
ing a slightly weaker linear relationship than the training data. MAE and RMSE were 5.82 
and 7.39, respectively, which were higher than the training set. RRMSE was found to be 
0.17. These results showed that the model had higher error and lower accuracy on the 
validation data compared with the training data. RMSE increased by approximately 20% 

0

20

40

60

80

100

0 20 40 60 80 100

Pr
ed

ic
te

d 
CS

 (M
Pa

)

Experimental CS (MPa)

Experimental

Training

Validation

y = 0.9799x (Training)

y = 0.9643x (Validation)

y = x (ideal fit)

Figure 5. Comparison of experimental and predicted values of MG-CS model.

The performance of the model on the training and validation data can be analyzed by
looking at various metrics summarized in Table 10. For the training data, the R value was
found to be 0.89, exhibiting a strong linear relationship between the actual and predicted
values. MAE and RMSE were 4.88 and 6.16, respectively. RRMSE was calculated to be 0.15.
These results illustrated that the model performed well on the training data with low error
and high accuracy.

On the other hand, for the validation data, the R value was resulted as 0.83, displaying
a slightly weaker linear relationship than the training data. MAE and RMSE were 5.82
and 7.39, respectively, which were higher than the training set. RRMSE was found to be
0.17. These results showed that the model had higher error and lower accuracy on the
validation data compared with the training data. RMSE increased by approximately 20%
in the validation data, signifying that the model had a marginally higher error rate in
predicting unseen data. Despite this, the RRMSE values indicate that the model still had
good accuracy in predicting both sets of the data, with values below 0.20 for both sets. Based
on the performance index, it can be concluded that the GEP model performed similarly for
both the training and validation data. The performance index is a comprehensive measure
that considers both the accuracy and complexity of the model. A lower value of the
performance index demonstrates a better-performing model. In this case, the performance
index was 0.08 for the training data and 0.09 for the validation data, which exhibited that
the model performed similarly on both sets. This suggests that the model is generalizable
and can be used to make predictions on unseen data with reasonable accuracy.
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Table 10. Statistical indicators for training and validation sets of MG-CS model.

Model Dataset R MAE RMSE RRMSE ρ

MG-CS
Training 0.89 4.88 6.16 0.15 0.08

Validation 0.83 5.82 7.39 0.17 0.09

The accuracy of the predicted results is further visualized through the absolute error
plot in Figure 6, which compares the experimental and predicted data points. The absolute
difference between the two sets was depicted to be noticeably low, with more than 80% of
the datasets having an absolute difference of less than 1.50 MPa. Only 5 out of 301 data
points gave an error greater than 10 MPa. These results further reinforced the claim that
the GEP model could accurately predict CS of GPC.
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Figure 6. Absolute errors between experimental and predicted values of MG-CS model.

5.1.2. MG-ST

In a similar fashion to the CS modeling, ST of GPC was modeled utilizing the GEP
approach. The model considered input parameters such as FA, GGBFS, NaOH, Cagg, and
water content. The resulting formulation obtained from the GEP modeling is expressed in
Equation (13):

f ′st(MPa) =
2Cagg + 2.58w

Cagg + FA
+

GGBFS
w + NaOH − GGBFS + 15

+
4GGBFS − 0.84

4
(13)

Figure 7 presents a comparison of the experimental and modeled results for ST of
GPC, alongside the regression trend lines for the training and validation datasets. The R
values for both the datasets were remarkably high, with the values of 0.87 and 0.82 for the
training and validation datasets, respectively. These results illustrated that the model had a
good performance not only on the training data but also on unseen data in the form of the
validation dataset.
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Figure 7. Comparison of experimental and predicted values of MG-ST model.

To evaluate the accuracy of the predicted results for the MG-ST model, an absolute
error plot was generated in Figure 8, which compares the experimental and predicted data
points. The plot depicts that the maximum error observed in the data was 1.50 MPa, and
MAE was found to be 0.42 MPa, which was relatively small. These results underscored the
dependability of the GEP model in providing precise predictions for ST of GPC.

The performance of the ST model was also assessed via the same metrics as the CS
model. The results of both the training and validation datasets are provided in Table 11. For
the training dataset, the R value was 0.87, implying a strong positive relationship between
the predicted and actual values. MAE was 0.42, which means that on average, the predicted
value was 0.42 MPa away from the actual value. RMSE was 0.51 MPa, showing an average
deviation of 0.51 MPa between the predicted and actual values. RRMSE was 0.19, which
was relatively low, suggesting that the model had a low relative error. ρ was 0.10, which
was within the acceptable range of 0.10 or less.
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Table 11. Statistical measures for training and validation sets of MG-ST model.

