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Abstract: Attapulgite-hydroxyethyl cellulose-poly (acrylic acid-co-2-acrylamide-2-methylpropanesul
fonic acid) (ATP-HEC-P(AA-co-AMPS)) in-concrete curing material was synthesized by aqueous
solution polymerization using attapulgite (ATP) as an inorganic filler and hydroxyethyl cellulose
(HEC) as a backbone. The effects of relevant factors such as ATP dosage, HEC dosage, degree of
neutralization, initiator quality, and cross-linking agent quality on the water absorption characteristics
of ATP-HEC-P (AA-co-AMPS) were investigated through expansion tests. The micro-morphology
of ATP-HEC-P (AA-co-AMPS) was also comprehensively characterized using Fourier transform
infrared spectroscopy, scanning electron microscopy, a thermal analysis, and other applicable means.
The results showed that the prepared ATP-HEC-P (AA-co-AMPS) had a strong water absorption
and water retention capacity, with a water absorption multiplicity of 382 g/g in deionized water and
21.55% water retention capacity after being placed at room temperature for 7 d in a bare environment.
Additionally, ATP-HEC-P (AA-co-AMPS) showed good performance for absorbing liquids within the
pH range of 7–12. The material’s thermal stability and mechanical properties were also significantly
improved after the addition of ATP. The preparation cost is low, the process is simple, and the material
meets the requirements for concrete curing materials.

Keywords: concrete; internal curing; polymer; attapulgite; carboxyethyl cellulose

1. Introduction

A concrete internal curing material is a cross-linked polymer containing numerous
hydrophilic groups within a three-dimensional network structure [1,2], enabling rapid ab-
sorption of a substantial water volume to form a gel. The water-absorbing capacity can
reach hundreds or even thousands of times its weight [3–5], demonstrating excellent water
retention performance even under specific pressure conditions. These concrete internal
curing materials find widespread application in agriculture [6], health care [7], environmental
protection [8], construction [9], daily use chemicals [10], and various other fields [11]. Current
research has shown that the introduction of high water-absorbing resins into concrete can
improve the frost resistance, impermeability, and cracking resistance of concrete.

According to the source of materials, concrete internal curing materials are primarily
categorized into two groups: synthetic polymer systems and natural polymer-modified
systems [12,13]. Nevertheless, traditional highly absorbent materials exhibit drawbacks
such as high cost, non-degradability, and limited water absorption in the presence of
high-concentration electrolytes [14,15]. The current market application of concrete internal
curing materials is mainly acrylic polymer. Simple acrylic acid copolymerization into
a high water absorption polymer results in good water absorption but poor salt resis-
tance, limiting the scope of practical applications. However, it can be copolymerized with
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non-ionic groups (such as acrylamide) to improve the salt-resistant properties of water-
absorbing polymers [16,17]. To address the shortcomings of traditional synthetic high
water-absorbent polymers, natural polysaccharide-modified water-absorbent materials,
including cellulose [18,19], starch [20], sodium alginate [21], and chitosan [11], have been
developed in recent years. These water-absorbent materials possess advantages such as
degradability, renewability, good affinity, low cost, etc., resulting in better application
prospects. At present, concrete internal maintenance usually involves acrylic and other
organic polymer materials. Inorganic components are introduced into the polymer to
improve the absorbing liquid ability in ionic solutions, and can improve the mechanical
properties of the material, but at present, the development of organic/inorganic composite
internal maintenance materials is relatively slow.

HEC is a material containing polyhydroxy groups with particular water-absorbing
abilities, and it has a large specific surface area and many internal capillaries [22]. It is also
non-toxic, low-cost, renewable, widely available, biocompatible, and biodegradable [23].
Therefore, a composite water-absorbent material prepared from it exhibits good water
absorption and is significant for environmental protection. AMPS is a solid anionic water-
soluble monomer containing strong hydrophilic groups with good salt resistance, acid-base
resistance, and hydrolytic stability [17,24]. ATP is an aqueous magnesium–aluminum-rich
layered chain silicate mineral with a particular fibrous crystal structure and a large surface
area, having a theoretical chemical formula of Mg5Si8O20(HO)2(OH2)4·4H2O [25,26]. The
surface of ATP contains a large amount of reactive Si-OH, which can be further activated
through heating and acid treatment [27]. This process changes the physico-chemical
properties of ATP, enabling its composition with organic materials to prepare organic–
inorganic composites. Many studies have shown that the liquid-absorbent properties,
mechanical properties, and thermal stability of water-absorbent polymers are significantly
improved after the addition of ATP.

