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Abstract: Several studies have shown fluctuations in the maternal microbiota at various body sites
(gut, oral cavity, and vagina). The skin microbiota plays an important role in our health, but studies
on the changes during pregnancy are limited. Quantitative and qualitative variations in the skin
microbiota in pregnant woman could indeed play important roles in modifying the immune and
inflammatory responses of the host. These alterations could induce inflammatory disorders affecting
the individual’s dermal properties, and could potentially predict infant skin disorder in the unborn.
The present study aimed to characterize skin microbiota modifications during pregnancy. For this
purpose, skin samples were collected from 52 pregnant women in the first, second, and third trimester
of non-complicated pregnancies and from 17 age- and sex-matched healthy controls. The skin
microbiota composition was assessed by next generation sequencing (NGS) of the V3–V4 region of
the bacterial rRNA 16S. Our results indicate that from the first to the third trimester of pregnancy,
changes occur in the composition of the skin microbiota, microbial interactions, and various metabolic
pathways. These changes could play a role in creating more advantageous conditions for fetal growth.

Keywords: skin microbiota; pregnancy; metabolic pathways

1. Introduction

In a woman’s life, pregnancy is an exclusive period in which metabolic, hormonal,
anatomical, and immunological modifications occur to offer the best milieu for embryonic
growth. The outcomes of hormonal changes during pregnancy produce several effects
on maternal microbiome, which undergoes fluctuations at different body sites. The most
studied are those related to the gut, oral cavity, and vagina [1]. In the first trimester (in a
normal pregnancy), gut microbiota looks like that of a non-pregnant woman, characterized
by a dominance of Firmicutes (particularly Clostridiales and Faecalibacterium prausnitzii) over
Bacteroides [2–5]. Subsequently, gut microbiota composition changes considerably during
pregnancy [6], with a continuous decrease in α-diversity and an increase in β-diversity
being observed in the second and third trimester [7]. These changes in microbiota diversity
were considered a physiological adjustment during pregnancy, appearing to be responsible
for the gradual weight gain and insulin resistance [5]. As pregnancy progresses, the gut mi-
crobiota becomes progressively enriched with bacteria that stimulates weight gain, energy
production and storage, and insulin resistance. These factors are considered beneficial for
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fetal growth and future lactation [8]. A decrease in butyrate-producing bacteria was also
demonstrated in parallel with an increase in Bifidobacteria, Proteobacteria, and lactic acid-
producing bacteria [2,6,9]. Moreover, in the third trimester, there is a significant decrease in
bacteria (such as Faecalibacterium prausnitzii) that produce short-chain fatty acids (SCFAs).
The change in butyrate production is linked to low-grade inflammation, decreased insulin
sensitivity, and amplified intestinal absorption of essential elements [2,5,8]. The increase
in taxa such as Akkermasia, Bifidobacterium, and Firmicutes may also be related to increased
energy storage [10]. In addition, the continuous increase of Actinobacteria (mainly Propi-
onibacterium) and Proteobacteria (Enterobacteriaceae, especially Escherichia coli) could be
helpful in the defense of the maternal–fetal complex against external infections [2,10,11].
Confirming these observations, an in vivo study showed that transplanting gut bacteria
derived from women in the third trimester of pregnancy into germ-free mice induced
metabolic changes similar to those of gestational diabetes [2].

Changes in the vaginal microbiota were also reported during pregnancy [12]. A de-
crease in the richness and diversity of the vaginal microbiota was reported, likely connected
to higher estrogens levels, absence of menstruation, and variation in cervical and vaginal
fluid. These factors configure a vaginal habitat with strong and defined selective pressures,
which in turn lead to the selection of few microbial taxa (justifying the observed decrease
in richness and diversity). In full-term and uncomplicated pregnancies, the composition
of vaginal microbiota during gestation remains stable. An increase in microbial diversity
is observed before the delivery, and the vaginal microbiota becomes similar to that of
non-pregnant women, serving as a trigger for the onset of labor [12].

