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Simple Summary: The study constructed and compared the broad-scale meiotic recombination maps
using populations from four different breeds of Western and Chinese pigs to investigate similarities
and differences. At the broad scale, we found that the recombination patterns among different pig
breeds are similar, with variations in recombination intensity and locations. Particularly, the differ-
ences in recombination patterns between Western and Chinese pigs are more significant compared to
within-group variations. Furthermore, this study utilized 16 million SNP variants from unrelated
individuals for the first time to construct a fine-scale historical recombination map. At the fine
scale, we identified potential recombination hotspots and coldspots and verified the known features
of these recombination hotspots and coldspots. Subsequently, by analyzing the overlap between
recombination hotspots and regions of TSSs and H3K4me3 peaks, we found that recombination
hotspots in pigs are distanced from gene TSSs and potential active promoters. Therefore, we propose
for the first time evidence suggesting that recombination hotspots in pigs are regulated by PRDM9,
providing a meaningful contribution to enhancing the efficiency of genomic selection breeding and
further understanding the molecular mechanism of recombination in pigs.

Abstract: Meiotic recombination is a prevalent process in eukaryotic sexual reproduction organisms
that plays key roles in genetic diversity, breed selection, and species evolution. However, the recom-
bination events differ across breeds and even within breeds. In this study, we initially computed
large-scale population recombination rates of both sexes using approximately 52 K SNP genotypes
in a total of 3279 pigs from four different Chinese and Western breeds. We then constructed a
high-resolution historical recombination map using approximately 16 million SNPs from a sample
of unrelated individuals. Comparative analysis of porcine recombination events from different
breeds and at different resolutions revealed the following observations: Firstly, the 1Mb-scale pig
recombination maps of the same sex are moderately conserved among different breeds, with the
similarity of recombination events between Western pigs and Chinese indigenous pigs being lower
than within their respective groups. Secondly, we identified 3861 recombination hotspots in the
genome and observed medium- to high-level correlation between historical recombination rates
(0.542~0.683) and estimates of meiotic recombination rates. Third, we observed that recombination
hotspots are significantly far from the transcription start sites of pig genes, and the silico–predicted
PRDM9 zinc finger domain DNA recognition motif is significantly enriched in the regions of recom-
bination hotspots compared to recombination coldspots, highlighting the potential role of PRDM9
in regulating recombination hotspots in pigs. Our study analyzed the variation patterns of the pig
recombination map at broad and fine scales, providing a valuable reference for genomic selection
breeding and laying a crucial foundation for further understanding the molecular mechanisms of pig
genome recombination.
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1. Introduction

Meiotic recombination is the exchange of genetic materials that occurs between homol-
ogous chromosomes during meiosis. It plays crucial roles in genetic variation, haplotype
structure, and the generation of novel phenotypes in eukaryotic organisms undergoing
sexual reproduction. However, the recombination rate varies significantly across species,
populations, genders, and individuals [1]. Understanding how recombination rates vary
subtly between various species, populations, and even individuals is of significant impor-
tance to elucidating the molecular evolution of genomes influenced by this process [2].

The continuous advancement of sequencing technology has led to an increasing
number of researchers utilizing whole-genome sequencing data and/or population-based
recombination estimation methods to construct precise recombination landscapes across
various species [3–5]. Studies have shown that there are extensive common features in
the genome-wide recombination landscape of vertebrates, such as higher recombination
rates in females than in males, shorter chromosomes having higher average recombination
rates [6,7], and significant correlations existing between recombination rates and DNA
features such as GC content, specific motifs, and transcription start sites (TSSs) [8]. Pigs are
considered one of the most prolific meat-producing livestock globally. Archibald et al. [9]
constructed the first genome-wide linkage map of pigs in 1995, subsequently utilizing
an increasing number of mutations to develop denser linkage maps. However, current
research predominantly relies on 50–80 K chip data [7]. The variation and influencing
factors of recombination across Western pig breeds (Duroc, Landrace, Large White, Pietrain,
and hybrids) were investigated by Cathrine Brekke et al. using medium- and high-density
microarray data [10]. They found that recombination rates in pigs differ between breeds,
sexes, and individuals and that individual crossover counts are associated with the RNF212,
SYCP2, and MSH4 genes in pigs.

