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Abstract: This paper presents an innovative three-level direct yaw moment control strategy for
distributed drive electric vehicles (DDEV) under emergency conditions. The phase plane analysis
is used at the supervisory level to design the stability boundary function taking into account the
impact of the road adhesion coefficient. To guarantee the performance of finite-time convergence and
singularity-free methods, the adaptive nonsingular fast terminal sliding mode control (ANFTSMC) is
developed at the decision level to determine the extra yaw moment for tracking the intended side
slip angle and yaw rate. Among this, the unstable domain in the phase plane is further separated into
moderately and severely unstable according to the degree of vehicle instability, which is defined by the
distance between the state phase point and the stability boundary. Meanwhile, the adaptive weight
between the handling and stability is obtained. At the executive level, the quadratic programming
algorithm is adopted to allocate four-wheel torque with the objective of optimal tire utilization rate.
Finally, the co-simulation test is executed in both closed-loop and open-loop circumstances; according
to the simulation results, the presented ANFTSMC method outperforms the SMC, and it can decrease
the tracking error and improve the handling and stability.

Keywords: distributed drive electric vehicle; direct yaw moment control; phase plane analysis;
nonsingular fast terminal sliding mode; quadratic programming

1. Introduction

Electric vehicles (EVs) stand out as a compelling remedy for energy scarcity and
environmental pollution [1]. As a kind of EV, distributed drive electric vehicles (DDEV)
exhibit distinct advantages over centralized configurations due to the four wheels can be
controlled independently, accurately, and quickly [2]. Thus, the most effective platform
for implementing advanced vehicle dynamics control is generally acknowledged to be the
DDEV. In order to improve driving safety and reduce the number of traffic accidents, active
safety control systems have been the subject of intensive research. Among these, active
front wheel steering (AFS) and direct yaw moment control (DYC) are effective techniques
to enhance lateral stability and handling. The difference is that AFS can change lateral tire
force by producing an additional angle to the front wheel, but DYC can provide a corrective
yaw moment created by longitudinal tire force [3]. It is noteworthy that DYC outperforms
AFS, particularly in ensuring vehicle stability during emergency conditions including high
speed, slippery pavement, and substantial steering wheel angles [4]. This is due to the
fact that in the nonlinear work domain under emergency conditions, the control margin of
longitudinal tire force surpasses that of lateral tire force [5]. Consequently, DYC exhibits
superior performance across both linear and nonlinear work domains of DDEV.

Extensive research has been conducted on DYC. Typically, DYC comprises two parts:
one is the extra yaw moment calculation, and another is the torque distribution. The two
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critical determinants impacting the handling and stability of DDEV are the yaw rate and
side slip angle. Thus, the corrective yaw moment is generated to make the current yaw
rate and side slip angle reach the desired values. Several control methodologies have been
developed, encompassing diverse approaches such as model predictive control (MPC),
sliding mode control (SMC), fuzzy control (FC), and others.

Zhang [6], Zhao [7], and Wang [8] proposed the fuzzy controller to determine the
corrective yaw moment. Zhao designed the fuzzy rule base, the discrepancy between the
actual and intended state is the input, and the additional yaw moment is the output. Wang
established a fuzzy-based DYC strategy to respectively track the desired states, and the
switching scheme is presented. Fuzzy control has a relatively low requirement for the
precision of the vehicle dynamics model; however, the fuzzy rules are formulated based
on empirical knowledge, resulting in a high level of complexity. Shen [9], Liang [10], and
Zhu [11] presented the model predictive controller to track the driver’s intended command.
To improve tracking precision and stability within the handling limit, Shen employed
the MPC method to calculate the corrective yaw moment. Liang designed a dual linear
time vary MPC structure considering energy saving and stability. The model predictive
control can predict future situations with multi-objectives and actuator constraints, but it
requires a significant amount of computation. Mok established a sliding mode controller
that produces a corrective yaw moment to track the intended yaw rate [12]. Park presented
a smooth sliding mode control approach to enhance the convergence speed and handling,
incorporating a feed-forward term related to the desired yaw rate [13]. Chae developed a
cascade structure controller, where the outer layer determines the intended yaw rate, and
the inner layer creates the additional yaw moment [14]. To accommodate changes in road
adhesion conditions, Zhai proposed a handling stability control scheme with an enhanced
sliding mode control algorithm [15]. Ding presented a second-order sliding mode controller
using a power integrator technique to improve vehicle stability and reduce system chatter-
ing [16]. Zhang integrated sliding mode control with a fuzzy algorithm to eliminate system
chattering, and the continuous discrete symbolic function is generated using fuzzy rules.
This approach can improve vehicle stability and control error convergence rate [17]. The
remarkable advantage of sliding mode control is its robustness to parametric uncertainties,
external disturbances, and unmodeled dynamics [18]. Therefore, for strongly nonlinear
vehicle systems, it offers superior robustness to changes in vehicle state parameters such as
velocity, road adhesion, and so on. However, one drawback is that it can take a long time
for the system state tracking error to asymptotically converge to an equilibrium point.

The extra yaw moment is produced by adjusting the four-wheel torque, a technique
known as torque allocation control. The torque allocation scheme varies due to the high
redundancy with multiple actuators of DDEV. Generally, the torque allocation method
mainly includes rules-based and optimization-based approaches. The rules-based method
distributes the longitudinal tire force with a specific proportion, such as average allocation
and axle load proportional allocation [19]. It has the advantage of simple computation
but neglects the influence of road adhesion conditions, which determine the generated
maximum tire forces in emergency conditions. The optimization-based method calculates
the wheel torque based on the multiple objectives with constraints. Zhai proposed a torque
optimal distribution strategy that considered the impact of wheel slip and variations in
road adhesion [20]. Peng presented a torque coordination control strategy to balance
vehicle stability and energy consumption [21]. Hu designed a two-level torque distribution
formula: one is the allocation between both axles, with the allocation proportion calculated
by the model predictive control method, and another is the distribution between four
wheels to satisfy the extra yaw moment [22]. Guo presented a two-step approach based on
the Karush–Kuhn–Tucker optimality criterion to distribute the four-wheel torque [23].

Several studies on direct yaw moment control have been carried out, but there are
still some issues that need to be resolved, especially considering the characteristics of
nonlinearity and over-actuation of DDEV under emergency conditions. The angle formed
by the driving direction and longitudinal axis is called the side slip angle, which represents
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the traceability to the desired trajectory [24]. The yaw rate is the definition of the deflection
angle rate around the vertical axis, and it represents vehicle steering and maneuverability
performance [25]. In the previous studies, the major control variables of most DYC strategies
are yaw rate and side slip angle, but the research on the coordination control between the
two parameters is scarcer. It is imperative to point out that the control priority and weight
between handling and stability should be adjusted with the change in vehicle state, and a
clear quantitative indicator needs to be defined to describe the degree of vehicle instability.

