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Abstract: The nonlinear energy sink (NES) and Galfenol material can achieve vibration suppression
and energy harvesting of the structure, respectively. Compared with a linear structure, the geometric
nonlinearity can affect the output performances of the cantilever beam structure. This investigation
aims to present a coupled system consisting of a nonlinear energy sink (NES) and a cantilever
Galfenol energy harvesting beam with geometric nonlinearity. Based on Hamilton’s principle,
linear constitutive equations of magnetostrictive material, and Faraday’s law of electromagnetic
induction, the theoretical dynamic model of the coupled system is proposed. Utilizing the Galliakin
decomposition method and Runge–Kutta method, the harvested power of the external load resistance,
and tip vibration displacements of the Galfenol energy harvesting model are analyzed. The influences
of the external excitation, external resistance, and NES parameters on the output characteristic of the
proposed coupling system have been investigated. Results reveal that introducing NES can reduce
the cantilever beam’s vibration while considering the geometric nonlinearity of the cantilever beam
can induce a nonlinear softening phenomenon for the output behaviors. Compared to the linear
system without NES, the coupling model proposed in this work can achieve dual efficacy goals over
a wide range of excitation frequencies when selecting appropriate parameters. In general, large
excitation amplitude and NES stiffness, small external resistance, and small or large NES damping
values can achieve the effect of broadband energy harvesting.

Keywords: Galfenol; nonlinear energy sink (NES); geometric nonlinearity; energy harvesting;
vibration suppression

1. Introduction

With the development of micro-electro-mechanical devices towards miniaturization,
intelligence, wireless, and low power consumption, traditional chemical battery power
supply methods are no longer applicable. Therefore, thanks to the priorities of high en-
ergy conversion efficiency, easy miniaturization, and strong applicability utilizing smart
materials to transform ambient mechanical energy into usable electrical energy has be-
come the current research focus for scholars. The harvested electric energy can power
low-power online monitoring and sensing devices in practical engineering, such as vehicle
tracking, structural health monitoring, environmental monitoring, intelligent building, and
aerospace fields [1–3]. In the literature, several energy harvesting mechanisms have been in-
troduced to transform such vibration energy into electricity, for instance, electrostatic [4,5],
electromagnetic [6,7], piezoelectric [8–12], and magnetostrictive [13,14].

The magnetostrictive vibration energy harvester has attracted growing attention
thanks to its peculiar properties. For instance, high magnetostriction, high permeabil-
ity, small brittleness, high tensile strength, and a wide working temperature range are
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reported in the previous works [2,15]. Through the inverse effect (Virari effect) of mag-
netostrictive materials, including Terfenol-D and Galfenol material, the vibration energy
can be effectively transferred into electric energy by the magnetostrictive vibration energy
harvester [16–18]. Compared to Terfenol-D, Galfenol has better magnetic and mechan-
ical properties, namely, high magnetostriction and magnetic permeability, ideal tensile
and compressive mechanical properties, and a wide operating temperature range [19–22].
These superior features of Galfenol make it more suitable for energy harvesting. Yoo and
Flatau [18] established the mechanical equation of the lumped parameter model for the
Galfenol cantilever beam harvester and the constitutive relationship of the magnetostrictive
material. The output results of the proposed harvester had been tested by the indoor
experiment. Cao et al. [23,24] developed a cantilever-based energy harvester using the
Galfenol material and derived the nonlinear coupled dynamic equations for the designed
energy harvester. The output performances of the proposed device were numerically calcu-
lated by the Newmark method and verified by the experimental data. Clemente et al. [25]
presented a force-activated kinetic energy conversion device and analyzed the energy
harvester’s output performances through experimental tests as well as FEM COMSOL
Multiphysics simulation. Jin et al. [26] proposed a cylindrical wave energy harvester, of
which the Galfenol sheet is chosen as the core material. The motion characteristics and the
induction voltage of the Galfenol device were analyzed by theoretical derivation analysis,
the ANSYS Workbench, as well as experimental tests. Wang et al. [15] established the
electromechanically coupled model of the Galfenol-based cantilever energy harvester. In
their work, the explicit analytical formulations of the output performances for the pro-
posed energy harvesting model were obtained by the Galerkin decomposition method and
electro-mechanical decoupling method.

Excessive structural vibration response will damage the structure; therefore, vibration
suppression of structures has always been a hot research topic for global scholars and
engineers. Due to the benefits of simple structure, broad operating frequency bandwidth,
and great robustness, the nonlinear energy sink (NES) has attracted extensive focus from
vibration control researchers [27,28]. The NES is a new kind of nonlinear dynamic absorber
proposed by Vakakis [29] and Gendelman et al. [30] in 2001. Numerous investigations have
proved that an NES with third-order nonlinear stiffness can remarkably reduce the vibration
amplitude of the main vibration structure [31–34]. Recently, scholars have combined the
NES and energy harvesters to achieve the dual efficacy goal, namely, vibration suppression
and energy harvesting [35,36]. Kremer and Liu [37] studied the steady performances of the
coupled system for an NES attached to an energy harvester by analytical and experimental
methods. The study showed that the developed system can achieve dual efficacy goals in a
broadband range. Xiong et al. [38] designed an NES-piezoelectric energy harvesting system.
The mixed multi-scale and harmonic balance methods, as well as the Newton-Raphson
harmonic balance method, were employed to analyze the nonlinear dynamic behavior
and harvested power of the constructed coupling system. The results revealed that the
coupled system could decline the vibration from the main structure and harvest energy in
a wide frequency band. Tian et al. [39] coupled an energy-harvester-enhanced NES system
into the cantilever trapezoidal plate to control the aeroelastic behaviors of the plate and
harvest the vibration energy. Compared to the system with only the NES, the suppression
effect of the energy-harvester-enhanced NES has been demonstrated better. Zhang’s team
conducted extensive research by integrating the NES and giant magnetostrictive material
(GMM) to achieve vibration suppression and energy capture. The traditional NES [40] and
lever-type NES [41] coupled by rod-type GMM [42] and cantilever-type GMM [43] had
been investigated for application in the one degree of freedom primary system [44], two
degrees of freedom primary system [45], and aerospace industry [46].