Recombination in numerous organisms is concentrated within specific and localized
regions commonly referred to as “hotspots” [11]. Recombination rates at large scales (Mb)
tend to be conserved over longer evolutionary timescales, but recombination rates at the
fine scale (Kb) within chromosomes can evolve rapidly [5]. Local variations in recom-
bination within a population, particularly the spatial distribution of hotspots, can exert
significant impacts on population evolution and genetic diversity. Recombination hotspots
are thought to be inherently unstable because of a “hotspot drive” mechanism that con-
tinuously replaces alleles favoring higher recombination rates [12]. The recombination
“coldspots” are usually located near the centromere of the chromosome, and the recombi-
nation rate is relatively low. In these regions, genotype and genome structure are relatively
stable. Recombination coldspots play a crucial role in preserving the stability of genome
structure, mitigating the occurrence of deleterious recombination events and upholding
the genetic equilibrium within populations [13]. The comprehensive understanding of the
intricate recombination landscape within recombination hotspots is crucial for deciphering
the patterns of recombination rates and unraveling the underlying mechanisms governing
recombination regulation.

Previous studies have suggested that the position of hotspots in the genome and
their mutation rates depend on the presence of an active PRDM9 gene within the species’
genome [14]. When present and possessing intact functional domains (for example, in
humans [15] and mice [16]), PRDM9 coordinates the recombination landscape by binding
its rapidly evolving zinc finger array to specific nucleotide motifs, leading to changes in the
H3K4me3 mark and coordinating recombination away from genes and their functional re-
gions [17]. On the contrary, vertebrates lacking functional PRDM9 genes (such as birds [18]
and canids [19]) exhibit recombination hotspots concentrated in promoter regions. As a
mammal, the genome of pigs contains the full-length PRDM9 gene. To our knowledge,
there is currently no research indicating whether the recombination hotspot pattern in
pigs is regulated by PRDM9. Constructing a fine-scale recombination map of pigs is of
significant importance for exploring the regulatory patterns of recombination hotspots
in pigs.
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The primary objectives of this study were to conduct a comprehensive comparison
of the large-scale recombination map among various pig breeds and analyze the genomic
characteristics of the fine-scale recombination landscape to reveal potential mechanisms. We
constructed a recombination map using large-scale pedigree and middle-density genotype
data from four different pig breeds, and then conducted a comparative analysis to identify
the similarities and differences among these breed-specific recombination landscapes. We
employed a population-based approach utilizing whole-genome sequencing data from
36 unrelated individuals to construct fine-scale recombination landscapes and identify
possible intervals of recombination hotspots and coldspots, which helped to address several
outstanding questions.

2. Materials and Methods
2.1. Sample and Genotyping

The samples used in the pedigree-based recombination landscape investigation were
four populations produced in our laboratory previously: the Sutai population in Jiangsu,
China [20]; the Two End Black (Two_black) population in Jiangxi, China [21]; the Erhualian
and white Duroc hybrid population (EH × WD) [22]; and a three-generation hybrid pop-
ulation produced by crossing Duroc, Landrace, and Yorkshire (D × L × Y) [23]. For
these animals, we only selected focal individuals (FIDs) with at least one known parent
and at least two offspring, as well as individuals with unknown parents but at least four
offspring, for our analysis [24]. According to the classification criteria of FIDs, the indi-
vidual numbers and FID numbers each population are summarized in Table 1. A total of
3279 individuals from the four populations were genotyped using the Illumina Porci-
neSNP60 BeadChip according to the manufacturer’s protocol. The physical locations of
SNPs on chromosomes were assembled with reference to the porcine reference genome
sequence (Sus_scrofa11.1) (http://asia.ensembl.org/Sus_scrofa/Info/Index accessed on
23 March 2023). Plink V1.9 [25] was used to perform quality control to exclude individuals
with call rates below 95% and SNPs with call frequencies < 98%, and sex chromosome
information was not used for recombination detection.

Table 1. Pedigree-based recombination rate study sample size.

Population All Number P_FID 1 P_MNO 2 M_FID 3 M_MNO 4

Sutai 526 5 81.80 52 8.46
Two_black 519 13 32.69 52 7.67
D × L × Y 1020 11 7.67 67 4.08
EH × WD 1214 42 91.00 25 14.67

1 Represents the paternal FID; 2 represents the mean number of offspring for the paternal FID; 3 represents the
maternal FID; 4 represents the mean number of offspring for the maternal FID.