In this experiment, concrete internal curing materials (ATP-HEC-P (AA-co-AMPS))
were prepared through aqueous solution polymerization using HEC as the backbone to
form an interpenetrating network structure. AA and AMPS were employed as hydrophilic
modified monomers to introduce hydrophilic groups, and the polymers were doped with
ATP to form an inorganic composite. The optimal synthesis scheme was determined by
studying different experimental variables, and the polymers were structurally characterized
and tested using FTIR, SEM, and thermal analyses.

2. Materials and Methods
2.1. Materials

The used materials were as follows: acrylic acid (AA) from Tianjin Damao Chemi-
cal Reagent Factory, Tianjin, China; ethanol from Tianjin Damao Chemical Reagent Fac-
tory, Tianjin, China; 2-acrylamido-2-methylpropane sulfonic acid (AMPS) from Shanghai
McLean Biochemical Technology Co., Ltd., Shanghai, China; methylene-bis-acrylamide
(MBA) from Shanghai McLean Biochemical Technology Co., Ltd., Shanghai, China; ammo-
nium persulfate (APS) from Shanghai McLean Biochemical Technology Co., Ltd., Shanghai,
China; hydroxyethyl Cellulose (HEC) from Shanghai McLean Biochemical Technology
Co., Ltd., Shanghai, China; NaCl from Shanghai McLean Biochemical Technology Co.,
Ltd., Shanghai, China; Ca(OH)2 from Shanghai McLean Biochemical Technology Co., Ltd.,
Shanghai, China; sodium dodecyl sulfate (SDS) from Shanghai McLean Biochemical Tech-
nology Co., Ltd., Shanghai, China; and attapulgite (ATP) from Jiangsu Province. All the
experimental chemicals were analytically pure except for attapulgite, and all experimental
water was deionized water.

2.2. Preparation of ATP-HEC-P (AA-co-AMPS) Concrete Internal Curing Material

The appropriate amount of HEC, ATP, SDS, and water were put into a beaker and
stirred at 70 ◦C for 45 min to produce a dispersed emulsion. The dispersed emulsion was
cooled down to 40 ◦C and an APS solution (5 mL) was added dropwise, stirring for 10 min.
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Subsequently, the compound, which contains neutralized AA, AMPS, and MBA solutions,
was heated to 70 ◦C. The reaction was conducted for three hours. At the end of the reaction,
the monomer was soaked for one hour with an ethanol solution. Then, the unreacted
monomer was removed. The reacted monomers were dried in an oven at 60 ◦C, pulverized
with a pulverizer, and sieved to obtain ATP-HEC-P (AA-co-AMPS) powder granules for
in-concrete curing materials. All subsequent materials used to conduct the tests had a
particle size of about 100 mesh. To reduce production costs, the reaction process did not
require nitrogen protection. The experimental reaction schematic and flowchart are shown
in Figures 1 and 2.
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2.3. Methods
2.3.1. SEM and EDS

To observe the microscopic morphology of the synthesized polymers, the powders
were subjected to a Hitachi E-1045 gold spraying treatment and observed using a Hitachi
S-4800 scanning electron microscope (Tokyo, Japan). The elemental distribution in the
sample was measured by an EDS energy spectrometer.

2.3.2. FT-IR

The transmission infrared spectra of the samples were recorded in a wavelength range
of 4000 to 400 cm−1 using a Bruker TENSOR II FTIR spectrometer (Billerica, MA, USA).