In the current theories, the high-order terms in the first derivative of vibration displace-
ment were generally ignored for the derivation of the energy harvesting model. Therefore,
the influence of the geometric nonlinear characteristics of the cantilever beam on the free
end motion was omitted [47]. A study was performed to discuss the relationship be-
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tween structural size parameters and the features of cantilever-based piezoelectric energy
harvesters by Tan et al. [48]. The results showed that once the wind speed surpasses a
certain value, the geometric nonlinearity will significantly impact the output responses
of the energy harvester. Li et al. [47] investigated the influence of geometric nonlinear
characteristics on the dynamic response of the beam-mass-foundation system and con-
cluded that larger errors were produced when the effect of the geometrical nonlinearity
was neglected. According to the Euler-Bernoulli beam theory and the extended Hamilton
principle, Shooshtari et al. [49] discussed the impacts of the geometric nonlinearity of
the cantilever structure on the free vibration behaviors of the coupled energy harvesting
system. The piezoelectric layer’s length was found to have a greater effect on the response
of the analyzed system. Li et al. [50] discussed the effects of the dual nonlinear properties
on the performances of the L-shaped harvester. It was concluded that with the increase in
the excitation amplitude, the geometric nonlinearity will significantly impact the output
features. Nie et al. [51–54] introduced the structure’s and piezoelectric materials’ geometric
nonlinearities into the L-shaped piezoelectric energy harvester. The analysis indicated that
the energy harvester with the geometric nonlinearities considered could harvest power
more efficiently with a reduced vibration displacement over a wider frequency bandwidth.

From the above previous literature, we can find that considering geometric nonlin-
ear effects can enhance the prediction exactitude of the output properties of the energy
harvester, especially for large-amplitude vibrations and high electric field conditions. Com-
bining NES and energy harvesting modules can simultaneously achieve both vibration
reduction and energy harvesting. As a new type of magnetostrictive material, Galfenol
has become a particularly promising transducer material due to its excellent characteristics
and is gradually being applied in vibration energy harvesting. In our previous work, the
research focus was more on introducing geometric nonlinearity into piezoelectric energy
harvesters [51–54]. In 2023, based on Galfenol materials, we proposed a magneto-electric
energy harvester without taking into account the cantilever structure’s geometric non-
linearity [15]. To the best of the authors’ knowledge, there have been no reports on the
simultaneous introduction of NES and geometric nonlinearity into the Galfenol energy
harvester. Therefore, an electromechanically coupled system integrated by the NES and
Galfenol energy harvester with geometric nonlinearity considered is introduced in this
work. For various structures in engineering, the prerequisite for analyzing the performance
impact mechanisms is to establish more accurate static and dynamic models. For example,
Han et al. [55–57] improved the efficiency and accuracy of analyzing bearing systems by
establishing and modifying nonlinear dynamic models of bearing systems. Wang et al. [58]
constructed the kinematic model of a bistable origami flexible gripper based on the relation-
ship between crease angles and unfolding angles in auxiliary spherical triangles to analyze
and improve the grabbing capacity. Then the drawbacks of traditional gripper models, such
as slow response speed and low grasping efficiency, were settled. Therefore, to analyze the
output characteristic of the proposed coupling system, the electromechanically coupled
dynamic equations of the proposed coupling system are first established according to
the Hamiltons principle, the linear constitutive relationships of Galfenol materials, and
Faraday’s law of electromagnetic induction. The Galerkin approximation is adopted for
separating the time and displacement variables, and the Runge-Kutta method is used to
analyze the output performances of the linear and nonlinear coupled systems. In addition,
the influences of various parameters of the designed system on the output responses are
explored. Through parameter analysis, it is revealed that the proposed coupled model can
realize the dual effect goals of vibration suppression and energy capture when the model
parameters are set in a certain range.

2. Mathematical Model

As illustrated in Figure 1, the proposed cantilever vibration suppression and energy
harvesting system, which is referred to as the NES-Galfenol coupled system, consists of
two main components: the cantilever energy harvesting system and the NES system. The
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cantilever energy harvesting system is composed of an aluminum and Galfenol composite
cantilever beam wrapped with coils, a lumped mass, and an external circuit. Note that the
structural aluminum layer of the composite cantilever is bounded by a Galfenol sheet and
tightly wound with a coil. Besides, the lumped mass M is fixed at the end of the composite
cantilever beam, and an external circuit is connected to each end of the coil. It should be
pointed out that, as plotted in Figure 1, the fixed end of the cantilever structure can be
considered as the elastic foundation. Then the proposed NES-Galfenol-coupled system can
be treated as a cantilevered beam-like structure laying on an elastic foundation and can
be modeled by the Winkler spring model. The NES system is comprised of a lightweight
lumped mass, a viscous damping, and a spring with cubic nonlinear stiffness. Under the
external harmonic base excitation, as the composite cantilever beam vibrates, the magnetic
induction intensity of the coil will alter, benefiting from the inverse magnetostriction effect.
Then an induced current is produced in the coil based on Faraday’s law of electromagnetic
induction. As a consequence, the vibration energy will finally be converted to electrical
energy by the Villari effect of the Galfenol layer and dissipated by the NES. It was noted
that the introduction of the NES system can dissipate the vibration energy transmitted
from the base and protect the structure of the cantilever energy harvesting system. This
means that the model proposed in this work can achieve the dual-effect goal of reducing
vibration transmitted from the base (main structure) and capturing the abandoned vibration
energy. Additionally, the continuous green and environmentally friendly electrical energy
harvested by the cantilever energy harvesting system can provide power to low-power
electronic devices. These electronic devices have broad application prospects in structural
health detection of transmission towers, building structures, and bridge structures, vehicle
tracking on roads, and indoor and outdoor environmental monitoring.

x

y

Galfenol layer

Aluminum 1ayer

The nonlinear energy
 sink (NES) system

 Tip mass 

External resistance Cubic rigidity

Coil

wb(t)

The cantilever energy 
harvesting system

Figure 1. Schematic representation of the NES-Galfenol coupled system.

2.1. Coupled Mechanical Equations of the Cantilever Energy Harvesting System

To obtain the nonlinear electromechanical-coupled governing equations of the cantilever
energy harvesting system for the coupled model, the extended Hamilton’s principle [51] is
utilized as ∫ t2

t1
(δT − δV + δWnc)dt = 0 (1)

where T, V, and Wnc are respectively the kinetic energy, potential energy, and virtual work
done by the nonconservative forces of the energy harvester model. It is worth noting that
the cantilever structure is regarded as a uniform composite beam, satisfying the Euler-
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Bernoulli beam assumption since the cantilever structure is designed as a considerably thin
beam. Therefore, the shear effect and rotational inertia of the cantilever composite structure
are ignored, and the cantilever structure always satisfies the plane section assumption
during the vibration deformation process. Additionally, the Galfenol layer is assumed to
be tightly tied to the structural layer, so the deformation of the two material layers remains
coordinated. Based on the above assumptions, the kinetic energy T of the coupling system
is written as

T = 1
2

∫ L
0 m

[(
∂u
∂t

)2
+
(

∂w
∂t + ∂wb

∂t

)2
]

dx

+ 1
2 M
[(

∂u(L)
∂t

)2
+
(

∂w(L)
∂t + ∂wb

∂t

)2
]