Furthermore, an increase in the quantity of bacteria in the oral microbiota during
pregnancy was reported in several studies [13–17], particularly Porphyromonas Gingivalis,
Aggregatibacter, Actynomycetecomitans, Streptococci, Staphylococci, and Candida [18,19].

Although the gut, vaginal, and oral microbiota appear to be the most relevant in
defining health or disease phenotypes in humans, other microbial communities such
as the skin microbiota play important roles and influence several human physiological
processes [1]. The microbes of the skin microbiota significantly influence human immune
function. The skin immune system is composed of a combination of host and microbial
characteristics that act in a mutualistic relationship [20]. The skin is the biggest organ in
our body and is an important protective barrier from the external environment. Changes in
the skin microbiota in pregnant women can play key roles in altering host immune and
inflammatory responses. A recent study has shown that alterations in skin microbiota
induce inflammatory modifications that may be implicated in changes in skin properties
and may predict skin disorders in newborns [21]. Thus, pregnancy can induce both
qualitative and quantitative modifications in skin microbial ecosystem. However, studies
on changes in the skin microbiota are still limited.

To fill the gap in knowledge of fluctuations in the skin microbiota during pregnancy,
the aim of our study was to characterize the skin microbiota during gestation in healthy
women who carried an uncomplicated pregnancy to term. For this purpose, our study
population consisted of pregnant women in the first, second, and third trimesters, together
with a group of non-pregnant, age-matched women as a control group.

2. Materials and Methods
2.1. Patients Enrolment/Study Design and Participants Population

Patients were enrolled in the Complex Obstetrics Operational Unit of “Policlinico
Umberto I” Hospital, Rome, Italy. We recruited a total of 52 Italian pregnant women
(median age 33) at different trimesters, and 17 Italian non-pregnant, age-matched women
for the control group during the same season (winter). The exclusion criteria were presence
of skin and/or systemic disorders and use of topical or systemic antibiotics in the three
months preceding sample collection.
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2.2. Samples Collection

We decided to study the skin microbiota in pregnancy starting from the instep area
to have greater adherence to the study by pregnant women, as this is an easily accessible
area. We asked the study participants not to wash or apply treatments for 12 h before
sampling. At the time of sampling, skin bacteria were collected from the instep of pregnant
and non-pregnant women (Supplementary Figure S1) by the swabbing method with slight
modifications [22]. In brief, a 4.4 × 4.4-cm square on the designated area [22] (Supplemen-
tary Figure S1) was softly wiped twice with a sterile cotton swab soaked in physiological
solution (0.9% sodium chloride) in a Z-stroke manner [23] (Supplementary Figure S1).
For both patients and controls, swabs were collected at the same anatomical site, and all
collection procedures were performed by a single qualified researcher. After collection, the
swabs were stored at −80 ◦C until processing.

2.3. DNA Extraction

DNA extraction was performed with the dedicated Blood and Tissue DNeasy kit
(Qiagen, Hilden, Germany), as the manufacturer reported. To collect all bacterial DNA, the
swab head was immersed in 200 µL of lysis buffer ATL for 30 min before proceeding to
extraction. DNA quality and quantity were checked using the NanoDrop™ 2000/2000c
Spectrophotometers (Thermo Fisher Scientific, Waltham, MA, USA). The obtained DNA
was normalized to a final concentration of 20 ng/µL for sequencing. The V3–V4 region of
the bacterial 16S rRNA gene was amplified and sequenced by next-generation sequencing
(NGS) on an Illumina MiSeq 2 × 300 bp platform.