2.3.3. Thermodynamic Analysis

The thermodynamic analysis of the synthesized polymers was carried out using the
TA SDT 650 simultaneous thermal analyzer test. The test temperature range was 30~600 ◦C,
and the heating rate was 10 ◦C/min. The test environment was nitrogen-protected.

2.3.4. Measurement of Swelling Behavior

In the experiment, 0.1 g of synthesized polymer was placed into a unique filter bag
and then immersed in a beaker with 500 mL of deionized water, tap water, 0.9% NaCl
solution, and a saturated Ca(OH)2 solution, respectively. The system was left to stand
at room temperature. The masses of the absorbed polymer were measured at different
time intervals, and the multiplicities of water absorption of the different solutions were
calculated using a specific equation:

Q = (M2 − M1)/M1 (1)

where M1 and M2 are the masses of the dry and absorbed polymer, respectively, and Q
(g/g) is the water absorption multiplicity [28].
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2.3.5. Determination of Water Retention at Different Temperatures

In the experiment, 0.1 g of synthesized polymer was weighed and put into deionized
water to reach dissolution equilibrium. Then, they were reweighed and placed in an
environmental chamber at 20 ◦C, 30 ◦C, 40 ◦C, and 50 ◦C several times. The weighing was
performed at intervals, and the water retention multiplicity was calculated at different
temperatures using the following equation:

R = (M3 − M1)/(M2 − M1) (2)

where M1 is the mass of the dry polymer, M2 is the mass of the polymer after reaching
dissolution equilibrium, and M3 is the mass of the polymer after water loss.

2.3.6. Repeated Swelling Performance Test

The polymer was saturated using deionized water and the mass of water absorbed
was recorded. Then, it was dried in an oven (60 ◦C) to a constant weight. This water
absorption–drying step was repeated for calculating the water absorption multiple each
time.

2.3.7. pH Dynamic Perception Test

An amount of 0.1 g of the polymer sample was weighed and immersed in 0.9% NaCl
solution. The pH of the solution was adjusted with NaOH. The swelling multiplicity was
then measured at pH 7–12.

2.3.8. Stress–Strain Curve Testing

The unpolymerized in-concrete curing agent was poured into a 10 mm diameter
cylindrical mold, removed at the end of the reaction, and the compression characteristics of
the in-concrete curing agent were analyzed using a mass spectrometer, with a compression
rate of 2 mm/s, a trigger pressure of 0.05 Newton, and a compression set of 50%.

3. Results
3.1. Effect of Synthesis Conditions on Liquid Absorption Capacity
3.1.1. The Effect of AMPS Content on the Ability of ATP-HEC-P (AA-co-AMPS)
to Absorb Liquids

The synthesizing factor variables were explored using 5 mL of AA monomer as the
substrate to facilitate the study. The effect of AMPS content on the wicking ability of
ATP-HEC-P (AA-co-AMPS) is shown in Figure 3a. From the figure, it can be seen that the
liquid-absorbing capacity of ATP-HEC-P (AA-co-AMPS) in deionized water, tap water,
0.9% NaCl solution, and a saturated Ca(OH)2 solution has a similar pattern of change. The
liquid-absorbing ability of ATP-HEC-P (AA-co-AMPS) in different solutions is enhanced
when the AMPS content increases from 1.3767 g to 1.5767 g. This is because the number of
hydrogen bonds formed between hydrophilic groups and water molecules in ATP-HEC-
P (AA-co-AMPS) increases with an increase in the AMPS content, which improves the
liquid-absorbing ability of ATP-HEC-P (AA-co-AMPS) [29]. However, when the content of
AMPS continues to increase, the hydrophilic groups become too numerous, and significant
hydrogen bonding between molecules leads to a contraction of the three-dimensional
network structure. This, in turn, decreases the liquid-absorbing capacity of ATP-HEC-P
(AA-co-AMPS).
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Figure 3. Effects of synthetic factors on ATP-HEC-P(AA-co-AMPS) concrete internal curing materials:
(a) AMPS content, (b) HEC content, (c) APS content, (d) MBA content, (e) neutralization degree of
AA, and (f) ATP content.