This paper proposes a novel DYC methodology with a three-level framework to
coordinate handling and stability for DDEV. The top level is contributed to resolve the
reference value of key control parameters, and the impact of road adhesion conditions is
taken into account. Furthermore, the stability boundary function is obtained by employing
the phase plane analysis approach. In the middle level, to overcome the drawback that SMC
cannot drive the state to asymptotically converge with the equilibrium point with finite time,
and the singularity issue of terminal sliding mode control (TSMC), the adaptive nonsingular
fast terminal sliding mode control (ANFTSMC) method is adopted to determine the extra
yaw moment. Additionally, this method introduces a nonlinear sliding hyperplane instead
of the conventional linear sliding hyperplane to improve the performance of fast finite-
time convergence. Meanwhile, the concept of vehicle instability degree is introduced
based on the distance between the state point and the stability boundary, and the unstable
domain in the phase plane is further split into sections that are moderately and severely
unstable. The vehicle instability degree provides the design basis for determining the
control weight coefficient between the side slip angle and yaw rate. The lower level is
implemented to allocate four-wheel torque with the objectives of minimizing allocation
error and maximizing stability margin. Additionally, the limiting conditions of peak
motor torque and friction ellipse are considered. Eventually, the simulation model of the
presented DYC strategy is built on the co-simulation platform of Carsim and Simulink, and
its effectiveness is confirmed under both closed-loop and open-loop driving conditions.

The remainder of the paper is structured as follows. The dynamics modeling of DDEV
is described in Section 2. The stability boundary function is formulated, employing the
phase plane analysis approach outlined in Section 3. The decision controller is designed in
Section 4. The executive controller is introduced in Section 5. The simulation is validated in
Section 6, and Section 7 is the conclusion.

2. Dynamics Modeling of DDEV
2.1. 7-DOF Model

The seven-degrees-of-freedom (7-DOF) vehicle dynamics model is adopted for sub-
sequent phase plane analysis and control strategy design, as shown in Figure 1, which
incorporates the longitudinal, lateral, yaw, and rotation of four wheels.
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The longitudinal and lateral motions are modeled as follows:

∑ Fx = m(
.
vx − vyγ) = (Fx f l + Fx f r) cos δ + Fxrl + Fxrr − (Fy f l + Fy f r) sin δ, (1)

∑ Fy = m(
.
vy + vxγ) = (Fx f l + Fx f r) sin δ + Fyrl + Fyrr + (Fy f l + Fy f r) cos δ. (2)

The resultant yaw moment ∑ Mz includes two parts; Mzx is derived from the lon-
gitudinal tire forces, Mzy is derived from the lateral tire forces, and ∑ Mz is described
as follows:

∑ Mz = Mzx + Mzy. (3)

The yaw moment derived from the left-front wheel can be indicated as follows:

Mzx f l = Mzx f l1 + Mzx f l2 = aFx f l1 −
Bw

2
Fx f l2 = aFx f l sin δ − Bw

2
Fx f l cos δ. (4)

Therefore, the yaw motion is described as follows:

∑ Mz = Iz
.
γ = (Fy f l + Fy f r

)
a cos δ − (Fyrl + Fyrr)b + (Fy f l − Fy f r)

Bw
2 sin δ +(

Fx f l + Fx f r

)
a sin δ − (Fx f l − Fx f r)

Bw
2 cos δ − (Fxrl − Fxrr)

Bw
2

, (5)

where m is the vehicle mass. a and b correspond to the length between the vehicle’s gravity
center and the front and rear axles. ax and ay correspond to the longitudinal and lateral
acceleration. vx and vy correspond to the longitudinal and lateral speeds. δ is the steering
angle of the front wheels, assuming the steering angles of the front left and right wheels
are equal. γ is the yaw rate. ∑Mz is the resultant yaw moment. Iz is the inertia moment
about the z-axis. Bw is the wheel track. Fyij is lateral tire force. Fxij is longitudinal tire force.
The symbol ij (ij = fl, fr, rl, rr) denotes front left, front right, rear left, and rear right.

The side slip angle (β) in Figure 1 can be calculated using the subsequent formula:

β = arctan
vy

vx
. (6)

The β and γ satisfy the following relationship:

Ω = β +
∫

γdt, (7)

where Ω is the course angle, ψ =
∫

γdt is the yaw angle.
Figure 2 shows the wheel rotational dynamics model. The longitudinal tire force of

each wheel is calculated as follows:

Fxij =
Tdij − Tbij − Jωij

.
ωij

Re
, (8)

where ωij is the wheel angular speed. Jωij is the wheel inertia moment. Re is the effective
rolling radius. Tdij and Tbij are the motor driving and braking torque.
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2.2. Magic Formula Tire Model

Tires provide the vehicle’s interaction with the road, and thus the tire characteristics
have a direct impact on the vehicle’s dynamic performance [26]. Tire forces and moments
are related to a variety of factors, such as tire slip angle, slip ratio, vertical load, and road
adhesion coefficient. The tire characteristics can be described by the appropriate model. In
this study, the most famous Magic Formula is selected because of its high fitting precision
and unified expression form. It can be expressed as follows:

y(x) = D sin{Carctan(BX − E(BX − arctan(BX)))}
Y(x) = y(x) + Sv
X = x + Sh

, (9)

where Y corresponds to the longitudinal tire force, lateral tire force, or aligning torque.
Corresponding to Y, X indicates the longitudinal tire slip ratio or side angle. B, C, and D
represent the stiffness, shape, and peak factor. E is the curvature factor. Sh and Sv are the
shifts of horizontal and vertical.

The longitudinal tire force under the condition of pure longitudinal slip can be de-
scribed as follows:

y(x) = Fx0(s) = D sin{Carctan(Bs − E(Bs − arctan(Bs)))}, (10)

where the coefficients are defined as follows:
C = b0
D = b1F2

z + b2Fz

B = b3F2
z +b4Fz

CDeb5Fz

E = b6F2
z + b7Fz + b8

. (11)

The lateral tire force in the case of pure side slip is formulated as follows:

y(x) = Fy0(α) = D sin{Carctan(Bα − E(Bα − arctan(Bα)))}, (12)

where the coefficients are defined as follows:
C = a0
D = a1F2

z + a2Fz

B = a3 sin(a4arctan(a5Fz))
CD

E = a6F2
z + a7Fz + a8

, (13)
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where ai (i = 0, 1, . . ., 8) are the fitting parameters of lateral tire force, bi (i = 0, 1, . . ., 8) are
the fitting parameters of longitudinal tire force, and they can be obtained by the tire force
testing given in the following Table 1.

Table 1. Fitting parameters of the Magic Formula.

Parameters Value Parameters Value

a0 1.30 b0 1.65
a1 −22.1 b1 −21.3
a2 1011 b2 1144
a3 1078 b3 49.6
a4 1.82 b4 226
a5 0.208 b5 0.069
a6 0 b6 −0.006
a7 −0.354 b7 0.056
a8 0.707 b8 0.486

The expression for tire slip angle is as follows:
α f l, f r = arctan

(
vy + aγ

vx ∓ Bw
2 γ

)
− δ

αrl,rr = arctan
(

vy − bγ

vx ∓ Bw
2 γ

) . (14)

The tire slip ratio can be calculated as follows:

sxij =


Reωij − vwxij

Reωij
, Reωij ≥ vwxij

vwxij − Reωij
vwxij

, Reωij < vwxij
, (15)

where vwxij denotes the wheel center velocity, as shown in Equation (16):
vwx f l = (vx − Bw

2 γ) cos δ + (vy + aγ) sin δ

vwx f r = (vx +
Bw
2 γ) cos δ + (vy + aγ) sin δ

vwxrl = vx − Bw
2 γ

vwxrr = vx +
Bw
2 γ

. (16)

The tire vertical load has an impact on the coefficients in Magic Formula, and, when
the vehicle is turning, the tire vertical load is transformed and calculated as the follow-
ing equation: 

Fz f l = b(mg
2l − mayhg

Bw l )− maxhg
2l

Fz f r = b(mg
2l +

mayhg
Bw l )− maxhg

2l

Fzrl = a(mg
2l − mayhg

Bw l ) +
maxhg

2l

Fzrr = a(mg
2l +

mayhg
Bw l ) +

maxhg
2l

, (17)

where Fzij is the vertical load, hg is the height of the gravity center, l is the wheelbase, and g
is the gravity acceleration.