+ 1
2 J
[(

∂2w(L)
∂x∂t

)2
+
(

∂2w(L)
∂x∂t

)2(
∂w(L)

∂x

)2
] (2)

where m is the mass per unit length of the composite cantilever structure and given by
m = bshsρs + bmhmρm, of which ρs, ρm, bs, bm, hs, and hm are respectively the density, width,
and thickness of the aluminum and the Galfenol layer. L is the total length of the composite
cantilever beam. M and J are the mass and rotational inertia of the lumped mass. w(x, t)
and u(x, t) are the transverse and axial vibration displacements of the cantilever beam
at section x with respect to the fixed end of the cantilever structure, respectively. wb(t)
is the harmonic vibration displacement of the base excitation. Note that w(x, t), u(x, t),
and wb(t) are abbreviated as w, u, and wb in the subsequent content for convenience,
respectively. Additionally, the effect of gravitational potential energy is neglected since
it is relatively small in comparison with the elastic strain potential energy of the beam.
To account for the geometric nonlinearities of the coupled system’s cantilever beam, the
horizontal and vertical vibration velocities of both the beam and the lumped mass have
been taken into consideration.

Assuming that the stress and strain of the structural layer follow Hooke’s law and the
stress-strain of the Galfenol layer follows a linear constitutive equation [15], the potential
energy V of the coupling system can be given by

V =
∫ L

0 (EI)
((

∂2w
∂x2

)2
+
(

∂2w
∂x2

)2(
∂w
∂x

)2
)

dx (3)

where EI is the elasticity stiffness of the composite cantilever beam and expressed as
EI = 1

3 Esbs

(
hb

3 − ha
3
)
+ 1

3 Embm

(
hc

3 − hb
3
)

, of which Es and Em are the elasticity modulus
of the aluminum layer and the Galfenol layer, and I is the cross-section inertia moment of
the composite cantilever structure. ha = −[(Emhmhm + Emhmhs)/(2Emhm + 2Eshs) + hs/2]
and hb = hs + ha are coordinates of the lower and upper boundaries for the aluminum
layer, and hc = hs + hm + ha and hpc = hb+hc

2 are respectively the coordinates of the top
and the neutral axis for the Galfenol layer.

According to Nie et al. [52], the geometrically nonlinear deformation relation of the
transverse and axial vibration displacement for the cantilever beams can be denoted by
w(x, t) =

∫ x
0 sin(φ(η, t))dη, u(x, t) =

∫ x
0 cos(φ(η, t))dη, of which, φ(η, t) represents the

rotation angle of section η. Eliminating higher-order terms by Taylor expansion yields

u(x, t) =
∫ x

0

(
1 − 1

2
w′(η, t)2

)
dη (4)

dφ(x, t)
dt

=
∂2w(x, t)

∂x∂t

(
1+

1
2

(
∂w(x, t)

∂x

)2
)

(5)

∂φ(x, t)
∂x

==
∂2w(x, t)

∂x2

(
1 +

1
2

(
∂w(x, t)

∂x

)2
)

(6)
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It points out that the higher-order terms in Equations (4)–(6) are regarded as far less than
one and are thus ignored.

The virtual work performed by the nonconservative force is given by

Wnc = Wele + Wdamp (7)

where Wele and Wdamp are respectively the virtual works done by the electric and damping
forces, of which the moment caused by the electric effect Wele is formulated as

Wele = −
∫ L

0 Mele
∂2w
∂x2 dx −

∫ L
0 Mele

∂2w
∂x2

(
1
2

(
∂w
∂x

)2
)

dx (8)

where, Mele = ϑm(Hb + NI(t)/L)[H(x)− H(x − L)] is the moment due to the electrical
effect [15]. It should be pointed out that in the derivation of Mele, the magnetic field in the
Galfenol layer is presumed to be uniformly distributed along the axial and lateral directions
of the cantilever structure. Simultaneously, the hysteresis phenomena in the Galfenol
layer are neglected [59], and the bias field Hb is assumed to have a constant value [18].
Besides, N is the coil turn number, and I(t) is the induced current in the coil. H(x) is the
Heaviside step function, ϑm is the magnetoelectric coupling coefficient and expressed as
ϑm = Emdbm

1
2

(
hc

2 − hb
2
)

, of which d is the coupling coefficient of the Galfenol layer.
Moreover, by adopting the assumption of proportional damping for the internal

damping mechanism of the cantilever composite beam structure [23], the virtual work
according to the damping force Wdamp can be written as

Wdamp =
∫ L

0
−
(

cs I
∂3w

∂x2∂t

)
∂2w
∂x2 dx +

∫ L

0
−ca

∂w
∂t

wdx (9)

where cs and ca are respectively the strain-rate damping and viscous-air damping coeffi-
cients of the composite cantilever structure.

By integrating Equations (2), (3), and (7) into Equation (1), the governing equations of
the cantilever energy harvesting system are derived as[

m ∂2

∂t2

(∫ x
0

w′(η,t)2

2 dη

)
+Mδ(x − L) ∂2

∂t2

(∫ L
0

w′(η,t)2

2 dη

)]
∂w
∂x

−
[∫ L

x m ∂2

∂t2

(∫ ξ
0

w′(η,t)2

2 dη

)
dξ + MH(x − L) ∂2

∂t2

(∫ L
0

w′(η,t)2

2 dη

)]
∂2w
∂x2

+m ∂2w
∂t2 +EI

[
∂4w
∂x4 +

(
∂2w
∂x2

)3
+4 ∂3w

∂x3
∂2w
∂x2

∂w
∂x +

∂4w
∂x4

(
∂w
∂x

)2
]

+ϑm(Hb + NI(t)/L)
[

∂δ(x)
∂x − ∂δ(x−L)

∂x

]
+ 1

2 ϑm(Hb + NI(t)/L)
[

∂δ(x)
∂x − ∂δ(x−L)

∂x

](
∂w
∂x

)2

+ϑm(Hb + NI(t)/L)[δ(x)− δ(x − L)] ∂w
∂x

∂2w
∂x2

+ ∂2

∂x2

(
cs I · ∂3w

∂x2∂t

)
+ca · ∂w

∂t =−
[
m ∂2wb

∂t2 +Mδ(x − L) ∂2wb
∂t2

]

(10)

Moreover, the linear boundary conditions are defined by
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∂w(0,t)
∂x = 0, w(0, t) = 0,

M ∂2w(L,t)
∂t2 − EI ∂3w(L,t)

∂x3 − EI ∂w(L,t)
∂x

(
∂2w(L,t)