3.1.2. The Effect of HEC Content on the Ability of ATP-HEC-P (AA-co-AMPS)
to Absorb Liquids

Figure 3b shows the effect of HEC content on the liquid absorption capacity of ATP-
HEC-P (AA-co-AMPS). As can be seen from the figure, the liquid absorption capacity of
ATP-HEC-P (AA-co-AMPS) tended to increase first and then decreased with the increase
in HEC content. In the synthesis reaction, HEC plays the role of the skeleton, and the
active sites in HEC react with the active radicals on the polymer chain of P (AA-co-AMPS)
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to entangle with each other and form an interpenetrating network structure [30]. When
the content of HEC is low, the number of active sites in the system is small, which is
unfavorable to the formation of the interpenetrating network structure, and the stability
of ATP-HEC-P (AA-co-AMPS) is poor after liquid absorption. However, when the HEC
content is high, the interpenetrating network structure is more compact, and the liquid
absorption capacity becomes poor due to the increased number of active sites in the system.

3.1.3. The Effect of APS Content on the Ability of ATP-HEC-P (AA-co-AMPS)
to Absorb Liquids

Figure 3c shows the effect of APS content on the wicking capacity of ATP-HEC-P (AA-
co-AMPS). During the reaction, APS acts as an initiator and affects the length of the P (AA)
and P (AMPS) molecular chains. As can be seen from the figure, when the APS solution
is lower than 8 wt%, the initiating effect on the reaction is lower due to the low content of
APS, and the polymerized molecular chains are shorter and have a weaker ability to absorb
liquid. However, when the APS solution is greater than 8 wt%, the active radical sites in the
system increase, the reaction is intense, the cross-linking density increases, the interpenetrating
network structure is more compact, and the liquid-absorbing ability worsens.

3.1.4. The Effect of MBA Content on the Ability of ATP-HEC-P (AA-co-AMPS)
to Absorb Liquids

MBA serves as a cross-linker in the reaction, facilitating the cross-linking of HEC and
P (AA-co-AMPS) polymer chains. Figure 3d illustrates the impact of MBA content on the
liquid-absorbing capability of ATP-HEC-P (AA-co-AMPS). The optimal MBA content in
the reaction is determined to be 0.0042 g. If MBA content falls below 0.0042 g, the liquid
absorption ability will suffer due to a reduced number of cross-linking sites and a lower
cross-linking density within the system. This hinders the formation of an interpenetrating
network structure [31]. Exceeding 0.0042 g, MBA results in an overly large cross-linking
density within the system, impeding the extension of polymer chains and the formation of
a network structure. Consequently, the liquid absorption ability diminishes.

3.1.5. The Effect of AA Neutralization on the Suction Capacity of ATP-HEC-P
(AA-co-AMPS)

Figure 3e illustrates the impact of the AA neutralization degree on the liquid-absorbing
capacity of ATP-HEC-P (AA-co-AMPS). NaOH neutralization of AA results in the formation
of C3H3O2Na, and -COOH in AA transforms into -COONa, enhancing the swelling capacity
of ATP-HEC-P (AA-co-AMPS) due to the electrostatic force within the network. Increasing
the neutralization degree of AA from 60% to 70% results in a significant improvement
in liquid absorption ability, particularly in 0.9% NaCl and saturated Ca(OH)2 solutions.
Additionally, the material exhibits significantly enhanced salt resistance. A continuous
increase in the neutralization degree leads to an excess of Na+ in the system, exerting a
shielding effect. This effect diminishes electrostatic repulsion, resulting in a decrease in
liquid-absorbing ability.