2.4. Quality Control of the Sequences and OTU Picking

After demultiplexing, reads were merged using USEARCH v11 [24] with a minimum
percentage identity of 85% between aligned sequences. Then, after primer sequences
elimination using Cutadapt 2.1 [25], sequences were filtered by Trimmomatic 0.39 [26],
setting the following parameters: LEADING:30, SLIDINGWINDOW:5:30, and MINLEN:5.
Quality filtered sequences were imported in the software package Quantitative Insights
into Microbial Ecology 2 (QIIME2) V22.2 [27] and passed to the Dada2 algorithm [28] for
chimera-checking. For all downstream analyses, QIIME2 was employed, except those for
which an alternative software package is specified. Operational taxonomic units (OTUs)
defined by a 97% of similarity were selected by grouping sequences with an open reference
method against the 97% clustered Greengenes rDNA reference database v13_8. To minimize
artifacts, OTUs found in one sample and/or having <10 sequences in the entire population
were cleaned out.

2.5. Alpha and Beta-Diversity Analysis

Samples were rarefied to a total of 13,000 reads in agreement to the computed rarefac-
tion curves (Figure 1A). To consider several aspects of diversity, including phylogenetic
distance, evenness, and richness, the Shannon index [29] and Faith’s phylogenetic dis-
tance [30] were computed for α-diversity, while Bray–Curtis dissimilarity [31] metrics were
used for β-diversity. Principal coordinates analysis (PCoA) was performed in the QIIME2
software package for visualization and analysis of the bacterial community within samples.

2.6. Taxonomy Assignment

The taxonomy assignment of OTUs was carried out using a Naive Bayes classifier
trained on a custom 97% clustered version of the Greengenes rDNA v13_8 reference
database, in which the sequences were trimmed to include only the V3–V4 regions.
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Figure 1. Microbiota diversity analysis. (A) Rarefaction curves of 69 samples, based on Faith’s 
phylogenetic diversity and Shannon diversity indices. Dashed lines indicate rarefaction depth 
(13,000 reads). (B) Box plots showing α-diversity estimators, measured for each group. (C) PCoA 
plot of bacterial β-diversity based on Bray–Curtis dissimilarity according to individual health sta-
tus. For each group, a 90% confidence interval has been drawn. Numbers between parentheses 
represent percentage of total variance explained through principal coordinates. 

2.6. Taxonomy Assignment 
The taxonomy assignment of OTUs was carried out using a Naive Bayes classifier 

trained on a custom 97% clustered version of the Greengenes rDNA v13_8 reference da-
tabase, in which the sequences were trimmed to include only the V3–V4 regions.  

2.7. Putative Functional Profiling 
Functional metagenomic predictions were conducted on the 16S rDNA reads using 

the Phylogenetic Investigation of Communities by Reconstruction of Unobserved State 2 
(PICRUSt2) QIIME2 plugin [32]. The predicted pathways were categorized according to 
the Metacyc database [33].  

2.8. Network Analysis 
For every trimester, a separate correlation network was generated. OTUs having a 

mean relative abundance of less than 0.01% in the entire population were removed in the 

Figure 1. Microbiota diversity analysis. (A) Rarefaction curves of 69 samples, based on Faith’s phylo-
genetic diversity and Shannon diversity indices. Dashed lines indicate rarefaction depth (13,000 reads).
(B) Box plots showing α-diversity estimators, measured for each group. (C) PCoA plot of bacterial
β-diversity based on Bray–Curtis dissimilarity according to individual health status. For each group,
a 90% confidence interval has been drawn. Numbers between parentheses represent percentage of
total variance explained through principal coordinates.

2.7. Putative Functional Profiling

Functional metagenomic predictions were conducted on the 16S rDNA reads using
the Phylogenetic Investigation of Communities by Reconstruction of Unobserved State 2
(PICRUSt2) QIIME2 plugin [32]. The predicted pathways were categorized according to
the Metacyc database [33].