In practice, the longitudinal and lateral tire forces coexist and interact, and satisfy the
following equation:  Fx = |σx |

σ Fx0(s), Fy =
|σy|

σ Fy0(α)

σ =
√

σ2
x + σ2

y , σx = − s
1+s , σy = − tan α

1+s

. (18)

Based on the above analysis, the characteristic curves are drawn in Figure 3 under dif-
ferent conditions, including pure longitudinal slip, pure side slip, and combined condition.
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2.3. Reference Model

The handling and stability control is intended to address two critical issues of trajectory
maintenance and driving stability, which are determined by the key control variables of the
DYC system: the side slip angle and yaw rate. The steady-state steering characteristics of
the vehicle and the driving intention can be described by the reference model. The 2-DOF
model has less computation and parameters, and it includes two degrees of freedom in
lateral and yaw. It is widely used as the control reference model [27]. Therefore, the 2-DOF
model is employed to deduce the desired control value.

The motion equation in lateral and yaw is derived as follows:{
may = m(

.
vy + vxγ) = ∑ Fy = 2Fy f + 2Fyr

Iz
.
γ = ∑ Mz = 2aFy f − 2bFyr

, (19)

where Fyf and Fyr are the lateral tire forces of the front and rear wheels, respectively.
Under the steady-state steering condition, vx is constant, δ is small, and the lateral tire

force is a linear function of tire slip angle as follows:{
Fy f = −2C f α f
Fyr = −2Crαr

, (20)

where Cf is the cornering stiffness of the front wheel, and Cr is the cornering stiffness of the
rear wheel. αf and αr are the slip angles of the front and rear wheels, respectively.

Meanwhile, Equation (14) can be rewritten as follows:{
α f ≈

vy+aγ
vx

− δ ≈ β + a
vx

γ − δ

αr ≈
vy−bγ

vx
≈ β − b

vx
γ

. (21)

Thus, Equation (19) is rewritten as follows: mvx(
.
β + γ) = −2(C f + Cr)β +

−2aC f +2bCr
vx

γ + 2C f δ

Iz
.
γ = −2(aC f − bCr)β +

−2a2C f −2b2Cr
vx

γ + 2aC f δ
. (22)

Under the steady-state steering conditions,
.
β = 0,

.
γ = 0 are established, and the

intended value of yaw rate and side slip angle is deduced as:

γmodel =
vx

l(1 + Kv2
x)

δ, (23)
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βmodel =
b − mav2

x
2Cr l

l(1 + Kvx2)
δ, (24)

where K is the insufficient steering coefficient, it is defined as follows:

K =
m(bCr − aC f )

2l2C f Cr
. (25)

In addition, the desired value is related to the road adhesion capacity and tire nonlin-
earity, and the limiting value is as follows [28]:

γmax = 0.85
µg
vx

, (26)

βmax = 0.85µg
(

b
v2

x
− ma

2Crl

)
. (27)

In summary, the desired value is reconstructed as follows:

γd =

{
γmodel |γmodel| < γmax
γmaxsign(γmodel) |γmodel| ≥ γmax

, (28)

βd =

{
βmodel |βmodel| < βmax
βmaxsign(βmodel) |βmodel| ≥ βmax

. (29)

3. Stability Boundary Function

The proposed DYC strategy with a hierarchical architecture is displayed in Figure 4,
which includes supervisory, decision, and executive levels. At the supervisory level, the
2-DOF model is employed to calculate the control reference values of yaw rate and side
slip angle, and the limited road adhesion capacity and tire nonlinearity are considered.
Meanwhile, to guarantee the control strategy works timely and accurately, the concept of
vehicle instability degree is proposed, and the β −

.
β phase plane is further partitioned into

stable, moderately unstable, and severely unstable regions. The objective of the decision
level is to generate extra yaw moment by adopting the ANFTSMC algorithm, and the
coordination control weight between the side slip angle and yaw rate is designed based on
the vehicle instability degree. Finally, the four-wheel torque is dynamically adjusted by the
optimization distribution method at the executive level.
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It is essential to make sure that stability control intervenes promptly while avoiding
interference with the driver’s operation. The phase plane is widely used to research the
dynamic response characteristics of nonlinear systems [29]. The schematic of the β −

.
β

phase plane is displayed in Figure 5. In order to streamline calculation, the boundary lines
of the stability domain are set as AB and CD, and the stability boundary function can be
formulated by the two-line method as follows:∣∣∣E1

.
β + β

∣∣∣ ≤ E2, (30)

where E1 and E2 are constant coefficients.
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Therefore, when Equation (30) holds, starting from the arbitrary initial state in the
stability domain, the phase trajectory can converge to the equilibrium point. On the
contrary, the vehicle is unstable and needs to be applied to additional control quickly. The
road adhesion coefficient µ, vehicle velocity vx, and front-wheel steering angle δ are the
major factors that determine the boundary of the stability domain. This paper focuses
on emergency conditions, so the effect of road adhesion coefficient on stability boundary
is emphasized.

The nonlinear characteristic of the vehicle is mostly attributed to the tire. Based on
the established tire model and 7-DOF vehicle model in Section 2, combining Equation (12)
with Equations (2) and (3), the state equation is derived as below:

.
β = cos2 β

( Fyrl + Fyrr + (Fy f l + Fy f r) cos δ

mvx
− γ

)
.
γ = 1

Iz

(
(Fy f l + Fy f r

)
a cos δ − (Fyrl + Fyrr)b + (Fy f l − Fy f r)

Bw
2 sin δ

) . (31)

Based on the phase plane analysis theory, vx, µ, and δ are given, the initial vehicle
state point (

.
β0, γ0) is set, and the solution of this state equation is a phase trajectory curve.

Set δ = 0, vx = 80 km/h, 0.1 ≤ µ ≤ 0.8, and the simulation is carried out under different
road adhesion coefficients at 0.1 intervals. The phase trajectories can be drawn in Figure 6,
and, based on the division principle of whether the phase trajectory curve converges to
the equilibrium point, the β −

.
β phase plane is partitioned into two parts (stable and

unstable domains). It is observed that when the road adhesion coefficient is less than 0.6,
the stable region expands as the road adhesion coefficient increases, which means that
the high road adhesion coefficient can provide a large stability margin. When the road
adhesion coefficient is beyond 0.6, the stable region is almost invariable. Therefore, based
on the two-line method, the boundary coefficients E1 and E2 under different road adhesion
coefficients are obtained in Table 2.
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Table 2. The stable boundary with different tire-road adhesion coefficients.