The population-based refined recombination estimation used whole-genome sequence
data from 36 unrelated individuals comprising 3 breeds of purebred Duroc, Landrace,
and Yorkshire. Briefly, BGI’s MGI sequencing platform was used to build a library for
sequencing (150 bp × 150 bp paired-end sequencing) with an average coverage depth
of 10×. Variants were subsequently called following the best-practice pipeline of the
Genome Analysis Toolkit [26,27] (GATK, https://gatk.broadinstitute.org, v4.1, accessed
on 23 March 2023) using pig reference gene sequence assembly (Sus_scrofa11.1). To pre-
vent bias in high-copy-number variants or poorly sequenced regions, we first filtered
variants based on total sequencing depth (filter variants that were less than one-third and
greater than twice the population average sequencing depth) and performed QC using the
“--minQ 30, --max-alleles 2, max-maf < 0.05” parameters of Vcftools [28] to filter low-
quality, multi-allelic, and minor-allele-frequency variants of less than 5%; we finally kept
16.5 million SNPs for subsequent analysis.

http://asia.ensembl.org/Sus_scrofa/Info/Index
https://gatk.broadinstitute.org
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2.2. Pedigree-Based Recombination Rate Estimation

In order to accurately estimate the pedigree-based [6] recombination rates (meiotic
recombination rates) among different breeds, we referred to the ideas of Petit et al. [24].
Briefly, we firstly performed quality control to correct potential errors by exhibiting the
distribution of recombination crossover events using LINKPHASE3 [29]. Due to the
unreliability of double crossovers occurring within less than 3 Mb in the same meiotic
event, we set the positions of double crossover recombination and corresponding genotypes
of individuals as missing. We then re-used LINKPHASE3 to construct their paternal and
maternal phases and to detect recombination crossovers chromosome by chromosome. The
meiotic recombination rate within 1 Mb windows was next estimated using the Poisson
distribution and Monte Carlo sampling strategy [24]. Additionally, we obtained the average
meiotic recombination rate data for males and females estimated by previous researchers
using nine different breeds [7].

2.3. Population-Based Recombination Rate Estimation

To estimate population-based [6] recombination rates (historical recombination rates),
we first used smc++ [30] and a porcine reference gene sequence assembly (Sus_scrofa11.1)
to infer demographic histories with a mutation rate per base per generation of 1.2 × 10−9

following previous studies [31]. We then estimated the historical recombination rate using
the default parameters of pyrho [32]. Pyrho uses SNPs as intervals with a step size of
one SNP. Furthermore, to evaluate the recombination rate with different window sizes
and methods, we also estimated historical recombination rates using a 10 kb window
and a 5 kb step size for FastEPRR [33]. Following the software authors’ recommended
parameters, windows were excluded if they overlapped with known sequencing gaps in
the pig reference genome (Sus_scrofa11.1) or if the number of non-singleton polymorphic
sites was less than 10. To more precisely estimate the recombination rate, we converted the
population parameters to ms [34] per the software matching values of smc++ to estimate
the population history.

2.4. Identification of Recombinant Coldspots and Hotspots and Their Genomic Characterization

We used a “filtering” approach to identify coldspots and hotspots from recombination
rate results estimated by pyrho according to the method described by Wooldridge et al. [5].
In brief, we considered consecutive SNPs with a recombination rate greater than 10 times the
mean chromosomal recombination rate as potential recombination hotspots. Recombination
intervals with less than two SNPs and interval lengths greater than 5 kb were then filtered
to reduce false positives. Hotspots separated by 2 SNPs with an interval ≤1 kb were
merged together. Similarly, we took the intervals that were less than 1/10 of the average
chromosome recombination rate and contained at least 3 SNPs as candidate coldspots.

To analyze the differences in the distribution characteristics of recombination coldspots
and hotspots, we calculated the nucleic acid diversity of the population and the nucleic
acid diversity of recombination coldspot and hotspot intervals using VCFtools [28] and
BEDtools [35], respectively. Also, to see the GC bias of recombinant coldspots and hotspots,
we extracted coldspot and hotspot interval sequences from the reference genome separately
using SeqKit [36] and the stats for their GC contents. We generated 1000 sets of randomly
selected genomic fragments matching the size of recombination coldspots and hotspots as
controls to test their significance.