2.8. Network Analysis

For every trimester, a separate correlation network was generated. OTUs having a
mean relative abundance of less than 0.01% in the entire population were removed in
the first filtering phase. Next, OTUs with a count of zero for each group were removed
individually. CoNet v1.1.1 [34], an application that can be found in Cytoscape [35], was
used to examine the correlations between the remaining unique entries. In order to over-
come the weakness presented by the use of a single metric with regard to compositionality,
matching zeros, and sample size, the following combination of methods was used: Pear-



Microorganisms 2024, 12, 808 5 of 12

son correlation, Spearman rank sum correlation, Bray–Curtis dissimilarity, and mutual
information. A cutoff threshold of 0.6 was applied for both positive and negative values
(−0.6 ≥ correlation ≥ 0.6) for all considered metrics. Retained were relationships that were
validated by a minimum of two distinct correlation metrics. Every pair’s statistical sig-
nificance was examined using 500 row shuffle randomizations and 100 bootstraps. Using
Fisher’s approach, the p-values pertaining to multi-edges connecting the same pair of
nodes were combined, and the merged p-values were adjusted for multiple comparisons.
To account for compositionality bias, a sample-wise normalizing step was carried out for
every item pair in each round of randomization. Each estimated network’s topological
properties were determined using Cytoscape’s Network Analyzer plugin. The cluster of
nodes with a high degree of positive correlation was identified through the application of
the Glay method, which is a feature of the clusterMaker plugin for Cytoscape [36]. Highly
linked nodes (HUBs) were found to be present. The presence of HUBs were determined
using a degree-based approach, as previously reported [37].

2.9. Statistical Analysis

Levene’s test, Mann–Whitney U-test, Kruskal–Wallis test, and Dunn’s post hoc test
were performed to determine significant differences with respect to continuous variables.
The Analysis of Similarities (ANOSIM) test with 1000 permutations was calculated in
QIIME2 on the β-diversity distance matrix to assess the presence of statistically significant
partitions between the groups. To test the differences in taxonomic and functional composi-
tion between the groups, differential abundance analysis (DAA) was performed using the
ANOVA-Like Differential Expression 2 (Aldex2) R package, setting an effect size (ES) cutoff
of 1. DAA results will be evaluated, taking in consideration both ES and p-value. Data
processing, plotting and part of the statistical analyses were performed using R (version
4.0.5) (https://www.r-project.org/) together with the following R packages: “ggplot2”
(v3.3.5), “stats” (v4.0.5) and “car” (v3.1.2). The Benjamini–Hochberg false discovery rate
(FDR) correction was used to account for multiple hypothesis testing when necessary. In all
cases, a p-value ≤ 0.05 was considered statistically significant.

3. Results

A total of 52 pregnant women were enrolled, of which 17 (32.7%), 17 (32.7%), and
18 (34.6%) were at the first (trim-I), second (trim-II), and third trimester (trim-III) of preg-
nancy, respectively, while 17 (32.7%) were controls. All 69 samples underwent 16 s rRNA
gene-based microbiota analysis. From a total of 7,275,061 sequences passing the filtering
bioinformatics processes (median, IQR: 92710, 60,139.25–133,438/samples), 4645 OTUs
were identified.

3.1. Diversity

No statistically significant differences were found between the groups with respect to
the distribution of α-diversity nor its variance (Figure 1B), while statistically significant
partitions among groups were found in the β-diversity (Bray–Curtis, p = 0.001) (Figure 1C).
Pairwise comparisons evidenced differences in the microbiota composition of women at
trim-I (R = 0.26, q = 0.0020), at trim-II (R = 0.32, q = 0.0020), and at trim-III (R = 0.54,
q = 0.0020), compared to the control group. The ANOSIM statistic “R” compares the mean
of ranked dissimilarities between groups to the mean of ranked dissimilarities within
groups. Significant differences were also found between trim-I and trim-III (R = 0.08,
q = 0.0444), as well as between trim-II and trim-III (R = 0.074, q = 0.0444). No significant
partition was evidenced between trim-I and trim-II.