µ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E1/(s) 0.5424 0.3934 0.3311 0.2923 0.2295 0.1736 0.1398 0.1684
E2/(rad) 0.0163 0.0690 0.0761 0.0877 0.0918 0.0955 0.0964 0.0973

4. Decision Controller

At the decision level, the extra yaw moment is obtained for tracking the intended
side slip angle and yaw rate. The DDEV shows strong nonlinearity under extreme driving
conditions, and the parameters of the vehicle and environment change with the driving
state. The vehicle model is built with certain assumptions to simplify the calculation, which
will cause inevitable errors. The SMC is one of the variable structure controls, and it can
make the system state slide along a certain sliding hyperplane by changing the system
structure when the state deviates from the expected trajectory. The advantages of SMC are
robust to parametric uncertainties, external disturbances, and unmodeled dynamics. Thus,
it is frequently employed in research on vehicle dynamics control [30].

Since it is hard to control lateral tire force directly, the decision controller is designed
to determine the additional yaw moment Mzc, which is related to longitudinal tire forces.
Based on Equation (5), Mzc is expressed as follows:

Mzc =
(

Fx f l + Fx f r

)
a sin δ − (Fx f l − Fx f r)

Bw

2
cos δ − (Fxrl − Fxrr)

Bw

2
. (32)

The basic equation of a second-order uncertain nonlinear system is as follows:{ .
x1 =

.
x2.

x2 = f (x) + g(x)u + d(x)
, (33)

where x = [x1, x2]T is the system state vector. f (x) and g(x) are the nonlinear functions of x.
u is the control input. d(x) represents the system uncertainties and external disturbances, D
is the upper boundary, d(x) ≤ D and D > 0.

There are two key steps of the sliding mode controller design. The first is the sliding
surface, where the system state points exhibit the desired dynamic characteristics. The
second is the control law, which makes the state reach the sliding surface and keep on it.
Nevertheless, the system state cannot asymptotically converge to the equilibrium point
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within a finite time. To overcome this shortcoming, the nonlinear function is used to
design the sliding surface, which is terminal sliding mode control (TMSC) [31]. In addition,
boundless control input exists when the control output is within the neighborhood of the
origin. To avoid this control singularity problem, the nonsingular terminal sliding mode
control (NTSMC) is further proposed, which not only has the advantage of SMC but also
satisfies finite-time convergence and is singularity-free [32]. These merits ensure accurate
tracking to the desired state [33]. Therefore, the NTSMC is implemented in this paper to
design the decision controller for obtaining the additional yaw moment. The decision level
includes two controllers, which make efforts to track the intended side slip angle and yaw
rate. Meanwhile, to enhance the convergence speed of tracking error, an exponential term
is introduced to establish the sliding mode switching function, and self-adaptation is used
to predict the unknown upper boundary to enhance the controller performance.

4.1. Side Slip Angle Tracking Controller

According to Equation (2) of the 7-DOF vehicle model, the sliding mode equation of
the side slip angle is derived as follows:

.
β = −γ +

∑ Fy

mvx
= −γ +

(Fx f l + Fx f r) sin δ + Fyrl + Fyrr + (Fy f l + Fy f r) cos δ

mvx
. (34)

The time derivative of Equation (34) is given as follows:

..
β = − .

γ +
∑

.
Fy

mvx
= −∑ Mz

Iz
+

∑
.
Fy

mvx
. (35)

Based on Equation (33), set x1 = β and x2 =
.
β, and the control system model is described

as follows: { .
x1 = x2
.
x2 = −∑ Mz

Iz
+

∑
.
Fy

mvx
+ dβ(x, t)

, (36)

where dβ(x,t) is the system uncertainties and external disturbances, satisfying |dβ(x,t)| ≤ Dβ

and Dβ > 0, Dβ is the upper boundary.
The error between the actual and desired value is expressed as follows:

β̃ = β − βd. (37)

The time derivative of Equation (37) is given as follows:

.
β̃ =

.
β −

.
βd, (38)

..
β̃ =

..
β −

..
βd = −

Mzc + Mzy

Iz
+

∑
.
Fy

mvx
+ dβ −

..
βd. (39)

To enhance the convergence speed, the exponential term β̃r1β is introduced in the
sliding mode switching function of NTSMC, which is defined as follows:

s = β̃ + β̃r1β +
1
σ

.
β̃

r2β

, (40)

where r1β, r2β are constant and satisfy 1 < r2β < 2, r1β > r2β.

To avoid the complex item in Equation (40) when β̃ < 0 and
.
β̃ < 0, Equation (40) is

rewritten as follows:
s = β̃ + ζ1βsignr1β β̃ + ζ2βsignr2β

.
β̃, (41)

where ζ1β, ζ2β are constant, satisfying ζ1β > 0, ζ2β > 0,signr1β β̃ =
∣∣∣β̃∣∣∣r1β

sign(β̃).
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The derivative of Equation (41) yields:

.
s =

.
β̃ + ζ1βr1β

∣∣∣β̃∣∣∣r1β−1 .
β̃ + ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1 ..
β̃

=
.
β̃ + ζ1βr1β

∣∣∣β̃∣∣∣r1β−1 .
β̃ + ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1(
−Mzc+Mzy

Iz
+

∑
.
Fy

mvx
−

..
βd + dβ

) . (42)

To improve the dynamic quality in the reaching phase, the trajectory of the system
state point approach to the sliding mode surface is specified as the following reaching law:

.
s = ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1(
−εβsign(s)− kβs

)
, (43)

where εβ > 0, kβ > 0. This reaching law includes two parts: the constant reaching law
−εβsign(s) and the index reaching law −kβs. The approaching speed is determined by
−εβsign(s) when the state point is far from the sliding mode surface and depends on −kβs
when the state point is in proximity to the sliding mode surface. These two reaching laws
can guarantee the state point fast traverse forward sliding mode surface while also reducing
the chattering.

Substituting Equation (43) into (42) yields:

.
s =

.
β̃ + ζ1βr1β

∣∣∣β̃∣∣∣r1β−1 .
β̃ + ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1(
−Mzc+Mzy

Iz
+

∑
.
Fy

mvx
−

..
βd + dβ

)
= ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1(
−εβsign(s)− kβs

) . (44)

Then, the control law of NFTSMC is obtained as follows:

Mzcβ = Iz

 1

ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1

( .
β̃ + ζ1βr1β

∣∣∣β̃∣∣∣r1β−1 .
β̃

)
+

∑
.
Fy

mvx
−

Mzy

Iz
−

..
βd + (Dβ + εβ)sign(s) + kβs

, (45)

where r2β − 1 > 0, r1β − 1 > 0; thus, there is no negative exponential term in this control
law, which effectively overcomes the singularity problem of the conventional TSMC.