2.5. Characterizing the Genomic Distribution of Hotspots and Functional Enrichment Analysis

The BEDtools [35] “intersect” function was used to discover hotspots that overlapped
with 3 kb anterior and posterior to the TSS of annotated genes. A hotspot was considered
to overlap with a TSS when the midpoint of the hotspot overlapped with any part of the
6 kb TSS region. Only when the number of position overlaps of recombination hotspots
was greater than that of the random point dataset did we consider the recombination
hotspots to be significantly enriched in the TSS region. Similarly, we evaluated the number
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of random points overlapping with gene TSS locations in a dataset of 200 random points to
test the enrichment significance. To further analyze Gene Ontology (GO) terms and KEGG
pathways associated with genes hosting promoters that are approached by recombination
hotspots, the above genes were analyzed for functional enrichment using the g:Profile
server [37].

2.6. Analysis of H3K4Me3 Chip-Seq Data

Previous research has confirmed that trimethylated histone H3 lysine 4 (H3K4me3)
is usually found around the TSSs of genes and targets active promoters [38]. To further
analyze the overlap between recombination hotspots and H3K4me3 peaks positions, we
downloaded the H3K4me3 chip-seq data of pig kidney cells from the CNCB database (ID:
CRA006465 [39]) with the aim of identifying potential active promoters in the pig genome.
We conducted the chip-seq data analysis following these steps: (1) trimming and filtering
of reads using fastp [40]; (2) mapping chip-seq data to the pig genome (Sscrofa11.1) in
paired-end mode using hisat2 v2.2.0 [41]; (3) processing, sorting, and filtering alignment
files using SAMtools [42]; (4) removing PCR duplicates using picard (http://broadinstitute.
github.io/picard/, accessed on 23 March 2023); and (5) identifying H3K4me3 peaks using
MACS v2.1.0 [43].

2.7. Motif Analysis

We used the online tool ExPASy [44] to translate the DNA sequence of the PRDM9
gene in the reference genome into a protein sequence, and then used it as the input of the
Cys 2 His 2 zinc finger prediction tool (http://zf.princeton.edu/index.php, accessed on
23 March 2023) [45]. This software de novo predicted the DNA binding specific position
weight matrix (PWM) of the Cys 2 His 2 zinc finger array. The domain was selected to predict
the DNA binding motif when the HMMER bit score of the zinc finger domain was not less
than 17.7. Finally, we used AME 5.5.2 [46] to determine whether the PRDM9 zinc finger DNA
recognition motif was enriched in hotspot sequences relative to the recombinant coldspot
sequence computer prediction. Furthermore, to analyze recombinant hotspot DNA sequences
for the presence of enriched DNA motifs and motif characterization, we identified DNA
motifs enriched in the hotspot intervals by scanning the hotspot sequences by chromosome
using MEME 5.5.2 [47], which recognizes motifs in the range of 6–50 bases by default and
terminates after identifying up to 50 likely motifs to minimize duplicate identifications.

3. Results
3.1. Comparison of Large-Scale Meiotic Recombination Maps among Different Pig Breeds

We estimated meiotic recombination in domestic pigs using pedigrees from four
breeds. We, in total, detected 38,332 crossovers in 2158 meiosis of 71 paternal FIDs, and
43,061 crossovers in 1865 meiosis of 188 maternal FIDs in the four populations (Table S1,
Figure S1). The average genetic map of male and female was 17.763 M (0.78 cM/Mb) and
23.089 M (1.02 cM/Mb), respectively, which is similar to previous studies in Western com-
mercial pigs [7]. The population average recombination rate and patterns of recombination
along the chromosomes were similar across breeds of the same sex, but both male- and
female-averaged recombination rates and patterns of recombination along the chromosomes
differed significantly (Figure S2). By comparing the average number of crossovers per
meiosis (ACM) between the two genders separately, significant differences were observed
among all female breeds, except between D × L × Y and Two_black (F-test, p = 0.514).
In males, however, except for significant differences between D × L × Y and EH × WD
breeds (F-test, p = 0.02), no other differences reached significance (Figure 1A,B). In order to
measure the correlation of 1 Mb window recombination maps among different populations,
we conducted a correlation analysis. The results show that the correlations ranged from
0.642 to 0.894, where the correlation coefficient between Sutai with D × L × Y was the
smallest, and the correlation coefficient between EH×WD with Two_black was the largest
(Table 2). To compare the correlation of Chinese and Western domestic pigs, we grouped