3.2. Taxonomy and Differential Abundance Analysis

A total of 578 different genera and 751 bacterial species were determined across all sam-
ples. Differential abundant taxa were detected only between women at the third trimester
of pregnancy and the controls (Figure 2A,B, Table S1). Pseudomonas (q ≤ 0.0001, ES = 1.60)

https://www.r-project.org/
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and Janthinobacterium (q ≤ 0.0001, ES = 1.70) were significantly more abundant in woman
at trim-III, while a significantly lower abundance of Sphingomonas (q ≤ 0.0001, ES = −1.94)
and Oscillospira (q = 0.01, ES = −1.54) was found compared to the controls (Figure 2A). At
species level, trim-III women were characterized by a significantly higher abundance of
Janthinobacterium lividum (q ≤ 0.0001, ES = 1.36), Pseudomonas veronii (q ≤ 0.0001, ES = 1.47)
and Pseudomonas fragi (q = 0.038, ES = 1.05), as well as by a significantly lower abun-
dance of Sphingomonas yabuuchiae (q <0.0001, ES = −2.53) and Bacteroides plebeius (q = 0.042,
ES = −1.20) (Figure 2B).
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Figure 2. DAA and Aldex2 Effect plot, displaying median difference in pairwise comparisons
among groups (difference) vs maximum within-group variance (dispersion). In each plot, taxa or
pathways are represented by single dots and differentially abundant taxa or differentially enriched
pathways (p-value < 0.05 and |ES| > 1) are displayed in light blue. Dashed lines indicate ES threshold.
(A,B) DAA of bacterial taxa at genus and species level, respectively. Negative differences indicate
higher abundance in control group. (C–F) Differential enrichment analysis of Metacyc pathways.
Negative differences indicate higher enrichment in control (C–E) or in trim-II group (F).

3.3. Functional Profiling

The pairwise comparisons with the control group revealed the presence of significantly
enriched pathways in pregnant women across each trimester, including the superpathway
of ornithine degradation (Metacyc ID: ORNDEG-PWY) and polymyxin resistance (Metacyc
ID: PWY0-1338), which were the only pathways significantly decreased in all trimesters
compared to the controls (Figure 2C–E; Table S2). Notably, the highest number of pathways
significantly different from the controls was observed in trim-III. In this context, 11 path-
ways were found to be enriched in the control group, while 12 were enriched in trim-III
(Table S2). Statistically significant results were also found between women in trim-II and
trim-III, with methanol oxidation to carbon dioxide (Metacyc ID: PWY-7616) being the only
significantly enriched pathway in trim-III (q = 0.008, ES = 1.10) (Figure 2F).

3.4. Network Analysis

The analysis of microbial interactions represents a powerful approach to study the
assembly and function of the microbiota ecosystem. To this aim, we constructed a graphical
representation of microbial networks for each group/time-point separately reporting co-
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occurrence/co-exclusion of species (Figure 3). For each computed co-occurrence network,
topological parameters were determined. Obtained results showed that moving from the
first to the third trimester microbial networks appear more limited in terms of participants
(nodes) and interactions (edges). Particularly for all considered parameter, the microbial
network computed for the first trimester presents values very close to those characterizing
the control group (Table 1).
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Table 1. Topological parameters of co-occurrence networks computed for each group/time-point.

Topological Parameter Control Trim-I Trim-II Trim-III

Nodes 25 26 15 11
Edges 83 67 19 13

Edges/node ratio 3.32 2.57 1.27 1.18
Synergisms 60 53 13 9
Exclusions 23 14 6 4

Syn/Escl ratio 2.61 3.78 2.1 2.2
Average number of neighbors 3.76 4.23 2.4 2.1

The analysis of clusters present within the computed networks also shows a progres-
sive loss of connectivity as well as changes in the synergism–exclusion ratio. Particularly,
the network computed for controls and that determined for the trim-I showed a greater
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number of highly connected modules while the networks computed for the trim-II and
trim-III lost these aggregations of nodes (Figure 3).