∂x2

)2
− EI ∂3w(L,t)

∂x3

(
∂w(L,t)

∂x

)2

−ϑm(Hb + NI(t)/L)[δ(x)− δ(x − L)]

− 1
2 ϑm(Hb + NI(t)/L)[δ(x)− δ(x − L)]

(
∂w(L,t)

∂x

)2

− ∂
∂x

(
cs I · ∂3w(L,t)

∂x2∂t

)
= 0,

J ∂3w(L,t)
∂x∂t2 + J ∂3w(L,t)

∂x∂t2

(
∂w(L,t)

∂x

)2
+ J
(

∂2w(L,t)
∂x∂t

)2
∂w(L,t)

∂x + EI ∂2w(L,t)
∂x2

+EI
(

∂w(L,t)
∂x

)2 ∂2w(L,t)
∂x2 + ϑm(Hb + NI(t)/L)[H(x)− H(x − L)]

+ 1
2 ϑm(Hb + NI(t)/L)[H(x)− H(x − L)]

(
∂w(L,t)

∂x

)2
+ cs I · ∂3w(L,t)

∂x2∂t = 0

(11)

In the above derivation process, the edge effect is neglected for the reason that the
coil is assumed to be long enough. According to Ampere’s law [43], the magnetic field
strength H applied longitudinally to the Galfenol layer can be given by H = Hb + NI(t)/L.
In addition, the linear constitutive relationships of the Galfenol layer ε = σm/Em + dH and
B = dσm + µH are adopted, of which σm and µ are the axial stress and material permeability
of the Galfenol layer. B is the magnetic induction strength of the Galfenol layer. Note
that in Equations (10) and (11), w(L, t) is the displacement of transverse vibration for the
section x = L at time t. δ(x) is the Dirac function and has a relationship with the Heaviside
function H(x) as ∂H(x)

∂x = δ(x).

2.2. Coupled Electrical Circuit Equations of the Cantilever Energy Harvesting System

According to Faraday’s law of electromagnetic induction [18], the induced voltage
generated in the Galfenol layer with length ∆l for the cantilever energy harvesting system
can be expressed as ∆V(t) = −∆l NA

L
dB
dt . Integrating over the length with respect to x, the

total induced voltage can be obtained as

V(t) = −NdEm A
L

∫ L

0

dεpc

dt
dx − L0

dI(t)
dt

(12)

where L0 = (µ − d2Em)N2 A
L is the equivalent inductance of the coil, εpc is the neutral layer

strain of the Galfenol layer and expressed as εpc= − hpc
∂2w
∂x2

(
1 + 1

2

(
∂w
∂x

)2
)

to take into

account the geometric nonlinearity of the composite cantilever structure. Substituting the
expressions of the B and the neutral layer strain of the Galfenol layer into Equation (12),
the electrical circuit equation is derived as

G
∫ L

0
d3w

dx2dt dx + G
2

∫ L
0

d3w
dx2dt

(
dw
dx

)2
dx + G

∫ L
0

d2w
dx2

d2w
dxdt

dw
dx dx − L0

dI(t)
dt = V(t) (13)

where G = NdEm A hpc
L is the force-electric coupling coefficient of the cantilever structure,

and A is the coil’s section area.

2.3. Coupled Mechanical Equations of the NES System

For the NES system, the mass is M2, the damping is c2, and the nonlinear elastic
stiffness is k2. The transverse vibration displacement of the NES along the y direction with
respect to the fixed end of the composite cantilever beam is w2(t) and abbreviated as w2.
Therefore, the kinetic energy T2, potential energy V2, and virtual work Wnc2 due to the
non-conservative forces of the NES system are expressed as

T2 =
1
2

M2

(
∂w2

∂t
+

∂wb
∂t

)2
(14)
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V2 =
k2(w2 − w(L, t))4

4
(15)

Wnc2=− c2(
∂w2

∂t
− ∂w(L, t)

∂t
)(w2 − w(L, t)) (16)

Substituting Equations (14)–(16) into the extended Hamilton’s expression, i.e., Equation (1),
the additional governing equation for NES is obtained as

−
∫ t2

t1
M2

∂2w2
∂t2 δw2dt −

∫ t2
t1

M2
∂2wb
∂t2 δw2dt

+
∫ t2

t1
k2

[(
w2

3 + 3w2w(L, t)2 − 3w2
2w(L, t)− w(L, t)3

)
δw(L, t)

]
dt

+
∫ t2

t1
k2

{(
w(L, t)3 − 3w2w(L, t)2 + 3w2

2w(L, t)− w2
3
)

δw2

}
dt

−
∫ t2

t1
c2(

∂w2
∂t − ∂w(L,t)

∂t )(δw2)dt+
∫ t2

t1
c2(

∂w2
∂t − ∂w(L,t)

∂t )(δw(L, t))dt = 0

(17)

3. Representative Model of Output Responses for the Coupled System

To conduct the nonlinear analyses, we adopt the Galerkin decomposition method to
decompose into the transverse displacement of the composite cantilever structure. This
means that w(x, t) can be discretized into the product of the spatial and time variables as

w(x, t)=ϕr(x)qr(t) (18)

where ϕr(x) and qr(t) are the r mode shape and modal coordinates of the composite
cantilever structure. Note that the modal shape function ϕr(x) is the same as that of the
undamped free vibration system [60] and can be expressed as

ϕr(x) = Ar sin βrx + Br sin βrx + Cr sin βrx + Dr sin βrx (19)

Adopting the proportional damping assumption, the boundary conditions are simpli-
fied and written as follows

ϕr(0) = 0, ∂ϕr(0)
∂x = 0,

EI ∂3ϕr(L)
∂x3 + ω2Mϕr(L) = 0, EI ∂2ϕr(L)

∂x2 − ω2 J ∂ϕr(L)
∂x = 0.

(20)

and the orthogonality conditions given by∫ L
0 ϕr(x)mϕs(x)dx + ϕr(x)(Mϕs(x))|x=L + dϕr(x)

dx

(
J ∂ϕs(x)

∂x

)
|x=L=δrs ,∫ L

0 ϕs(x) d2

dx2

(
EI d2ϕr(x)

dx2

)
dx − ϕs(x) d

dx

(
EI d2ϕr(x)

dx2

)
|x=L +

dϕs(x)
dx EI d2ϕr(x)

dx2 |x=L =ω2
r δrs,∫ L

0
d2ϕs(x)

dx2 EI d2ϕr(x)
dx2 dx=ω2

r δrs.

(21)

where ωr = βr
2
√

EI
m is the r th order intrinsic frequency of the composite cantilever beam.