Model Dataset R MAE RMSE RRMSE ρ

MG-ST
Training 0.87 0.42 0.51 0.19 0.10

Validation 0.82 0.45 0.57 0.22 0.12

For the validation dataset, the R value was 0.82, which was a little lower than that
of the training dataset, but still pointed out a strong positive relationship between the
predicted and actual values. MAE was 0.45 MPa, indicating that on average, the predicted
value was 0.45 MPa away from the actual value. RMSE was 0.57 MPa, which was slightly
higher than that of the training dataset. RRMSE was 0.22, which was higher than that of the
training dataset, demonstrating that the relative error was a bit higher. The performance
index was 0.12, which was higher than that of the training dataset. Compared with the
training data, the validation set of the ST model demonstrated an increase of approximately
13.10% in RMSE and 8.10% in MAE. However, both the training and validation datasets
exhibited similar performance for the ST model, as evidenced by the comparable values of
the performance index, which was considered the best indicator of the overall performance.
The performance index for both datasets was within the acceptable range of 0.10 or less,
suggesting that the ST model was suitable for predicting ST of GPC.

5.2. Modeling Results of MEP
5.2.1. MM-CS

Figure 9 displays a comparative analysis of the prediction results acquired from the
MM-CS model when compared with the experimental data. The datasets utilized for the
GEP modeling were also employed for the MEP modeling. The statistical parameters for
the training and validation datasets are presented in Table 12, allowing for a comprehensive
evaluation. The findings in Figure 9 revealed a weak correlation compared with the MG-CS
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model (Figure 5) as evident from a comparison of the slope of the regression lines (1 for
an ideal model). Furthermore, the formulations for predicting CS using MEP are listed in
Table A1 of Appendix A.
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Table 12. Statistical indicators for training and validation sets of MM-CS model.

Model Dataset R MAE RMSE RRMSE ρ

MM-CS
Training 0.76 6.72 8.92 0.22 0.13

Validation 0.75 6.97 9.45 0.22 0.12

Figure 10 depicts a graphical representation of the absolute errors for the MM-CS
results. MAE was 6.78 MPa, which was higher compared with 5.09 MPa for the MG-CS
model. In addition, the maximum absolute error noted was >37 MPa, while it was <28 MPa
for the MG-CS model. The aforementioned discussion demonstrates the accuracy of the
proposed GEP formulation.

As discussed above, Table 12 shows the statistical indicators for the training and
validation sets of the MM-CS model. The analysis of the statistical parameters indicates
that the MM-CS model exhibited the highest accuracy compared with MG-CS, as evidenced
by its lowest R values for the training and validation sets (Table 10). It is also important to
note that the values of other parameters were comparatively low for the MG-CS model,
suggesting better performance of the model compared with MM-CS. Additionally, the
values of MAE and RMSE were close to each other in both sets, displaying the good
generalization and high predictability of the MG-CS model (Table 10). On the other hand,
the values of ρ were close to zero for the model MG-CS, while the values of RRMSE were
<0.20, revealing that the model could be termed as “good”.
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Figure 10. Absolute errors between experimental and predicted values of MM-CS model.

5.2.2. MM-ST

The results of the MM-ST model (both the training and validation sets) against the
experimental results are illustrated in Figure 11. The figure also depicts the slope of
regression lines for both sets. The slopes for the training and validation sets were 0.96 and
0.99, respectively, demonstrating a very good correlation between the experimental and
model values. The values of the slope of the regression lines were comparable to the MG-ST
model (Figure 7); however, it cannot be considered a sole criterion to assess the model
performance. The absolute errors of the MM-ST model are shown in Figure 12, providing
additional insights. Also, the formulations for predicting ST using MEP are presented in
Table A2 of Appendix A.
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Figure 12 indicates that the experimental and predicted values are close to each other.
MAE was 0.51 MPa, while the maximum value was 4.75 MPa. For the MG-ST model, MAE
was 0.42 MPa, while the maximum value was 1.08 MPa. Furthermore, the cumulative sum
of the absolute difference values was 49.07 MPa for MM-ST, whereas for MG-ST, it was
40.77 MPa. These findings exhibited the excellent performance of the GEP model.

Table 13 displays the values of the various statistical parameters chosen for the analysis.
The R values for the training and validation sets were 0.73 and 0.70, respectively, both
falling below the recommended criterion of 0.80, as stated in Table 8. The R values for
both sets were on the lower side compared with the values of MG-ST (Table 11). Moreover,
the values of the remaining parameters, i.e., MAE, RRMSE, RMSE, and ρ, were very high
compared with MG-ST, elaborating the poor performance of the MEP algorithm in this
case. Furthermore, the values of the parameters for both sets were not close to each other
as well as compared with the MG-ST model.

Table 13. Statistical parameters for training and validation sets of MM-ST model.