Within networks, the highest number of HUB species (no. 11) was observed in the
control and the trim-I, although the key species begin to differentiate. A marked reductions
of keystone taxa were evidenced at trim-II and trim-III showing 1 and no HUBs respectively
(Table S3). Among species, Sphingomonas yabuuchiae, Bacteroides plebeius, Janthinobacterium
lividum, and Pseudomonas fragi resulted to be HUB species in the control group network,
with the last three maintaining this status even at trim-I.

4. Discussion

During pregnancy, to accommodate the developing fetus in a woman’s body, impor-
tant anatomical and physiological changes occur. These changes begin after conception
and affect all organs of the body [38]. For uncomplicated pregnancy, these alterations
resolve after the gestation period [39]. These changes also involve the pregnant woman’s
microbiota. Different studies report that the areas most affected by pregnancy for mi-
crobiota composition are the vaginal, intestinal, and oral environments. To date, little
is known about the skin microbiota in pregnancy. The skin microbiota has been mainly
studied in infants with preterm delivery [40–44]. Our study aimed to assess changes in
skin microbiota during the three trimesters of pregnancy, taking the instep as the sampling
area. Comparison between the three groups of pregnant women (first, second, and third
trimester) and the control group (non-pregnant women) showed no significant differences
with respect to the ecological indices evaluated (alpha-diversity estimators). Instead, signif-
icantly different partitions in microbiota composition were observed for all three trimesters
compared with the control group, as well as between III and I and III and II, but not
between I and II trimesters. Changes in the relative abundance of several bacterial taxa
were also observed. In particular, the genera Pseudomonas and Janthinobacterium genera,
and the species Janthinobacterium lividum, Pseudomonas veronii, and Pseudomonas fragi were
found to be increased in the III trimester compared with the control. While the genera
Sphingomonas and Oscillospira, and species Sphingomonas yabuuchiae and Bacteroides plebeius
were found to be decreased in the III trimester compared to the control group. No differ-
ences were found in the relative abundance of taxa in the pregnancy trimesters considered,
nor between trimester I and II and the control group. Therefore, our results indicate that
changes in the microbial ecosystem of pregnant women also occur at the skin level (as
already seen in the intestinal and vaginal districts), making it significantly different from
that of non-pregnant women. Within the networks, the highest number of HUB species (No.
11) was observed in the control group and in the first trimester. The species Corynebacterium
simulans, which is important in the skin ecosystem and particularly found in wetlands and
feet [45], was found to be a keystone species in the control group network, although its
relative abundance did not differ among the groups considered in our study. Our results
indicate that the role played by Corynebacterium simulans is lost during pregnancy as early
as the first trimester (Figure 3 and Table S2). The number of HUBs, rapidly decreasing
during the second trimester (No. 1), tends to be completely absent in the third trimester.
Among the species evidenced in the network of trim-III, Pseudomonas fragi is the more
connected, but not enough to be considered a HUB. Looking at the topological parameters
of co-occurrence networks, we can observe the changes that occur during pregnancy in
microbial interactions. In fact, along with the marked reduction in keystone species, we can
observe a decrease in participants (nodes) and interactions (edges) from the first to third
trimester (Table 1). In the second and third trimester networks, the microbes seem to be
less connected to each other and the ratio of synergistic to non-synergistic relationships
(Syn/Escl ratio) is strongly decreased (Table 1). Thus, a state of dysbiosis is established, as
also happens in intestinal and vaginal microbial ecosystems during pregnancy. Although
they are more similar in topological parameters, there are also substantial differences be-
tween the first trimester and control networks. In particular, important HUB species are lost
in the first trimester, indicating changes in the relationships between microbes. Differences
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were also found in metabolic pathways from in silico analysis. The only pathways found
to be significantly depleted in all trimesters compared with controls were: the ornithine
degradation superpathway, important for the conversion of L-ornithine to the polyamine
putrescine and its subsequent degradation to 4-aminobutanoate, a peculiarity of some
bacterial taxa such as Escherichia coli that we showed to be a HUB species only in the control
network, and the superpathways related to polymyxin resistance (Metacyc ID: PWY0-1338),
a class of antibiotics used primarily to treat infections by Gram-negative bacteria, which
interfere with the bacterial cell membrane. Ornithine is an amino acid produced as a result
of the partial digestion of arginine by the arginase enzyme, leading to the ornithine and
urea production.