δrs is the Kronecker delta and equal to 1 for r = s and 0 for r ̸= s. Substituting Equation (18)
into Equations (10), (13), and (17).

For cantilever beam structures with a concentrated mass fixed at the free end, it can be
proved that the contribution of the distributed mass of the beam and the attached mass
in the energy of the first mode, particularly the potential and elastic strain energies, is
drastically higher than that of the other modes energy. Based on this, the first mode has
been widely adopted to analyze the response of the cantilever energy harvester with a
concentrated mass attached to the free end in many studies [61–64]. However, it should
be emphasized that if the position of the concentrated mass changes, such as being placed
at the mid-span of the cantilever beam, the contribution of the second-order mode in the
dynamical response of the system will significantly increase. In this work, the concen-
trated mass is placed at the free end of the cantilever beam for the proposed system as
a consequence, only the first vibration mode is considered. Then, by using orthogonal
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conditions Equation (20) and boundary conditions Equation (21), the governing equations
of the NES-Galfenol coupled system are easily reduced to

q̈(t) + ω2q(t) + Cm q̇(t)+η1q3(t) + η2q(t)
[
q̇(t)2 + q(t)q̈(t)

]
+χr1 + χr2q2(t) + θp1 I(t) + θp2 I(t)q2(t) + M2ẅ2(t)η3 = P ∗ a0(t)

(22)

M2ẅ2(t) + M2a0(t)+k2(w2(t)− w(L))3 + c2[ẇ2(t)− ẇ(L)]= 0 (23)

L0 İ(t) + I(t)RL + I(t)Rc − θp1 q̇(t)− θp3 q̇(t)q(t)2 = 0 (24)

It should be pointed out that Equations (22)–(24) represent the governing equations of
a dual nonlinear system, which is a vibration reduction and energy harvesting coupling
system with both NES and geometric nonlinear characteristics considered. In the above
equations, P = −

[
m
∫ L

0 ϕ(x)dx + Mϕ(L) + M2ϕ(L)
]
, Cm = 2ξω, ξ and ω are respectively

the mechanical damping ratio and first natural frequency of the composite cantilever beam.
a(t) is the acceleration of the external excitation. RL and Rc are, respectively, the external
load resistance and internal resistance of the coil. The geometric nonlinearity coefficients
η1, η2, and η3 are respectively expressed as

η1 =
∫ L

0 EIϕ(x)
(

∂4ϕ(x)
∂x4

(
∂ϕ(x)

∂x

)2
+ 4 ∂3ϕ(x)

∂x3
∂2ϕ(x)

∂x2
∂ϕ(x)

∂x +
(

∂2ϕ(x)
∂x2

)3
)

dx,

η2 =
∫ L

0 m
(∫ x

0 ϕ′2(x)dη
)2

dx + M
(∫ L

0 ϕ′2(x)dη
)2

,
η3 = ϕ(L).

(25)

while the magnetostrictive coupling coefficients χr1, χr2, θp1, θp2, and θp3 have the following form

χr1=Emdbmhmhpc Hbϕ′(L),
χr2=

Emdbmhmhpc Hb
2 ϕ′(L)3,

θp1 =
NEmdbmhmhpcϕ′(L)

L ,

θp2 =
NEmdbmhmhpcϕ′(L)3

2L ,

θp3 =
3NEmdbmhmhpc

2L
∫ L

0 ϕ′′(x)ϕ′(x)2dx.

(26)

To determine the output performances of the coupled system, the following state variables
are introduced:

X =


X1
X2
X3
X4
X5

=


q
q̇

w2
ẇ2
I

 (27)

According to Equations (22)–(24), the governing equations can be rewritten as

Ẋ2 + ω2
r X1 + CmrX2+η1X1

3 + η2X1

[
X2

2 + X1Ẋ2

]
+ χr1 + χr2X1

2

+θp1 X5 + θp2 X5X1
2 + M2Ẋ4η3 = Pa0(t)

(28)

M2Ẋ4+M2a0(t)+k2(X3 − η3X1)
3 + c2(X4 − η3X2)= 0 (29)

L0Ẋ5 + X5RL + X5Rc − θp1 X2 − θp3 X2X2
1 = 0 (30)

The output responses of the NES-Galfenol-coupled system, X, can be rewritten in the form
of

Ẋ = BX + C
(
X2, X3) (31)
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in which C(X2, X3) is the nonlinear vector of the state variables; B is the linear coefficient
matrix of the state variables and can be expressed as

B =


0 1 0 0 0

−ω2 −2ζω 0 0 −θ1
0 0 0 1 0
0 c2η3/M2 0 −c2/M2 0
0 θp1 /L0 0 0 −R/L0

 (32)

Obviously, all parameters that affect the linear part of the coupled system have been
included in matrix B. The third and fourth rows, as well as the third and fourth columns in
matrix B, are the relevant parameters of the NES system. Ignoring the relevant parameters
of the NES system, a new matrix B about the composite cantilever energy harvesting system
is obtained. The global natural frequency and damping of the electromechanically coupled
energy harvesting system can be determined by the new matrix B. Note that the output
responses of the NES-Galfenol-coupled system are calculated by the Runge-Kutta method
for all case studies in the following section.

4. Results and Discussion
4.1. Model Validation

To assess the reliability of the proposed model, a degenerated cantilever Galfenol
harvesting system is adopted by omitting the geometric nonlinearity characteristics of
the cantilever structure and the NES coupling system for the proposed NES-Galfenol
coupling system. The harvested power of the degenerated cantilever Galfenol harvesting
system proposed in this paper is compared with those of the previous research [15,65],
as shown as plotted in Figure 2. Note that the same physical and geometric parameters
are used to obtain the numerical results of the degenerated cantilever Galfenol harvesting
system by the Runge-Kutta method. As plotted in Figure 2, the harvested power of the
discussed cantilever Galfenol harvesting system obtained by the proposed method is in
good agreement with the theoretical analysis results and numerical solutions in other
works [15,65]. This means that the proposed model and the derived results are reliable
and applicable.
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 Wang et al. 2023 
 Numerical solution

Figure 2. Comparison of the harvested power calculated by this work, Cao et al. [65], and
Wang et al. [15].

4.2. Comparison between the Linear and Nonlinear Systems

In order to analyze the difference between linear and nonlinear systems, four cases are
adopted and discussed in this section. The four cases are pure linear systems, nonlinear
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systems that only consider NES, nonlinear systems that only consider geometric large
deformations, and dual nonlinear systems that consider both NES and geometric large
deformations. Among them, the dual nonlinear system is the proposed NES-Galfenol
coupling system in this work. It is obvious that the governing equations of the other three
systems (apart from the proposed NES-Galfenol coupling system) can be easily obtained
by eliminating the corresponding nonlinear terms from the proposed coupling model, as
shown in Equations (22)–(24). Note that the physical and geometric properties of the four
mentioned cases, as well as all the cases discussed in the following sections, are shown in
Table 1.