To further alleviate the chattering caused by the inappropriate setting of the unknown
upper boundary of system uncertainties and external disturbances, self-adaptation is
employed to estimate the unknown upper boundary. The estimation error is defined
as follows:

D̃β = D̂β − Dβ. (46)

The self-adaptation law is set as follows:

.
D̂β = µβr2βζ2β|s|

∣∣∣∣ .
β̃

∣∣∣∣r2β−1
, (47)

where µβ is the adaptive gain µβ > 0.
The derivation of Equation (46) as follows:

.
D̃β =

.
D̂β. (48)

Finally, the control law of NFTSMC with self-adaptation can be obtained as follows:
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Mzcβ = Iz

 1

ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1

( .
β̃ + ζ1βr1β

∣∣∣β̃∣∣∣r1β−1 .
β̃

)
+

∑
.
Fy

mvx
−

Mzy

Iz
−

..
βd + (D̂β + εβ)sign(s) + kβs

 (49)

4.2. Yaw Rate Tracking Controller

Based on Equation (5) of the 7-DOF vehicle model, the sliding mode equation of the
yaw rate is formulated as follows:

..
ψ =

.
γ =

∑ Mz

Iz
=

Mzc

Iz
+

Mzy

Iz
. (50)

Set x1 = ψ, x2 =
.
ψ = γ, and the control system model of the yaw rate is given as

follows: { .
x1 = x2
.
x2 = Mzc

Iz
+

Mzy
Iz

+ dγ(x, t)
, (51)

where dγ(x,t) is the system uncertainties and external disturbances, and satisfying |dγ(x,t)|
≤ Dγ and Dγ > 0, Dγ is the upper boundary.

The error between the actual and desired value is formulated as follows:

ψ̃ = ψ − ψd, (52)

The first and second derivates of Equation (52) are as follows:

.
ψ̃ =

.
ψ −

.
ψd = γ − γd, (53)

..
ψ̃ =

..
ψ −

..
ψd =

.
γ − .

γd =
Mzc

Iz
+

Mzy

Iz
− .

γd, (54)

The sliding mode switching function is designed as follows:

s = ψ̃ + ζ1γsignr1γ ψ̃ + ζ2γsignr2γ

.
ψ̃, (55)

where ζ1γ, ζ2γ, r1γ, r2γ are constant, ζ1γ > 0, ζ2γ > 0, 1 < r2γ < 2, r1γ > r2γ.
The derivate of Equation (55) is as follows:

.
s =

.
ψ̃ + ζ1γr1γ

∣∣ψ̃∣∣r1γ−1
.
ψ̃ + ζ2γr2γ

∣∣∣∣ .
ψ̃

∣∣∣∣r2γ−1 ..
ψ̃

=
.
ψ̃ + ζ1γr1γ

∣∣ψ̃∣∣r1γ−1
.
ψ̃ + ζ2γr2γ

∣∣∣∣ .
ψ̃

∣∣∣∣r2γ−1(
Mzc + Mzy

Iz
− .

γd + dγ

) . (56)

The reaching law is selected as follows:

.
s = ζ2γr2γ

∣∣∣∣ .
ψ̃

∣∣∣∣r2γ−1

(−εγsign(s)− kγs), (57)

where εγ > 0, kγ > 0.
Substituting Equation (57) into (56), the control law can be obtained as follows:

Mzcγ = −Iz

 1

ζ2γr2γ

∣∣∣∣ .
ψ̃

∣∣∣∣r2γ−1

( .
ψ̃ + ζ1γr1γ

∣∣ψ̃∣∣r1γ−1
.
ψ̃

)
+

Mzy

Iz
− .

γd + (Dγ + εγ)sign(s) + kγs

. (58)
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Similar to the side slip angle tracking controller, the adaptation law is designed
for the estimation of unknown upper boundaries for system uncertainties and external
disturbances, and the estimation error is expressed as follows:

D̃γ = D̂γ − Dγ. (59)

The definition of adaptation law is as follows:

.
D̂γ = µγr2γζ2γ|s|

∣∣∣∣ .
ψ̃

∣∣∣∣r2γ−1
, (60)

where µγ is adaptation gain, µγ > 0.
The derivation of Equation (59) is as follows:

.
D̃γ =

.
D̂γ. (61)

The control law of ANFTSMC for the yaw rate is further deduced as follows:

Mzcγ = −Iz

 1

ζ2γr2γ

∣∣∣∣ .
ψ̃

∣∣∣∣r2γ−1

( .
ψ̃ + ζ1γr1γ

∣∣ψ̃∣∣r1γ−1
.
ψ̃

)
+

Mzy

Iz
− .

γd + (D̂γ + εγ)sign(s) + kγs

. (62)

4.3. Proof of the Stability and Finite-Time Convergence

First, the stability of the side slip angle control system is verified. The following
Lyapunov function is constructed:

V1 =
1
2

s2 +
1

2µβ
D̃2

β. (63)

Substituting the control law (49) into Equation (42) yields the following:

.
s =

.
β̃ + ζ1βr1β

∣∣∣β̃∣∣∣r1β−1 .
β̃ + ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1(
−Mzc + Mzy

Iz
+

∑
.
Fy

mvx
−

..
βd + dβ

)
= ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1(
−
(

D̂β + εβ

)
sign(s)− kβs + dβ

) . (64)

Substituting the Equations (64), (47) and (46), the time derivative of V1 can be obtained
as follows:

.
V1 = s

.
s + 1

µβ
D̃β

.
D̃β = ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1(
dβs − kβs2 −

(
D̂β + εβ

)
|s|+ (D̂β − Dβ)|s|

)
= ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1(
dβs − kβs2 − εβ|s| − Dβ|s|

) . (65)

Since
∣∣dβ

∣∣ ≤ Dβ, then:

.
V1 ≤ ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1(
−kβs2 − εβ|s|

)
≤ 0. (66)

Therefore, based on the Lyapunov stability criterion, the existence and reachability of
sliding mode motion are proved, and the side slip angle control system is asymptotically
stable. In addition, V1, s, D̃β are bounded and set at

∣∣∣D̃β

∣∣∣ ≤ ηβ, ηβ > 0.
Then, prove that the tracking error of the side slip angle can converge with finite time

and consider the Lemma 1 as follows:
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Lemma 1. Considering the nonlinear system
.
x = f (x, t), x ∈ Rn, if the Lyapunov function V(x)

satisfies [34]
.

V(x) ≤ −λ1V(x)− λ2Vα(x), (67)

where V(x) is a continuous differentiable positive function. λ1, λ2, α are constant, λ1 > 0, λ2 > 0,
0 < α < 1. The initial state at to time is x(t0) = x0. Then, it is considered that the system can
converge to the equilibrium pointwithin a finite time T:

T ≤ 1
λ1(1 − α)

ln
λ1V1−α(x0) + λ2

λ2
, (68)

where V(x0) is the starting value.

Reconstruct the Lyapunov function as follows:

V2 =
1
2

s2. (69)

Substituting the control law (49) into (69), since
∣∣dβ

∣∣ ≤ Dβ,
∣∣∣D̃β

∣∣∣ ≤ ηβ, the derivative
of Equation (69) is as follows:

.
V2 = s

.
s = ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1(
−εβ|s| − kβs2 + dβs − D̂β|s|

)
≤ ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1(
−εβ|s| − kβs2 + (Dβ − D̂β)|s|

)
= ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1(
−εβ|s| − kβs2 − D̃β|s|

)
≤ ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1(
−εβ|s| − kβs2 + ηβ|s|

)
≤ −ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1
kβs2 − ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1
(εβ − ηβ)|s| = −λ1V2 − λ2V

1
2

2

, (70)

where

λ1 = 2kβζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1
, (71)

λ2 =
√

2(εβ − ηβ)ζ2βr2β

∣∣∣∣ .
β̃

∣∣∣∣r2β−1
. (72)

Thus, for the case of
.
β̃ ̸= 0, then

∣∣∣∣ .
β̃

∣∣∣∣r2β−1
> 0, if εβ, ηβ are chosen such that εβ > ηβ,

the λ1 > 0 and λ2 > 0 are established,
.