Ornithine is an amino acid obtained, along with urea, by the partial digestion of
arginine by the enzyme arginase. It is a key product of the urea cycle, enabling the elimina-
tion of excess nitrogen. Depletion of the ornithine degradation pathway could lead to an
increase in this amino acid, which could lead to urea cycle malfunction and nitrogen accu-
mulation. During pregnancy, the body retains nitrogen for the purpose of synthesizing new
protein tissues [46]. The other pathway that is decreased during pregnancy is polymyxin
resistance. Polymyxins have bactericidal activity against many Gram-negative bacilli and
are naturally produced by Gram-positive bacteria to counteract the growth/overgrowth
of Gram-negative bacteria in their habitat. Polymyxin B resistance is typically acquired
through modifications of the lipid fraction of the outer lipopolysaccharide membrane.
These modifications positively charge the cell surface, which loses its affinity for (positively
charged) polymyxins. Of course, these modifications can have other effects on the tissue
affinity of microbes toward host cells.

In contrast, the pathway of methanol oxidation to carbon dioxide was found to be
significantly enriched in trim-III (Figure 2F) compared with trim-II. A recent study reported
a correlation among the alteration in the oxidation pathway of methanol to carbon dioxide
and the increase in the waist-to-hip ratio (WHR) [47].

5. Conclusions

In addition to the gut microbiota, the skin microbiota also plays a role in maintaining
body homeostasis by influencing immune and inflammatory responses. Alterations in
the skin microbiota can also induce inflammatory disorders that affect an individual’s
dermal properties [21]. Pregnancy is a particular period in a woman’s life when many
changes occur. To date, most studies on the skin microbiota during pregnancy were
conducted on pre-term pregnancies. In contrast, our study was conducted on women who
carried uncomplicated pregnancies to term, with the aim of characterizing the composition
of the microbiota during the three trimesters of pregnancy in a normal situation. We
demonstrated significant changes in the composition of the skin microbiota of the foot,
relationships among microbes, and metabolic pathways during pregnancy. Important
species in the skin microbial ecosystem, such as Corynebacterium simulans, seem to lose
their importance during pregnancy, while other species usually considered to be related to a
dysbiotic microbiota have become more important and thus take on weight in the microbial
community during this period. Our results also showed changes in several pathways by in
silico approach. Among them, the carbon dioxide pathway was found to be enriched in
trim-III compared with trim-II. This pathway was related to increased waist-to-hip ratio by
a recent study [47]. This connection could also explain our results, given the increase in
waist-to-hip ratio during the pregnancy period. The depletion of the ornithine degradation
pathway, which leads to an increase in nitrogen, is related to the actual increase in this
element observed in pregnant women, which in turn is linked to the synthesis of new
proteins in tissues. Our results reinforce the idea that the observed changes in the skin
microbiota during pregnancy contribute to better conditions to promote and protect fetal
growth. In addition, they provide more information on how the skin microbiota may
influence changes during gestation through its interactions with the host and metabolic
pathways, adding important information to better follow pregnancy outcome. However,
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further investigation is needed to confirm these findings. These initial findings are related to
only one district of the skin microbiota, but we are aware that in order to obtain a complete
picture of the skin microbiota in pregnancy, other skin districts should be evaluated in
further studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms12040808/s1, Figure S1: Bacterial collection site
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Functional profiling results; Table S3: Co-occurrence networks information.
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