Table 1. Physical and geometric properties of the NES-Galfenol coupled system.

Parameter Description Value

L Length of the aluminum layer and Galfenol layer(mm) 130
bs, bm Width of the aluminum layer and Galfenol layer (mm) 20
hs Thickness of the aluminum layer and (mm) 0.7
hm Thickness of the Galfenol layer (mm) 0.3
Es Young’s Modulus of the aluminum layer (GN/m2) 68
Eg Young’s Modulus of the Galfenol layer (GN/m2) 70
ρs Density of the aluminum layer (kg/m3) 2700
ρg Density of the Galfenol layer (kg/m3) 7496
ξ Mechanical damping ratio of the first modal 0.014
M Mass of the tip lumped mass (g) 70
µ magnetic permeability(H/m) 920π × 10−7

d0 Piezomagnetic coefficient (T/Gpa) 34
Hb bias magnetic field strength (kA/m) 3.58
N number of the coil 1000
RC Internal resistance of the coil (Ohm) 36.4
M2 Mass of the NES (g) 4
c2 damping of the NES (N·s/m) 0.4
k2 elastic stiffness of the NES (N/m3) 105

Figure 3 illustrates the variations of the output performances for the four mentioned
coupled systems with the excitation frequency ratio (the ratio of the excitation frequency to
the natural frequency, β), at RL = 10 Ohm and a0 = 2.1 m/s2. As plotted in Figure 3, for
the pure linear system, the tip displacement and the harvested power reach the maximum
value, i.e., 33.63 mm and 10.15 mW, at an excitation frequency ratio of 1.002. At this time,
the excitation frequency is exactly equal to the natural frequency of the coupled structure.
For nonlinear systems that only consider large geometric deformations, the maximum
tip displacement of 31.45 mm and harvested power of 8.71 mW are obtained when the
external excitation frequency ratio is 0.961. In particular, a softening phenomenon occurs,
i.e., the output performances show a jumping phenomenon when the excitation frequency
ratio reaches 0.954. For the nonlinear systems that only consider NES, the maximum
tip displacement and harvested power are respectively 20.17 mm and 3.49 mW, with the
excitation frequency ratio equal to 0.974. For the dual nonlinear systems that consider
both NES and geometric large deformations, the maximum value of output properties are
achieved, respectively, at 20.84 mm and 3.62 mW, with the excitation frequency ratio equal
to 0.954.

The conclusion can be drawn from Figure 3 that the NES can effectively reduce
the tip displacement as well as the harvested power. Besides, the excitation frequency
ratio corresponding to the maximum output response shifts significantly to the left for
the four discussed cases. This means that, after considering geometric nonlinearity, the
optimal external excitation frequency ratio for the maximum output responses decreases
and will result in a jump phenomenon and a nonlinear softening phenomenon. Moreover,
when considering both the NES and the large deformation, the output performances are
effectively reduced, as is the optimal external excitation frequency ratio, which corresponds
to the maximum output response. However, the jumping phenomenon disappeared since
the relatively small vibration amplitude cannot excite the geometric deformation effect. In
other words, for the coupled model that introduces the NES, a larger external excitation
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amplitude is required to excite the geometric nonlinearity properties of the cantilever
structure for the energy harvesting system.
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Figure 3. The (a) tip displacement (b) harvesting power with the external excitation frequency ratio
for different coupled systems.

4.3. Effect of External Load Resistance on Global Damping and Frequency

The variation trends of the modified frequency and damping for the NES-Galfenol-
coupled system considering dual nonlinearity with the external load resistance are pre-
sented in Figure 4. The modified frequency and global damping of the coupled system
are gained by calculating the eigenvalue of the simplified matrix B as mentioned below
Equation (32). As depicted in Figure 4, with the presence of electromechanical coupling for
the Galfenol layer, the external load resistance will affect the global frequency and damping.
Specifically, when the external resistance increases, the modified frequency first decreases,
then increases, and finally stabilizes. The minimum value of the global frequency is reached
at 30 Ohm. In contrast, the global damping of the proposed coupling system decreases
with the increase in external load resistance. In general, the influence on the global fre-
quency and damping of the coupled system is not obvious, which is inconsistent with the
effect of resistance on piezoelectric energy harvesters considering geometric nonlinearity
as illustrated in the previous work [51].
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Figure 4. The (a) modified frequency and (b) damping with the external load resistance for the
coupled system.
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4.4. Parametric Analysis
4.4.1. Effects of External Resistance and Excitation Frequency Ratio

Figure 5 presents the relationships of tip displacement and harvested power with the
excitation frequency ratio for different external resistances at a0 = 2 m/s2, k2 = 105 N/m3,
and c2 = 0.4 N·s/m. Inspecting Figure 5, we note that with the increase of the external
excitation frequency ratio, the tip displacement and output power of the coupled system
increase with the excitation frequency ratio less than 0.961. Then the output performances
decrease when the excitation frequency ratio exceeds 0.961. Moreover, as the external
resistance rises, the harvested power gradually decreases while the tip displacement at
the end of the cantilever structure is slightly increased. This can be explained by the fact
that with the increase in resistance, the electrical damping of the coupled system faintly
reduced, as illustrated in Figure 4. Additionally, inspecting Figure 4, the output results of
the proposed NES-Galfenol coupling system show a certain left-bending trend, which is
known as the nonlinear softening characteristics. As a comparison, the responding output
results for the linear coupled system are symmetrical at an excitation frequency ratio of
around 1.0, as presented in our previous work [15]. In general, external resistance has a
relatively small impact on vibration displacement and a greater influence on harvested
power. There always exists an optimal excitation frequency ratio corresponding to the
maximum output performance. The nonlinear softening characteristics appeared with the
introduction of geometric nonlinearity in cantilever structures.
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Figure 5. The (a) tip displacement and (b) harvested power with the excitation frequency ratio for
different external load resistance.