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
http://zf.princeton.edu/index.php
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them by breed and compared the within-group and between-group correlations. The results
show that the correlation between Chinese and Western domestic pigs was lower than the
within-group correlation (t-test, p < 0.05), suggesting greater disparities in recombination
patterns between Chinese and Western pigs.
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Figure 1. Comparison of scatter plots of the ACM among different populations by gender.
(A) Scatter-overlay boxplots of the average number of meiotic crossover events per division among
different populations of males. The X-axis represents different populations; the Y-axis represents the ACM.
“*” indicates a p-value < 0.05; “**” indicates a p-value < 0.01; “***” indicates a p-value < 0.0001; NS indicates
no significant difference. (B) Scatter-overlay boxplots of the average number of crossovers per meiotic
crossover event among different populations of females.

Table 2. Correlation of 1Mb pedigree-based recombination rates.

Population

Population Pre_Results EH × WD D × L × Y Sutai Two_Black

Pre_results 0.737 0.642 0.695 0.749
EH × WD 0.747 0.725 0.849 0.894
D × L × Y 0.715 0.782 0.716 0.722

Sutai 0.686 0.765 0.664 0.818
Two_Black 0.746 0.809 0.743 0.716

Note: the upper triangle represents the correlation of recombination rates within 1Mb windows in females, while
the lower triangle represents those in males. “Pre_results” represents the estimated recombination rate from the
downloaded previous study [7].

3.2. Fine-Scale Recombination Landscapes Using Whole-Genome Sequencing Data

First, we obtained the population historical statistics of 36 unrelated individuals
(Figure S3). Then, we constructed a historical recombination map based on the LD pattern
of unrelated individuals with a resolution of approximately 137.7 bp (Figure S4). In addition,
we constructed historical recombination maps at FastEPRR 5 Kb and 10 Kb resolutions
(Figures S5 and S6). The results show that at a fine scale, different software and parameters
exhibited similar recombination characteristics within the same position interval, but the
estimated value of the recombination rate decreased as the resolution increased. At the 1 MB
scale, we further compared the estimated recombination rates of different software and
parameters. The results show that the parameters had little impact on the estimation of the
recombination rate (Spearman rank correlation between FastEPRR5K and FastEPRR10K,
rho = 0.975, p < 0.001). (Figure 2). Additionally, there was a high correlation in the
estimation of the 1 MB recombination rate among different software tools (correlation
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between FastEPRR 5K, FastEPRR 10K, and pyrho recombination rate: rho = 0.775, p < 0.001
and rho = 0.834, p < 0.001), which implies the robustness and correctness of our results.
Similarly, we also compared the correlation between historical recombination rates and
meiotic recombination. However, the results revealed significantly different correlation
levels (p = 4.9 × 10−5, t-test) between them across different software platforms (pyrho:
rho ∈ 0.542~0.683, FastEPRR: rho ∈ 0.277~0.460) (Table 3). This reflects the similarity in
estimating recombination rates between population-based and pedigree-based approaches.
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Figure 2. Autosomal recombination landscapes constructed by different software and parameters.
From (A–C), the 1 Mb window recombination rates of pryho, FastEPRR 5 kb window, and FastEPRR
10 KB window, respectively.

Table 3. Correlation of population-based and lineage-based recombination rates.

Population

Population Pre_Results EH × WD D × L × Y Sutai Two_Black

FastEPRR 10 kb 0.460 0.424 0.429 0.357 0.398
FastEPRR 5 kb 0.422 0.340 0.361 0.277 0.321

pyrho SNP 0.683 0.625 0.598 0.542 0.572
Mean 0.522 0.463 0.463 0.392 0.430

Note: “FastEPRR 10 kb” represents the 1 Mb window population recombination rate estimated at a 10 kb
window using FastEPRR software. “FastEPRR 5 kb” represents the 1 Mb window population recombination rate
estimated at a 5 kb window using FastEPRR 1.0 software. “Pyrho SNP” represents the 1 Mb window population
recombination rate estimated at an SNP window using pyrho.