3.1.6. The Effect of ATP Content on the Ability of ATP-HEC-P (AA-co-AMPS)
to Absorb Liquids

Figure 3f depicts the impact of ATP content on the liquid-absorbing capacity of ATP-
HEC-P (AA-co-AMPS). Increasing ATP content from 0.05 g to 0.20 g results in an upward
trend in liquid-absorbing capacity for ATP-HEC-P (AA-co-AMPS). However, surpassing
0.20 g of ATP content leads to a decline in liquid-absorbing capacity, particularly evident
when the content exceeds 0.30 g. ATP does not enhance the liquid-absorbing capacity of
ATP-HEC-P (AA-co-AMPS); rather, it has a detrimental effect. This occurs because the -OH
on the surface of ATP participates in the reaction process, contributing to the formation of a
more effective water-absorbing network structure. However, with higher ATP content, the
free ATP outside the network structure increases, leading to the clogging of the network
structure and a subsequent reduction in liquid-absorbing capacity.
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The subsequent experiments were conducted using the optimal experimental parame-
ters, which included 1.5765 g of AMPS, 0.5306 g of HEC, 8 wt% of APS, 0.0042 g of MBA,
70% AA neutralization, and 0.20 g of ATP.

3.2. Physical Characterization

The samples were dried and pulverized before and after ATP modification for direct
observation. As depicted in Figure 4, it is evident that the color of HEC-P (AA-co-AMPS)
was whitish prior to the addition of ATP. Conversely, after the incorporation of ATP, the
color of ATP-HEC-P (AA-co-AMPS) turned light yellow, resembling the color of ATP
itself. Furthermore, in the investigation of ATP content variation in Section 3.1.6, it was
observed that the color of the samples deepened with increasing ATP content. These
findings indicate the successful grafting of ATP onto HEC-P (AA-co-AMPS) by following
the samples’ ethanol soaking and deionized water rinsing, resulting in a noticeable color
change in the samples.
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3.3. SEM and EDS

SEM images of HEC-P (AA-co-AMPS) and ATP-HEC-P (AA-co-AMPS) are presented
in Figure 5, respectively. HEC-P (AA-co-AMPS) exhibits irregularly distributed laminar
flakes on its surface, which are relatively smooth and loose. In contrast, ATP-HEC-P
(AA-co-AMPS), after the addition of ATP, exhibits a distribution of crushed small particles
with a rough surface and large pores. This morphology is conducive to the diffusion
of water molecules into the material’s interior, thereby enhancing its liquid absorption
capacity. Additionally, this observation provides evidence of ATP’s involvement in the
polymerization reaction process.

An EDS spectrometer measured the elemental contents of HEC-P (AA-co-AMPS) and
ATP-HEC-P (AA-co-AMPS) at the same magnification. The EDS energy spectra are shown
in Figure 6, and the elemental content results are shown in Table 1. It can be found that the
elemental contents of Mg and Si in the polymers increased significantly before and after
the addition of ATP, which indicates that ATP has been successfully introduced into HEC-P
(AA-co-AMPS).

Table 1. EDS elemental content test results.

Element C (At%) O (At%) Al (At%) Mg (At%) Si (At%)

HEC-P (AA-co-AMPS) 68.8 31.1 0.1 - -
ATP-HEC-P (AA-co-AMPS) 59.2 40.1 0.1 0.3 0.3
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Figure 6. EDS spectra: (a) P (HEC-AA-AMPS) and (b) ATP-BF-P (HEC-AA-AMPS).

3.4. FT-IR

Figure 7 shows the FT-IR profiles of HEC and ATP-HEC-P (AA-co-AMPS). In the
infrared spectra of ATP-HEC-P (AA-co-AMPS), the C-O-C stretching vibration peak on
HEC at 915 cm−1 [32] and the planar peak of C-OH at 1336 cm−1 disappear, after the
polymerization reaction. The absorption peak at 2925 cm−1, attributed to the aliphatic
stretching vibration of C-H on HEC, still exists in ATP-HEC-P (AA-co-AMPS) [33]. Mean-
while, the peak at 3433 cm−1, attributed to the O-H stretching vibration on HEC, is slightly
lower in intensity compared to the absorption peak of ATP-HEC-P (AA-co-AMPS) [34].
These results suggest that HEC is involved in the chemical reaction. In the FTIR curves of
ATP-HEC-P (AA-co-AMPS), the telescopic vibration absorption peak of O=S at 628 cm−1,
the asymmetric telescopic vibration peak of -COO- at 1404 cm−1, and the telescopic vibra-
tion peak of C=O in the amide group at 1642 cm−1 are observed [35]. These observations
indicate that the poly (acrylic acid) chain and AMPS are successfully grafted onto the
HEC backbone. Additionally, Si-O-Si bending vibrational peaks of inorganic minerals at
800 cm−1 are identified [36], suggesting the involvement of inorganic minerals in graft
co-polymerization.
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3.5. Thermal Stability Analysis