4.4.2. Effects of Excitation Acceleration Amplitude and Excitation Frequency Ratio

The influences of the excitation frequency ratio and the excitation acceleration on the
output performances are plotted in Figure 6 for the case of RL = 10 Ohm, k2 = 105 N/m3,
and c2 = 0.4 N·s/m. Inspecting Figure 6, as the excitation frequency ratio increases, the tip
displacement and harvested power both first increase and then reduce to zero. Besides, with
the increase in excitation acceleration, the vibration placement as well as the output power
increase sequentially. It is noted that when the amplitude of the excitation acceleration
reaches 2.8 m/s2, the output performances present a drastic change, as indicated by the
black dashed arrow in the figure. This means that the jumping phenomenon occurs, i.e., the
vibration characteristics of the coupled system jump from a stable motion with a smaller
amplitude to another stable motion with a larger amplitude. This jumping phenomenon
does not occur in the linear Galfenol energy harvesting coupled systems, as reported in the
work [15]. In general, the plots show that when the amplitude of external excitation exceeds
a certain value, a softening jump phenomenon of the output response will occur. The reason
for this is that the geometric nonlinearity of the coupled system will be excited by increasing
the excitation acceleration amplitude. As a result, when the softening phenomenon occurs,
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the output results show a clear left-bending trend. At this point, the working frequency
range of the coupled system dramatically shifts to the left and widens, which is the output
effect that this model aims to achieve.
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Figure 6. The (a) tip displacement and (b) harvested power with the excitation frequency ratio for
different amplitudes of the excitation acceleration.

4.4.3. Effects of External Resistance and Excitation Acceleration Amplitude

Figure 7 illustrates the variations of the output performances with the amplitudes
of the excitation acceleration for different external load resistances when the excitation
frequency ratio is fixed at 0.920, k2 = 105 N/m3, and c2 = 0.4 N·s/m. As shown in
Figure 7, the output performances of the coupled system first increase with the increase of
the excitation acceleration amplitude. When the amplitude of the excitation acceleration
reaches about 3.4 m/s, the vibration of the coupled system will jump to the upper branch.
This branch corresponds to the output performance being stable in a periodic motion with
a larger amplitude. It means that the jumping phenomenon occurs when the excitation
acceleration exceeds a certain value. In addition, as depicted in Figure 7, the harvested
power of the coupled system declines with the external load resistance increasing from
1 Ohm to 10 Ohm, 102 Ohm, and 104 Ohm. At this time, as the resistance of the external
circuit changes, the vibration displacement remains unchanged. This indicates that the
value of the external resistance has little effect on the vibration displacement and has a
reverse effect on the harvested power. As a consequence, to obtain a larger output power,
the resistance of the external circuit and the excitation acceleration should be taken as
smaller and larger values, respectively.
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Figure 7. The (a) tip displacement and (b) harvested power with the amplitudes of the excitation
acceleration for different external load resistance.
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Figure 8 shows the changes of the tip displacement and harvested power for the
coupled system with the excitation acceleration amplitude when the external load resistance
is respectively set as 1, 10, 102, and 104 Ohm and the excitation frequency ratio is equal
to 0.988, k2 = 105 N/m3, and c2 = 0.4 N·s/m. As presented in Figure 8, the output
performances of the coupled system gradually increase with the increase of the excitation
acceleration. As the external load resistance increases, the harvested power decreases
significantly. The effect of the external resistance on the tip displacement of the coupled
system can be almost negligible. Compared to the responses in Figure 7, the output
responses of the coupled system still increase with the increase in excitation acceleration,
but no nonlinear jumping phenomenon occurs. This can be explained by the reason that
with the excitation frequency ratio closer to 1, the output result is farther away from the
left-bending region (the softening region) plotted in Figures 5 and 6. Therefore, it can be
concluded that the nonlinear jumping phenomenon will not be induced with the excitation
frequency ratio far away from the softening region.
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Figure 8. The (a) tip displacement and (b) harvested power with the amplitudes of the excitation
acceleration for different external load resistance.

4.4.4. Effects of the Damping and Nonlinear Stiffness for the NES

Figure 9 presents the variations of the output performances with the damping of
the NES for the cases of RL = 10 Ohm, a0 = 2 m/s2, and k2 = 105 N/m3. As illustrated
in Figure 9, the output responses of the coupled system first increase as the excitation
frequency ratio approaches the optimal frequency ratio, then decrease as the excitation
frequency ratio gradually shifts away from the optimal frequency ratio. In addition, as the
damping increases from 0.1 N·s/m to 0.6 N·s/m, the vibration displacement and harvested
power first decrease and then increase. With the increase in the NES damping, the optimal
excitation frequency ratio corresponding to the maximum output response increases first
and then declines. Moreover, the softening phenomenon of the output responses shows a
trend of first weakening and then strengthening as the NES damping increases. This means
that the damping of NES should be taken as a smaller or larger value to achieve better
output performance for a wider excitation frequency range.

The varied relationships of the tip displacement and harvested power with the excita-
tion frequency ratio for different NES stiffnesses are depicted in Figure 10 for the case of
RL = 10 Ohm, a0 = 2 m/s2, and c2 = 0.4 N·s/m. Inspecting Figure 10, it is obvious that
the changing trend of the output properties to the excitation frequency ratio is consistent
with those in Figure 9. That is, the output responses increase first and then decrease with
the growth of the excitation frequency ratio. As the NES stiffness rises from 104 N/m3

to 107 N/m3, the tip displacement and harvested power first decline and then increase
sequentially. Additionally, the softening phenomenon of output responses is gradually
emerging and becomes apparent with the growth of the NES stiffness. The optimal excita-
tion frequency ratio corresponding to the maximum output performance shows a trend
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of left shift as the NES stiffness increases. Therefore, in order to harvest more energy
within a wider range of excitation frequencies, the stiffness of NES should be taken as high
as possible.
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Figure 9. The (a) tip displacement and (b) harvested power with the excitation frequency ratio for
different NES dampings.
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Figure 10. The (a) tip displacement and (b) harvested power with the excitation frequency ratio for
different NES stiffnesses.

4.4.5. Effects of the Initial Excitation Condition

To clarify the influences of the initial excitation condition on the output responses
of the proposed NES-Galfenol coupling system, the excitation acceleration amplitude,
the external resistance, the NES damping, and the NES stiffness are respectively set as
a0 = 3.5 m/s2, RL = 10 Ohm, c2 = 0.4 N·s/m, and k2 = 105 N/m3. Two initial excitation
conditions, i.e., the small and large initial excitation displacements, are selected for analysis.
The tip displacement and harvested power of the coupled system with the mentioned two
initial excitation conditions are presented in Figure 11. It is noted that the symbol ID in the
figure represents the initial displacement of the discussed coupling system. The green and
blue arrows represent the direction of the forward or reverse sweep frequency, respectively.