3.3. Genomic Characterization of Recombination Coldspots and Hotspots

Based on the recombination rates estimated using pyrho, we identified a total of
3861 recombination hotspots and 20,899 recombination coldspots, with an average size of
1.26 kb for the hotspots. The results showed that recombination hotspots were not evenly
distributed throughout the genome (Figure 3A and Figure S4), similar to studies in mice
and human [48,49]. We also validated the previous hypothesis that, for a given genome size,
species with more fragmented karyotypes and more small chromosomes will exhibit higher
overall recombination rates and higher GC content [50]. The results showed a significant
difference (Wilcoxon test, p = 7.63 × 10−6) in GC between hotspots and coldspots, with an
average of 46.46% GC content in hotspots and 40.53% GC content in coldspots, respectively
(average genome-wide GC content level was 42.96%). Comparing to different chromosomes,
the GC content in recombination hotspots was higher than that in recombination coldspots
in the majority of chromosomes except for chromosomes 2 and 12, and the GC content and
the control interval of random spots was between the results of coldspots and hotspots
(Figure 3B). It is now generally accepted that the spread of beneficial mutations and the
loss of deleterious mutations suppress polymorphism levels due to the existence of a
“genetic hitchhiker”, especially in regions of low recombination [51,52]. Similarly, we also
validated the previous observations in the comparative analysis of nucleotide diversity
within the intervals of recombination hotspots and coldspots. The nucleotide diversity
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(0.00198 ± 0.0003) in the recombination coldspot region was significantly lower than the
nucleotide diversity (0.00291 ± 0.0004) of the recombination hotspot and the population
average level (Wilcoxon test, p = 3.063 × 10−8; Wilcoxon test, p = 2.204 × 10−10), which was
consistent across all chromosomes (Figure 3C). In conclusion, our results demonstrate our
reliable identification of potential recombination hotspots and coldspots in pigs.
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content and Pi in coldspot and hotspot intervals. (A) Fine recombination map of chromosome 18. The
red bar line represents the recombination rate in the possible recombination hotspots, the cyan bar
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X-axis represents the location of the possible recombination coldspots. (B) Line plots of GC content in
different intervals. (C) Line plots of Pi in different intervals.

3.4. Pig Recombination Hotspots Are Distant from the TSS

Previous studies have shown that PRDM9 regulates the recombination landscape by
binding to specific nucleotide motifs, which led to changes in the states of H3K4me3 and
recombination distant from genes and functional regions [16,17]. In contrast, vertebrates
lacking or having only non-functional PRDM9 (e.g., birds [53] and canines [19]) have
recombination hotspots concentrated in promoter regions, possibly because SPO11 defaults
to an open region near gene promoters. To explore whether the recombination hotspots
in pigs are enriched in TSS regions, we analyzed overlaps of recombination hotspots and
TSSs. We found that 240 (6.2%) out of 3861 recombination hotspots overlapped with the
3 Kb region of the TSS, which was significantly lower than the results of 1000 simulated
“random points” (Figure 4A). This suggests that PRDM9 may play a role in determining
pig recombination hotspots. Next, we downloaded H3K4me3 chip-seq data from a public
database and directly analyzed the overlap of H3K4me3 broad peaks with recombination
hotspot intervals. We identified a total of 17,965 reliable H3K4me3 peaks, with an average
peak width of 1648.1 bp, among which 11,404 (63.5%) peaks overlapped with the 6 Kb
interval of TSSs based on the annotation file. The results show that recombination hotspots
overlapped with H3K4me3 peaks to a lesser extent (Figure S7). Figure 4B illustrates the
distribution of recombination hotspots on chromosome 18 in relation to the broad peaks
of H3K4me3. We randomly zoomed in to a portion of the figure, and it is evident that
there was minimal positional overlap between recombination hotspots and potential active
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promoters (Figure 4B), further suggesting that pig recombination hotspots are distal from
TSSs. In order to further analyze the gene categories and related pathways enriched near the
recombination hotspots in pigs, we identified genes that intersected with the recombination
hotspots at around 3 Kb of the TSS (240 recombination hotspots intersected with the TSS
of 182 genes) to determine enriched GO terms. We identified a total of nine enriched
GO terms, primarily related to signal transduction, odor binding, and plasma membrane
(Table S2), which is consistent with observations made by previous studies [11].
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Figure 4. (A) Comparison of the number of recombination hotspots and 1000 random points that
have intersections near the TSS. The pink line represents the distribution density of the number of
random points with intersections near the TSS 1000 times, and the blue line represents the num-
ber of recombination hotspots with intersections with the TSS. The p-value is calculated by t-test.
(B) Chromosome 18 recombination hotspots and the distribution of H3K4me3 peaks visualized in
IGV, with partial regions magnified. Among them, red represents the position interval of the recombi-
nation hotspot, green represents the position interval of the H3K4me3 peak, and blue represents the
annotation gene of the pig reference genome.