TG/DTG curves for ATP, HEC-P (AA-co-AMPS), and ATP-HEC-P (AA-co-AMPS) are
presented in Figure 8. The TG decomposition curves of ATP display three steps, occurring at
30 ◦C to 119 ◦C, 119 ◦C to 242 ◦C, and 242 ◦C to 600 ◦C. The weight losses are 6.20%, 2.93%,
and 5.63%, respectively. Simultaneously, three peaks on the DTG curve at 97 ◦C, 216 ◦C, and
273 ◦C correspond to the first three stages, indicating the maximum decomposition rate.
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The thermal decompositions of HEC-P (AA-co-AMPS) and ATP-HEC-P (AA-co-AMPS)
are similarly divided into three steps. The corresponding temperature intervals of 30 ◦C to
170 ◦C, 170 ◦C to 417 ◦C, 417 ◦C to 600 ◦C, and 30 ◦C to 204 ◦C, 204 ◦C to 439 ◦C, 439 ◦C to
600 ◦C, result in mass loss ratios of 5.96%, 76.13%, 12.76%, and 8.12%, 54.18%, 8.08%. The
initial stage primarily involves the decomposition of water and unreacted raw materials
in the composite absorbent material. The majority of mass loss occurs in the second stage
due to the decomposition of oligomers in the material and branched chains in the polymer.
The mass loss in the third stage is attributed to the decomposition of the leading chains in
the polymers and the disruption of the three-dimensional network structure. Additionally,
it is noteworthy that ATP-HEC-P (AA-co-AMPS) exhibits lower mass loss than HEC-P
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(AA-co-AMPS) across the entire temperature range, indicating that the incorporation of
ATP enhances the material’s thermal stability.

3.6. Measurement of Swelling Behavior

Figure 9a illustrates the swelling test of ATP-HEC-P (AA-co-AMPS) in various solutions.
The water absorption capacities of ATP-HEC-P (AA-co-AMPS) in deionized water, tap water,
0.9% NaCl solution, and a saturated Ca(OH)2 solution are recorded as 382 g/g, 142 g/g, 57 g/g,
and 73 g/g, respectively, after 120 min. Notably, ATP-HEC-P (AA-co-AMPS) reaches 87.69%,
88.73%, 73.68%, and 72.60% of their maximum swelling rates within 15 min, respectively, and
generally attains equilibrium swelling between 30 and 60 min. This indicates that the liquid is
absorbed quickly and meets the performance criteria for rapid water absorption, which meets
the requirements for the use of curing materials within concrete.
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Figure 9. ATP-HEC-P (AA-co-AMPS): (a) the ATP-HEC-P (AA-co-AMPS) water retention at various
temperatures, and (b) the fitting curves of water retention properties at different temperatures.

The swelling data of the prepared samples in various solutions are analyzed by
nonlinear curve fitting and curves are plotted, as depicted in Figure 9b. The equations of
the fitted curves and their corresponding R2 values are provided in Table 2. It is evident
that the fitted curves closely approximate the actual data, with the minimum R2 value being
0.9740. These fitted equations can be utilized to estimate the water absorption capacity in
different solutions over various periods and to assess the extent of water absorption.

Table 2. Expansion test fitting curve equations.