V2 ≤ −λ1V2 − λ2V
1
2

2 is validated. Therefore, based
on Lemma 1, within finite time tr in Equation (73), the tracking error can converge to the
equilibrium point:

tr ≤
2

λ1
ln

λ1V
1
2

2 (x0) + λ2

λ2
, (73)

where V2(x0) is the starting value of V2(x).

For the case
.
β̃ = 0, the system state point in the reaching phase (s ̸= 0), substituting

the control law (49) into (39) as follows:

..
β̃ =


−(Dβ + εβ)− kβs + dβ s > 0
−kβs + dβ s = 0
(Dβ + εβ)− kβs + dβ s < 0

, (74)

Since
∣∣dβ

∣∣ ≤ Dβ, εβ > 0, kβ > 0, when s > 0, then
..
β̃ ≤ −εβ − kβs,

.
β̃ will decrease

quickly. When s < 0, then
..
β̃ ≥ εβ − kβs,

.
β̃ will increase quickly. Therefore, the phase
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trajectory as shown in Figure 7, for the case
.
β̃ = 0, starting from the arbitrary initial state in

the phase plane, the tracking error can converge to the equilibrium point.
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When s = 0, then

s = β̃ + ζ1β

∣∣∣β̃∣∣∣r1β
sign(β̃) + ζ2β

∣∣∣∣ .
β̃

∣∣∣∣r2β

sign(
.
β̃) = 0. (75)

The tracking error β̃(tr) ̸= 0 becomes β̃(ts + tr) = 0 with a finite time ts given as
follows [35]:

ts ≤
r2β

∣∣∣β̃(tr)
∣∣∣1− 1

r2β

ζ1β(r2β − 1)
× F

(
1

r2β
,

r2β − 1
(r1β − 1)r2β

; 1 +
r2β − 1

(r1β − 1)r2β
;−ζ1β

∣∣∣β̃(tr)
∣∣∣r1β−1

)
, (76)

where F(·) represents the Gauss hypergeometric function.

In conclusion, the control system stability of side slip is proved both when
.
β̃ = 0

and
.
β̃ ̸= 0. The system state can reach the sliding mode surface and the tracking error

can converge to the equilibrium point with finite time. Similar to the above analysis, the
stability and finite-time convergence of the yaw rate control system can be proved.

In addition, there are inevitably chattering phenomena when the system state points
near the sliding mode surface. At this moment, the state points back and forth across the
sliding mode surface [36]. This is due to the discontinuity characteristic of the sign function
in reaching law. In order to attenuate chattering, the sign function is substituted as the
saturation function around the switching surface.

sat(s) =


1 s > ∆
s
∆ |s| ≤ ∆
−1 s < −∆

, (77)

where ∆ is the width of the boundary layer.

4.4. Adaptive Weight between the Handling and Stability

The decision level comprises two controllers, and the control weight should be adapted
in real time when the vehicle motion state changes. In the previous research, the phase
plane is simply separated by stable and unstable regions, and the research on weight
allocation is lacking. In this paper, the concept of vehicle instability degree is proposed. It is
the foundation for the distribution of control weight and is defined by the distance between
the state point and stability boundary. According to the vehicle instability degree, the
phase plane is further separated into three domains, including stable, moderately unstable,
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and severely unstable. This method can realize stability control while guaranteeing the
handling.

As shown in Figure 5, set point P(βP,
.
βP) as the arbitrary point in the instability region,

and then

d1 =
|2E2|√
E2

1 + 1
, (78)

d2 = |PO| − d1

2
=


∣∣∣E1

.
βP + βP − E2

∣∣∣√
E2

1 + 1
E1

.
βP + βP ≥ E2∣∣∣E1

.
βP + βP + E2

∣∣∣√
E2

1 + 1
E1

.
βP + βP ≤ −E2

, (79)

|PO| =

∣∣∣E1
.
βP + βP

∣∣∣√
E2

1 + 1
, (80)

where d1 is the width of the stability region, d2 is the distance between point P and the
stability boundary, and |PO| is the distance between point P and the centerline of the
stability region.

Based on the distance between point P and the stability boundary, the degree of vehicle
instability can be defined as follows:

D
β−

.
β
=



∣∣∣E1
.
βP + βP − E2

∣∣∣√
E2

1 + 1
E1

.
βP + βP ≥ E2

0 − E2 ≤ E1
.
βP + βP ≤ E2∣∣∣E1

.
βP + βP + E2

∣∣∣√
E2

1 + 1
E1

.
βP + βP ≤ −E2

, (81)

where D
β−

.
β

represents the degree of vehicle instability. The distance between point P and
the stability boundary is larger, and D

β−
.
β

is larger. When the state points in the stable
region, D

β−
.
β

is zero.
According to the vehicle instability degree, the instability region can be further divided

into the moderately unstable and the severely unstable regions exhibited in Figure 8.
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βth is the threshold value, commonly set as 10 deg [37]. The vehicle is severely unstable
when β > βth, and the boundary of the severely unstable region is formulated as follows:∣∣∣E1

.
β + β

∣∣∣ ≥ βth. (82)
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The boundary of the moderately unstable region can be formulated as follows:

E2 <
∣∣∣E1

.
β + β

∣∣∣ ≤ βth. (83)

The width of the moderately unstable region is given as follows:

d3 =
|E2 − βth|√

E2
1 + 1

. (84)

In the moderately unstable region, the distance between point P(βP,
.
βP) with the

stability boundary is described as follows:

d2 =


∣∣∣E1

.
βP + βP − E2

∣∣∣√
E2

1 + 1
E2 ≤ E1

.
βP + βP ≤ βth∣∣∣E1

.
βP + βP + E2

∣∣∣√
E2

1 + 1
− βth ≤ E1

.
βP + βP ≤ −E2

. (85)

Inside the moderately unstable region, the main objective is to restore the vehicle
from unstable to stable, while meanwhile taking into account the vehicle handling. Thus,
the side slip angle and yaw rate are both managed with the corresponding weight. The
distance between the state point and the stability boundary is larger, D

β−
.
β

is higher and
the control weight of the side slip angle should be increased. D

β−
.
β

is lower, the control
weight of the yaw rate should be increased. Inside the severely unstable region, the side slip
angle exceeds the threshold value, and the driver cannot change the front wheel angle by
manipulating the steering wheel; in this case, the major control objective is vehicle stability.
According to the above analysis, the weight coefficient of the side slip angle is defined
as follows:

Cβ =
d2

d3
=


∣∣∣E1

.
βP + βP

∣∣∣ − E2

|E2 − βth |
E2 ≤

∣∣∣E1
.
βP + βP

∣∣∣ ≤ βth

1
∣∣∣E1

.
βP + βP

∣∣∣ > βth

, (86)

where Cβ is the weight coefficient, and 1 ≤ Cβ ≤ 0.
Inside the moderately unstable region, the control weight of the yaw rate is 1 − Cβ,

and inside the severely unstable region, the control weight is 0. Finally, the extra yaw
moment is deduced as follows:

Mzc = (1 − Cβ)Mzcγ + Cβ Mzcβ. (87)

5. Torque Allocation Controller
5.1. Allocation Objective

The torque distribution can be regarded as an optimization allocation issue with multi-
objective and multi-constraints. The allocated longitudinal tire forces of four wheels must
satisfy the total longitudinal force requirement of the driver. Meanwhile, the yaw moment
derived from longitudinal tire force should equal the one determined in the decision
controller, which is described as follows:{

Fxreq = Fx f l cos δ + Fx f r cos δ + Fxrl + Fxrr

Mzc = (a sin δ − Bw
2 cos δ)Fx f l + (a sin δ + Bw

2 cos δ)Fx f r − Bw
2 Fxrl +

Bw
2 Fxrr

. (88)

Equation (88) can be rewritten in matrix form as follows:

V = Bu, (89)

where
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V = [Fxreq, Mzc]
T,

u = [Fx f l , Fx f r, Fxrl , Fxrr]
T,

B =

[
cos δ cos δ 1 1

a sin δ − Bw
2 cos δ a sin δ + Bw

2 cos δ − Bw
2

Bw
2

]
.

The first objective function J1 is constructed to minimize the torque allocation error:

minJ1 = min∥Wv(Bu − V)∥2
2, (90)

where Wv = diag(WF, WM), WF and WM are the weight matrix of longitudinal and lateral
force, and, here,Wv = diag(1, 2/Bw) [38].

The tire utilization ratio is expressed in Equation (91), and it represents the vehicle
stability margin:

ηij =

√
F2

xij + F2
yij

µFzij
, (91)

where ηij is the tire utilization ratio, and 0 ≤ ηij ≤ 1. The higher tire utilization ratio means
that more road adhesion force is consumed, and less road adhesion force is used to keep
stable; at the same time, the tire forces tend to saturate, and the vehicle stability margin
is reduced.

Therefore, to maximize the vehicle stability margin, the second objective function J2 is
constructed. The longitudinal tire force can be adjusted by the motor controller, but the
lateral tire force is difficult to control directly. With the assumption that the road adhesion
coefficient is fixed, J2 can be expressed as follows:

minJ2 = min∑
F2

xij

(µFzij)
2 = min∥Wuu∥2

2, (92)

where

Wu = diag
(

1
µFz f l

, 1
µFz f r

, 1
µFzrl

, 1
µFzrr

)
.

5.2. Constraints

The tire force ellipse describes the connection between the longitudinal and lateral
tire forces. The resultant of these two forces is restricted by maximum road adhesion force,
which can be formulated as follows:

−
√
(µFzij)

2 − F2
yij ≤ Fxij ≤

√
(µFzij)

2 − F2
yij. (93)

The longitudinal tire force should be less or equal to the maximum output torque of
the motor:

−Tbmax
Re

≤ Fxij ≤
Tdmax

Re
, (94)

where Tdmax is the maximum driving torque, and Tbmax is the maximum braking torque.
Above all, the constraints of this optimization problem are summarized as follows:

max
(
−
√
(µFzij)

2 − F2
yij,−

Tbmax
Re

)
≤ Fxij ≤ min

(
Tdmax

Re
,
√
(µFzij)

2 − F2
yij

)
. (95)

5.3. Solution of the Optimization Problem

According to Equations (90) and (92), the torque distribution can be treated as a
quadratic programming (QP) problem [39] as follows: Π= arg min

umin≤u≤umax
∥Wv(Bu − V)∥2

2

u = argmin
u∈Π

∥Wuu∥2
2

. (96)
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By introducing the weight coefficient ρ, Equation (96) can be rewritten as follows:

u = arg min
umin≤u≤umax

(
∥Wuu∥2

2 + ρ2∥Wv(Bu − V)∥2
2

)
= arg min

umin≤u≤umax

∥∥∥∥( ρWvB
Wu

)
u −

(
ρWvV
0

)∥∥∥∥2

2
= arg min

umin≤u≤umax
∥Gu − C∥2

2

, (97)

where G = [ρWvB, Wu]
T, C = [ρWvV, 0]T.

The active set method [40] is utilized to tackle this quadratic programming issue and
produce the optimal allocated longitudinal tire force of four wheels.

6. Simulation and Analyses

To confirm that the presented DYC method is feasible, the simulation test is conducted
on the co-simulation platform of Simulink and Carsim. The main geometric and inertial
parameter settings of the DDEV model are given in Table 3. The relevant parameters
of the control strategy are given in Table 4. The closed-loop simulation of double lane
change and serpentine maneuvers and the open-loop simulation of sine steering angle input
maneuvers are conducted, respectively. Furthermore, the simulation results of uncontrol
and traditional SMC [16] strategies are compared with the proposed controller.

Table 3. Parameters of DDEV.

Description Symbol Value

Vehicle mass m 1350 kg
Vehicle rotational inertia about z-axis Iz 1343 kg·m2

Inertia of wheel Jω 0.6 kg·m2

Height of the center of gravity (CoG) hg 0.54 m
Distance from COG to front axle a 1.04 m
Distance from COG to rear axle b 1.56 m

Wheel track Bw 1.481 m
Effective wheel radius re 0.298 m

Front cornering stiffness Cf 58,070 N/rad
Rear cornering stiffness Cr 58,070 N/rad

Table 4. Parameters of DYC strategy.

Parameter Value Parameter Value

r1γ 5/3 r1β 5/3
r2γ 7/5 r2β 7/5
ζ1γ 0.5 ζ1β 0.5
ζ2γ 0.5 ζ2β 0.5
εγ 1000 εβ 1000
kγ 100 kβ 100
∆ 0.5 Dβ 0.3

Dγ 0.3 - -

6.1. Double Lane Change Maneuver

The double lane change test is carried out (vx = 80 km/h, µ = 0.3). The scheme of
double lane change is shown in Figure 9. The total length of the test road is 200 m, and the
length and width of each road section are indicated.

Figure 10a shows the driving trajectories with uncontrolled, SMC, and ANFTSMC
strategies, and it is evident that the uncontrolled vehicle is significantly deviating from the
target trajectory. However, the vehicle with SMC and ANFTSMC strategies both can drive
along the target trajectory, and the discrepancy in lateral displacement with the ANFTSMC
strategy is less than with SMC.
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According to Figure 10b, the longitudinal velocity of uncontrolled vehicles declined
dramatically. Meanwhile, there is some fluctuation in the velocity with the SMC and
ANFTSMC strategies because of the sudden steering operation.

The state tracking performance is demonstrated in Figure 10d,e. For the uncontrolled
vehicle, at 2 s, there is a sharp fluctuation of the yaw rate and side slip angle, and the lateral
acceleration is close to 0.4 g according to Figure 10c, which shows that the vehicle has the
risk of instability. After 2 s, the state response curve diverges seriously, and the vehicle
loses control completely. For the SMC and ANFTSMC strategies, the lateral acceleration is
less than 0.4 g. However, the tracking accuracy of ANFTSMC is better than SMC, especially
in the moment of steering operation, so the tracking error of SMC is increased. The root
mean square error (RMSE) is listed in Table 5, and, compared with SMC, the RMSE of
yaw rate and side slip angle with the ANFTSMC strategy decreased by 53.9% and 60.7%,
respectively. It is indicated that the state tracking error is decreased, and both the handling
and stability of the vehicle are improved with the presented control method.