As observed in Figure 11, the changing curves of the vibration displacement and
harvested power both exhibit jumping phenomena with the change of the excitation
frequency ratio. In the case of forward sweep frequency analysis with a small initial
displacement, the response of the coupled system increases gradually when the excitation
frequency ratio is less than 0.920. Then it jumps from the lower branch to the upper branch
while the excitation frequency ratio reaches 0.920, and finally gradually decreases when
the excitation frequency ratio is larger than 0.920. In the case of reverse sweep frequency
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analysis with the large initial displacement, as the excitation frequency ratio decreases,
the response of the coupled system grows gradually until the excitation frequency ratio
is greater than 0.873. Then it decreases gradually for the excitation frequency ratio less
than 0.873. When the excitation frequency ratio is equal to 0.873, the output performance
jumps from the upper branch to the lower branch. This indicates that 0.920 and 0.873 are,
respectively, the jumping thresholds of the output responses for the small initial condition
and the large initial condition. Comparing the output performances of the two discussed
cases, the output responses for the large ID are dramatically greater than those for the small
ID when the excitation frequency ratio is in the jumping range. The jumping range can
be called the softening region for the output responses. In this region, two steady-state
solutions of the output performances for the coupled system can be obtained. Consequently,
the wider the range of jump intervals, the better the output performance of the proposed
NES-Galfenol coupling system.
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Figure 11. The (a) tip displacement and (b) harvested power with the excitation frequency ratio for
different initial excitation conditions. The green and blue arrows represent the forward and reverse
sweep frequency direction, respectively.

To further clarify the effect of initial conditions on the output responses, the time
history curve and phase portrait curve for the tip displacement are illustrated in Figure 12.
The results plotted in Figure 12 are obtained by the external excitation frequency ratio,
which is respectively set at 0.920 and 0.988. As can be seen from Figure 11, the two
adopted excitation frequency ratios are respectively located in and outside the jumping
region. Inspecting Figure 12a,c, we found that with the excitation frequency ratio inside
the jumping region, there are indeed two steady-state solutions for the vibration responses.
For the case of the excitation frequency ratio equal to 0.988, Figure 12b,d show that the
steady-state vibration responses for the different initial conditions are in good agreement. It
means that the initial conditions no longer affect the vibration response when the excitation
frequency ratio is outside the jumping range. In general, when the excitation frequency
ratio is located in the jumping range, two stable vibration responses will be found for
various initial conditions. When the excitation frequency is beyond the jumping region,
only one stable vibration response can be observed for different initial conditions.
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Figure 12. Time history curve and phase portrait for the tip displacement when external excitation
frequency ratios are respectively set at 0.920 and 0.988. (a) β = 0.920. (b) β = 0.988. (c) β = 0.920.
(d) β = 0.988.

5. Conclusions

In recent years, Galfenol, a novel magnetostrictive material, has increasingly been
utilized in the field of vibration energy harvesting. NES, commonly used for vibration
reduction, has garnered interest from researchers in energy harvesting because of its simple
structure, wide working frequency band, and high robustness. Inspecting the previous
works, researchers mainly devote themselves to introducing the NES or geometric nonlin-
earity into piezoelectric energy harvesting systems to obtain better output performances.
This work proposes the NES-Galfenol coupling system by combining the advantages of
NES and Galfenol materials. The proposed model can achieve the multifunctional goal of
suppressing the vibration of the main structure and protecting the safety of the cantilever
energy harvesting system while capturing energy. Based on the inverse magnetostric-
tive effect, Faraday electromagnetic induction effect of Galfenol material, and Hamilton
variational principle, the electromechanically coupled distributed parameter governing
equations of the proposed coupling system are formulated. It is noted that the geometric
nonlinear characteristics of cantilever beams and stiffness nonlinear characteristics of NES
are considered in the deriving process. According to the Galerkin discretization method,
the reduced-order equations are deduced. The numerical solutions of the proposed NES-
Galfenol coupling system are calculated by the Runge-Kutta method. A comparative
analysis was conducted on the effects of geometric nonlinearity and NES on the output
performances of the cantilever Galfenol energy harvesting system. Moreover, the influences
of the excitation acceleration amplitude, excitation frequency ratio, external load resistance,
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NES damping and stiffness, and the initial excitation condition on the output performances
of the proposed coupling system are conducted. The main conclusions drawn from this
work are as follows:

(1) The numerical calculation solutions of the proposed coupling system reveal that the
addition of an NES can effectively reduce the vibration behaviors of the cantilever
Galfenol energy harvesting system. After considering the geometric nonlinearity of
the cantilever beam, the jumping phenomenon will occur relative to the linear system.

(2) For any fixed external load resistance, excitation acceleration amplitude, NES damp-
ing, or NES nonlinear stiffness, the corresponding optimal range of the excitation
frequency ratio, around 0.96, could be identified to maximize the harvested power.

(3) When the external excitation acceleration, NES damping, and nonlinear stiffness
exceed a certain threshold, the system output responses will exhibit a jumping phe-
nomenon, namely the nonlinear softening phenomenon. In the nonlinear softening
range, two branching curves exist, corresponding to the responses of small and large
initial conditions, respectively. In the non-softening range, there is only one branching
curve. This means that the output response of the coupled system is independent of
the initial conditions when the excitation is outside the jumping region.

(4) In summary, to achieve better energy harvesting characteristics, the external resistance
should be taken as small (such as RL < 10 Oom) and the external excitation amplitude
should be larger (such as a0 > 2.8 m/s2). The NES damping should be taken as a
smaller or larger value (such as c2 = 0.1 N· s/m or c2 > 0.4 N· s/m), and the stiffness of
the NES should be as large as possible (such as k2 > 106 N/m3). Then the appearance
of the nonlinear softening phenomenon will occur and effectively expand the vibration
energy-capturing frequency bandwidth of the proposed coupling system.

In addition, it is particularly pointed out that the correct selection of calculation
methods will significantly affect the computational efficiency and accuracy of the coupled
model. Zhang et al. [66] proposed a novel stochastic homotopy method to discuss the
structure-static features with random variables distributed arbitrarily. It is concluded that
this proposed new method has excellent accuracy and stability. In this work, through
the numerical parameter analysis, the intrinsical characteristics of the influence of some
parameters on the output response of the coupled system can be preliminarily obtained.
However, the specific optimal parameter values cannot be directly determined to achieve
the best harvesting performance. Excitedly, with the development of computer technology
and big data technology, the optimization analysis can be effectively trained through ma-
chine learning-based and artificial neural network-based algorithms (DL and ANN) [67,68].
This means that in view of the DL and ANN method, the specified optimal parameters
of coupled system can be confirmed by effectively training after the dynamic governing
equation of the NES-Galfenol coupled system is determined. This will greatly improve
the optimization analysis efficiency of the dual nonlinear coupling model proposed in this
work, which will be the research direction of our team in the future. Similarly, the DL
and ANN methods can provide technical support for parameter optimization analysis of
nonlinear dynamic systems in other fields. Therefore, the DL and ANN methods deserve
more attention and discussion for parameter optimization analysis in the future.
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