Solution Equation R2

Deionized water Q = 373.96533 − 363.99687 × 0.8393ˆt 0.9923
Tap water Q = 139.67793 − 129.44161 × 0.83762ˆt 0.9881

0.9% NaCl solution Q = 55.31485 − 50.16333 × 90708ˆt 0.9740
Ca(OH)2 solution Q = 71.49842 − 62.67467 × 0.91952ˆt 0.9895

3.7. Water Retention Properties

Upon reaching solvation equilibrium, ATP-HEC-P (AA-co-AMPS) comprises free
water and bound water. Free water is easily volatilized. Bound water tightly holds to
the material through hydrogen bonding and van der Waals force interactions, making it
less susceptible to loss. Figure 10a illustrates ATP-HEC-P (AA-co-AMPS) water retention
at varying temperatures. As observed in the figure, the water retention of ATP-HEC-P
(AA-co-AMPS) exhibits a declining trend with increasing temperature and time. The water
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retention rates are 85.90%, 78.65%, 72.18%, and 65.86% after 1 day, and 21.55%, 8.96%, 4.52%,
and 2.52% after 7 days when ATP-HEC-P (AA-co-AMPS) is exposed to the environmental
chamber at temperatures of 20 ◦C, 30 ◦C, 40 ◦C, and 50 ◦C. Additionally, in practice, other
materials tend to cover the curing material inside the concrete, resulting in water retention
properties that greatly exceed the experimental data obtained in a bare test environment,
which ensures that ATP-HEC-P (AA-co-AMPS) meets the requirements for continuous
water release inside the concrete.
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Figure 10. ATP-HEC-P (AA-co-AMPS) for (a) swelling test, (b) swelling test fitting curves.

Figure 10b illustrates the linearly fitted line segment for the water retention properties
test, and the fitted equation and R2 values are provided in Table 3. The actual data closely
resemble the fitted data, with the minimum R2 value being 0.9740. The water retention rate
of the material at different temperatures over a period of 1 to 7 days can be estimated using
the fitted equations.

Table 3. Water retention performance fitting equations.

Temperature Equation R2

20 ◦C R = 97.73417 − 11.07476t 0.9969
30 ◦C R = 84.2375 − 12.61714t 0.9894
40 ◦C R = 88.77833 − 13.09881t 0.9568
50 ◦C R = 84.31083 − 13.17631t 0.9218

3.8. Repeated Swelling Properties

It is paramount for highly absorbent resins to exhibit repeatable swelling properties.
This not only ensures sustainability but also reduces the overall cost associated with the
material throughout its entire life cycle.

Figure 11 illustrates the repeated swelling tests conducted on the prepared samples.
The figure demonstrates a significant degradation in the swelling properties of the material
with an increasing number of repetitions, attributed to the destruction of the network
structure resulting from successive expansions. Notably, the swelling data exhibit a clear
stabilizing trend from the second to the third repetition. Subsequently, the removal of
impurity ions from the structure due to concentration differences improves the liquid-
absorbing capacity of ATP-HEC-P (AA-co-AMPS). The recurrent swelling performance of
ATP-HEC-P (AA-co-AMPS) exhibits higher sensitivity to temperature changes, with the
decrease in performance becoming increasingly apparent with rising temperatures. After
five repetitions, the swelling at 20 ◦C, 30 ◦C, 40 ◦C, and 50 ◦C only reaches 78.75%, 70.90%,
66.82%, and 63.79% of the initial swelling. Since the hydration of cementitious materials
in concrete is a long process, ATP-HEC-P (AA-co-AMPS) incorporated into concrete can
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repeatedly absorb the water from the outside that seeps into the interior of the concrete
structure many times, promoting the continuous hydration of cementitious materials.
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COOH in the polymer is transformed into -COO-, which may shield the negative charge 
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3.9. Swelling Capacity Test at Different pH Values