Table 5. The RMSE of yaw rate and side slip angle under double lane change maneuver.

Control Strategy Yaw Rate/(deg/s) Side Slip Angle/(deg)

SMC 0.7294 0.1480
ANFTSMC 0.3363 0.0581

Figure 10f is the β −
.
β phase trajectory; for the uncontrolled vehicle, the phase trajec-

tory is obviously beyond the stability boundary and unable to converge to the equilibrium
point, which means that the vehicle loses control. For the SMC and ANFTSMC strategies,
the phase trajectory can converge to the equilibrium point. However, the convergence speed
of ANFTSMC is faster, and the side slip angle can be maintained within a smaller range.

Figure 10g is the extra yaw moment, and the ANFTSMC strategy can quickly and
accurately calculate the required yaw moment to maintain stability. The four-wheel torque
of the ANFTSMC strategy is illustrated in Figure 10h, which verifies the efficiency of the
torque allocation method.

6.2. Serpentine Maneuver

The serpentine maneuver is employed on slippery roads (µ = 0.3) to test the emergency
obstacle avoidance ability of DDEV. The scheme of the serpentine road is shown in Figure 11.
The traffic cone is placed every 30 m, the length of each road section is marked, and the
total length of the test road is 300 m. The longitudinal speed is 80 km/h. The test results
are demonstrated in Figure 12.
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Figure 12. The simulation results of the serpentine. (a) Lateral acceleration; (b) yaw rate; (c) side slip
angle; (d) β−

.
β phase plane; (e) yaw moment; (f) longitudinal torque of ANFSMC.

The state tracking performance of different control strategies is compared in Figure 12b,c.
Under the condition without stability control, the yaw rate and side slip angle increase sharply;
combined with the β −

.
β phase plane in Figure 12d, the phase trajectory cannot converge to

the equilibrium point and beyond the stability boundary, which means that the vehicle is out
of control completely. Compared with the SMC strategy, the ANFTSMC strategy presents
a better tracking performance. In particular, in the moment of abrupt steering wheel angle
changes, the actual state value can accurately track the desired value with the ANFTSMC
strategy, whereas the obvious fluctuation of the state response curve exists with the SMC
strategy. As displayed in Table 6 and Figure 12d, for the side slip angle, the RMSE is 0.0943 deg
and the change range is −0.6017 deg~0.6013 deg with the ANFTSMC strategy, which is smaller
than those of the SMC strategy (0.2805 deg, −0.9590 deg~1.0175 deg). As for the yaw rate,
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it can keep up with the change in the steering wheel angle, and its RMSE of 0.4939 deg/s
is lower than that of SMC. It is indicated that the vehicle has a greater stability margin and
better handling performance with ANFTSMC. This is because the ANFTSMC strategy can
accurately compute the additional yaw moment as shown in Figure 12e, and realize the
real-time distribution of four-wheel torque as shown in Figure 12f.

Table 6. The RMSE of yaw rate and side slip angle under serpentine maneuver.

Control Strategy Yaw Rate/(deg/s) Side Slip Angle/(deg)

SMC 1.3272 0.2805
ANFTSMC 0.4939 0.0943

6.3. Sine Steering Angle Input Maneuver

This test is conducted to further verify the stability under drastic steering conditions; the
initial velocity is 90 km/h and the road adhesion coefficient is 0.4. The simulation results as
shown in Figure 13. Figure 13a displays the steering wheel input, with an amplitude of 50 deg.
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As depicted in Figure 13b–d, for the uncontrolled vehicle, the actual state response
curve significantly deviates from the desired one, and the phase trajectory extends outside
the stable domain. The maximum absolute value of the yaw rate and side slip angle with
the ANFTSMC approach is 9.2095 deg/s and 0.9137 deg, respectively, which are both less
than that of SMC (10.0363 deg/s, 1.2809 deg). It is suggested that the lateral stability can be
improved with the ANFTSMC approach. Meanwhile, as illustrated in Table 7, the RMSE of
the yaw rate and side slip angle reduce to 0.5699 deg/s and 0.0943 deg, respectively. The
additional yaw moment is shown in Figure 13e, and it is evident that more required yaw
moment is produced to keep the vehicle stable at the maximum steering wheel angle. The
state tracking performance is improved because the ANFTSMC strategy can accurately
determine the extra yaw moment and dynamically distribute the longitudinal tire force.

Table 7. The RMSE of yaw rate and side slip angle under sine steering angle input maneuver.

Control Strategy Yaw Rate/(deg/s) Side Slip Angle/(deg)

SMC 0.8159 0.2593
ANFTSMC 0.5699 0.0943

In addition, different from the control law of the SMC strategy, the presented control
law of the ANFTSMC strategy contains the upper bounds of uncertain parameters and
external disturbances, and the inappropriate upper bounds will lead to the chattering of the
system. However, the simulation results of Figures 10, 12 and 13 show that the vehicle state
response curves are smooth and there is no jitter back and forth, and it further confirms
the effectiveness of introducing adaptive law to adjust the upper boundary of uncertain
parameters and external disturbances for the control system.

7. Conclusions

A novel direct yaw moment control approach with a three-level structure is presented
to enhance the handling and stability of DDEV in emergency maneuvers. At the supervisory
level, the β−

.
β phase trajectory is drawn under different road adhesion coefficients, and

the stability boundary function is obtained. Meanwhile, the vehicle instability degree is
introduced based on the distance between the state point and the stability boundary, and
the β−

.
β phase plane is partitioned into stable, moderately unstable, and severely unstable

regions. At the decision level, two state tracking controllers are designed to produce the
corresponding extra yaw moments using the ANFTSMC algorithm. For the coordination
control of stability and handling, an adaptive control weight coefficient between side slip
angle and yaw rate is designed based on the vehicle instability degree. In addition, finite-
time convergence and system stability are proven. At the executive level, the QP method
is employed to distribute the optimization four-wheel torque. The objectives of torque
distribution are minimum tire utilization ratio and allocation error, which also satisfy the
constraints of motor peak torque and friction ellipse. The co-simulation test is conducted
to confirm the efficacy of the proposed ANFTSMC strategy. Among these tests, under the
double lane change maneuver with the ANFTSMC strategy, the RMSE of yaw rate and
side slip angle decreased by 53.9% and 60.7%, respectively. Under the sine steering angle
input maneuver, the maximum absolute values of these two parameters are 9.2095 deg/s
and 0.9137 deg, which are both less than that of SMC (10.0363 deg/s, 1.2809 deg). The
simulation results indicated that the ANFTSMC strategy has superior tracking accuracy
of the intended state compared to SMC, and this benefits from the fast convergence speed
and adaptive weight between the handling and stability.

In future work, the experimental research on a real-world DDEV will be focused on
to assess the performance of the DYC method. Additionally, the impact of various tire
operating conditions on the control strategy performance will be investigated.
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