Model Dataset R MAE RMSE RRMSE ρ

MM-ST
Training 0.73 0.48 0.75 0.29 0.17

Validation 0.70 0.65 0.89 0.28 0.18

6. Parametric Analysis

Based on the mentioned analysis, the GEP-based models are finalized for predicting
CS and ST of GPC. In this regard, the GEP-based prediction models developed were further
validated through a parametric analysis utilizing a Python code. The average values of
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all the input parameters were fixed, and the effect of varying one of the inputs on the
mechanical properties was plotted, as depicted in Figures 13 and 14.
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Generally, an increase in the FA content results in an increase in CS because of the
pozzolanic reaction. This reaction leads to the formation of more calcium silicate hydrate
(CSH) gel. The trend observed in this study illustrated that CS of GPC increased initially
with increasing the FA content, but after reaching an optimum point, it began to decrease, as
depicted in Figure 13a. This decrease could be attributed to the reduced workability of the
mix resulting from an increase in the FA content, leading to the improper compaction and
weaker interfacial bonding between aggregates and paste. The activator, which is typically
NaSi, plays a crucial role in the development of the strength in GPC. As the amount of
activator was increased, there was a noticeable enhancement in the strength of GPC, as
shown in Figure 13b. This was because the activator helped initiate the reaction between
the alkaline solution and FA. This reaction led to the formation of a geopolymer gel that
bound the particles together. Therefore, a higher amount of activator could facilitate a



Buildings 2024, 14, 1347 22 of 26

more complete reaction, resulting in higher strength. However, it is important to note
that beyond a certain point, increasing the amount of activator might not lead to further
improvements in the strength and might even have a negative impact. The effect of SP on
CS of GPC was also investigated. The results indicated that the addition of SP did not have
a substantial effect on CS of GPC, as expressed in Figure 13c. This suggests that the use of
SP in GPC mixtures may not be necessary and only impacts the workability of concrete.

The Fagg content in GPC was observed to have a significant impact on its CS. It was
seen that as the amount of Fagg was increased, the strength of GPC decreased linearly, as
exhibited in Figure 13d. This trend can be attributed to the fact that the Fagg components had
a higher water absorption capacity and a lower specific gravity compared with the other
components in the mix [45]. As a result, an increase in the Fagg content led to higher water
demand and, subsequently, a weaker interfacial transition zone (ITZ) between aggregates
and geopolymer matrix [46]. This weaker ITZ resulted in a lower CS of GPC. The impact of
the water content on the strength of GPC displayed in Figure 13e implies that an increase
in the water content led to a decrease in the strength of GPC. This can be ascribed to the
fact that excess water content in the mix reduced the strength of the cementitious matrix
and increased the porosity of GPC, which in turn reduced its strength.

The trend of Cagg on CS of GPC is plotted in Figure 13f, indicating that the strength
of GPC increased linearly with an increase in the content of Cagg. This is likely owing to
the fact that increasing the amount of Cagg led to better particle packing and improved
interlocking, which resulted in higher strength. However, it should be mentioned that
beyond a certain point, an increase in the Cagg content might lead to a decrease in the
strength because of the reduced workability and increased void content. Therefore, careful
optimization of the amount of Cagg is necessary to achieve the highest possible strength.

The combined impact of FA, Cagg, and water content on ST of GPC is also noteworthy,
as summarized in Figure 14a–c. Similar to CS, ST initially increased with an increase in
the FA and Cagg contents up to a certain optimal level. However, ST decreased as the
water content increased beyond a particular level. These trends highlight the importance
of balancing the quantities of FA, Cagg, and water content in order to achieve the desired
ST strength in GPC. It is essential to carefully consider the optimal proportions of these
ingredients during the mixture design stage to achieve the desired strength properties of
GPC. The GEP model demonstrated a high degree of accuracy in capturing the correlation
between the input parameters and mechanical properties of GPC. The regression trend
lines and absolute error plot depict that the GEP model’s predicted results were in close
agreement with the experimental data. These findings suggest that the GEP models can
be a reliable tool for predicting CS and ST of GPC, which can help optimize the material’s
composition and design more durable structures.

7. Conclusions

This article presented a novel approach to developing accurate and reliable models
for CS and ST of GPC utilizing the GEP and MEP algorithms. A large database was
collated from the published literature, which contained the input parameters used in the
development of the models. The performance of the developed models was evaluated
employing various statistical measures such as R, MAE, RMSE, and ρ. Also, the absolute
error analysis was conducted to calculate the mean, maximum, and minimum errors
between the experimental and predicted values. The main conclusions drawn from the
above study are listed below.

The main conclusions for the CS model are in the following:

• In the training phase, the MG-CS model exhibited superior reliability and accuracy
with an R value of 0.89, noticeably outperforming the MEP-based model (R of 0.76).
The GEP model also illustrated lower MAE (4.88), RMSE (6.16), RRMSE (0.15), and
ρ (0.08) values, indicating its robust predictive capabilities.