Concrete is currently alkaline, with the pH mostly between 7 and 12. In order to meet
the requirements of a wider range of use, the liquid absorption capacity of ATP-HEC-P (AA-
co-AMPS) was measured between pH 7 and 12, and the test results are shown in Figure 12.
The liquid-absorbing ability of ATP-HEC-P (AA-co-AMPS) does not change much in the
pH range of 7–10, and still shows good liquid-absorbing performance. When the pH value
continues to increase, the liquid-absorbing capacity of ATP-HEC-P (AA-co-AMPS) begins
to show a significant decreasing trend. However, the liquid-absorbing multiplicity is still
32 g/g at pH 12, which satisfies the requirement of in-concrete curing. The following two
aspects may cause this situation. On the one hand, as the pH increases, -COOH in the
polymer is transformed into -COO-, which may shield the negative charge of the -COO-
anion due to the Na+ ions in the solution, thus reducing the repulsive force of the polymer
chain. On the other hand, the osmotic pressure disparity between the internal network and
external solution decreases as the ionic strength of the swelling medium rises [37,38].
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3.10. Stress–Strain Curve Testing

Due to the complex structure inside the concrete and the harsh usage environment,
the in-concrete curing agent is subjected to extrusion and friction in the usage process, thus
putting higher requirements on the material’s mechanical properties. To ensure the rigor
of the experiments, the samples prepared in the molds were first cleaned with ethanol
and deionized water, and then were directly subjected to stress–strain tests. As shown
in Figure 13, the stress of the polymer modified by adding ATP increases from 4.25 N to
6.44 N with the same 50% deformation amount, and the mechanical strength increases by
35.7%. It can also be found that the HEC-P (AA-co-AMPS) changes significantly during
the rebound process and shifts significantly from the compression curve. In contrast, the
ATP-HEC-P (AA-co-AMPS) rebound curve almost coincides with the compression curve.
These data indicate that the introduction of ATP improves the material’s overall strength
and makes it more robust for applications in complex environments.
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4. Conclusions

(1) SEM, FTIR, and thermal analyses demonstrated the successful polymerization
of ATP-HEC-P (AA-co-AMPS), a concrete internal curing material synthesized using an
aqueous solution. The water absorption multiplicity values in deionized water, tap water,
0.9% NaCl solution, and a saturated Ca(OH)2 solution under the optimal preparation
conditions were 382 g/g, 142 g/g, 57 g/g, and 73 g/g, which satisfy the requirements for
the use of concrete internal curing agents.

(2) ATP-HEC-P (AA-co-AMPS) exhibited a rapid dissolution rate, reaching 80% of
the dissolution multiplicity in approximately 15 min. It is possible to ensure that concrete
slump and other properties are not affected by the increase in water consumption due to
the addition of ATP-HEC-P (AA-co-AMPS).

(3) ATP-HEC-P (AA-co-AMPS) had excellent water retention performance, with a low
water loss rate after 1 day, and could still adsorb a certain amount of water after 7 days in a
50 ◦C environment. This can ensure that ATP-HEC-P (AA-co-AMPS) will not release water
completely in a short time after being mixed into the concrete, so as to achieve the purpose
of long-term curing.

(4) ATP-HEC-P (AA-co-AMPS) exhibited a decrease in swelling multiplicity after five
repeated swelling tests but maintained repeatable swelling, which helps to promote the
hydration process of cementitious materials.
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(5) ATP-HEC-P (AA-co-AMPS) showed no significant change in liquid absorption
capacity in the pH value range of 7–10, and a significant decrease in the liquid absorp-
tion capacity occurred after the Ph value exceeded 10. However, it could still meet the
requirements for in-concrete curing.

(6) After ATP modification, the mechanical strength of ATP-HEC-P (AA-co-AMPS)
increased by 35.7% at 50% deformation, and the compression and rebound curves were
almost coincident, which is more favorable for use in complex environments.

(7) Although the experimental data of ATP-HEC-P (AA-co-AMPS) are excellent, due
to the time factor, there is no practical verification for the sample’s effect on the concrete’s
performance after it is added to the concrete.

(8) Only the effect of ATP on the modification of HEC-P (AA-co-AMPS) was studied.
There are still great prospects for studying clay minerals such as eclogite and bentonite on
water-absorbing polymers.
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