Buildings 2024, 14, 1347 23 of 26

• During the validation phase, the MG-CS model maintained a high R value of 0.83,
with corresponding lower MAE, RMSE, RRMSE, and ρ values of 5.82, 7.39, 0.17, and
0.09, respectively, further validating its predictive accuracy and reliability.

• The absolute difference between the experimental and predicted sets was demon-
strated to be considerably low, with more than 80% of the datasets having an absolute
difference of less than 1.50 MPa in case of GEP. MAE for the GEP-based model was
5.09 MPa for both sets, which outperformed the MEP-based model (MAE of 6.78 MPa).
These results further reinforced the claim that the GEP model provided sufficiently
accurate predictions for CS of GPC.

The main conclusions for the ST models are in the following:

• In the training phase, the MG-ST model displayed superior performance with an R
value of 0.87, surpassing the MEP-based models (R of 0.73). Similar to the CS model,
MG-ST provided lower MAE (0.42), RMSE (0.51), RRMSE (0.19), and ρ (0.10) values,
illustrating its efficacy in predicting ST.

• During validation, the MG-ST model maintained a high R value of 0.82, with corre-
sponding MAE, RMSE, RRMSE, and ρ values of 0.45, 0.57, 0.22, and 0.12, respectively,
underscoring its reliability and accuracy in predicting ST.

• Based on the absolute difference between the experimental and predicted sets, MAE for
the GEP-based model was 0.42 MPa for both sets, surpassing the MEP-based model’s
MAE of 0.51 MPa, which reinforced the assertion that the GEP model exhibited
accurate predictions for ST of GPC.

This study also involved deriving empirical equations for the MG-CS and MG-ST
models. A parametric analysis of the proposed empirical equations was done specifically
for both models, demonstrating that the models effectively accounted for the system being
studied. Moreover, the suggested empirical equations made a solid and accurate basis for
enhancing the application of ML methods in predicting f ′c and f ′st of GPC using a simple
scientific calculator. Overall, this study provides a valuable contribution to sustainable
construction by reducing reliance on conventional cement-based concrete and promoting
the application of industrial waste materials in the production of GPC.
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Appendix A

Table A1. MEP-based model used to calculate f ′c . Value of each “prg” is calculated individually
utilizing defined input variables. f ′c is equal to final prg, i.e., prg(28).

f ′c = prg(28)

where, x[0] = FA; x[1] = Cagg; x[2] = Fagg;
x[3] = NaOH; x[4] = NaSi; x[5] = w; x[6] = SP
prg[0] = x[2];

prg[1] = prg[0] + prg[0];
prg[2] = x[0];
prg[3] = prg[0] + prg[1];
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Table A1. Cont.

prg[4] = sqrt(prg[0]);
prg[5] = prg[3] + prg[2];
prg[6] = x[3];
prg[7] = x[6];
prg[8] = sqrt(prg[4]);
prg[9] = sqrt(prg[0]);
prg[10] = x[5];
prg[11] = prg[6] + prg[10];
prg[12] = x[1];
prg[13] = x[4];
prg[14] = prg[6] + prg[13];
prg[15] = prg[2] − prg[13];
prg[16] = prg[13] − prg[15];
prg[17] = prg[12] − prg[14];
prg[18] = prg[16] − prg[17];
prg[19] = prg[15]/prg[8];
prg[20] = prg[17] − prg[1];
prg[21] = x[5];
prg[22] = prg[11]/prg[9];
prg[23] = prg[7] − prg[22];
prg[24] = prg[21] * prg[18];
prg[25] = prg[23] − prg[22];
prg[26] = prg[19] + prg[24];
prg[27] = prg[20]/prg[26];
prg(28) = prg[25] + prg[27];

Table A2. MEP-based model used to calculate f ′st. f ′st is equal to final “prg”, i.e., prg(20).

f′st = prg(20)

where, x[0] = Cagg; x[1] = Fagg; x[2] = FA; x[3] = w; x[4] = GGBFS; x[5] = NaOH; x[6] = NaSi
prg[0] = x[1];
prg[1] = x[2];
prg[2] = x[0];
prg[3] = prg[2] + prg[1];
prg[4] = x[7];
prg[5] = prg[0] + prg[4];
prg[6] = prg[5] + prg[3];
prg[7] = x[4];
prg[8] = x[5];
prg[9] = x[3];
prg[10] = prg[7] − prg[4];
prg[11] = prg[7]/prg[3];
prg[12] = prg[10] + prg[0];
prg[13] = prg[5] − prg[8];
prg[14] = prg[9]/prg[13];
prg[15] = prg[6]/prg[12];
prg[16] = prg[12] + prg[12];
prg[17] = prg[10]/prg[16];
prg[18] = prg[15] + prg[11];
prg[19] = prg[18] − prg[17];
prg(20) = prg[19] − prg[14];
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