3.5. Motif Analysis

In order to further evaluate whether the PRDM9 gene is involved in the formation
of recombination hotspots in pigs, we extracted the DNA sequences of the pig reference
genome [54] from the identified recombination hotspot and coldspot regions. We compared
these regions for the presence of PRDM9’s Cys2His2 zinc finger domain DNA recognition
motif (Figure 5) and found the relative enrichment of the computer-predicted PRDM9
recognition motif in the hotspot region (p = 3.52 × 10−167). This is consistent with the
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results showing recombination hotspots away from TSSs, further confirming the role of the
PRDM9 gene in hotspot determination in pigs. In addition, we identified 17 enriched motifs
in the recombination hotspots compared to the recombination coldspot regions (Table S3).
The GC content of the top three motifs, with an average GC content of 55.16%, was much
higher than the average GC content of the genome (43.3%), which is consistent with the
deviation of the GC content of the recombination hotspots.
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4. Discussion

This study estimated the historical recombination rate of unrelated samples using
two mainstream software tools (pyrho and FastEPRR). These two software tools outperform
another software, LDhat [55]. However, we found a moderate to high level of correlation
between pedigree-based meiotic recombination rates and historical recombination rates
estimated by pyrho, whereas the correlation with the rates estimated by FastEPRR was
lower. This is because FastEPRR is more conservative in detecting recombination hotspots,
and it estimates the average recombination rate of the windows [56]. Combining the
characteristics of both software tools, we chose to use pyrho to estimate the recombination
rates between SNPs for subsequent identification analysis of recombination hotspots and
coldspots. As mentioned by the software authors, FastEPRR may provide unbiased and
accurate estimates even with low sequencing coverage or high missing genotype rates.
Therefore, in situations of low SNP density, we considered prioritizing FastEPRR.

The content of GC is believed to be associated with an increase in meiotic recombi-
nation from yeast to humans [57,58], representing a common pattern. This recombination
pattern results in a significantly higher GC content in recombination hotspot compared to
coldspot regions. We validated this known observation by comparing the GC content of
recombination hotspot and coldspot regions, as well as by conducting enrichment motif
analysis in recombination hotspots. However, the molecular mechanisms underlying re-
combination hotspots and GC content remain insufficiently understood. Previous studies
have suggested that high-GC regions are more prone to being affected by enzymes generat-
ing cross-recombinogenic DSBs [59]. For example, in certain organisms, multiple mismatch
repairs tend to favor the formation of G-C pairs over A-T pairs [60]. Gerton et al. [61]
suggest that the positioning of recombination hotspots is governed by certain features in
chromosome structure associated with GC enrichment, while the finer location is controlled
by transcription factors and chromatin accessibility. The specific molecular mechanisms
behind this phenomenon require further and more in-depth research to be elucidated.

Although PRDM9 has been shown to play a key role in the location and fate of hotspots
in various mammalian species such as humans, mice, cattle, sheep, and horses, its expres-
sion in canids has been a notable exception because PRDM9 has been transformed into a
pseudogene in these species. Despite the absence of PRDM9, the dog recombination map
contains recombination hotspots that are highly stable during evolution. This is because
canids have PRDM9 -independent recombination, and their hotspots are found to be en-
riched in CpG-rich regions upstream of transcription initiation sites, favoring unmethylated
CpG islands. There are few reports on whether there is a functional PRDM9 gene in pigs,
and there is no direct evidence that PRDM9 and pigs are involved in determining pig
recombination hotspots. Given that recombination hotspots are significantly distant from
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the transcription start sites (TSSs) in pigs and the enrichment of PRDM9 zinc finger domain
DNA binding motifs in recombination hotspot sequences, we believe that the results of this
study provide compelling evidence that the PRDM9 gene may also play a role in controlling
recombination hotspots in pigs.

5. Conclusions

Based on comparisons of large-scale recombination maps among different breeds,
we found that the recombination map of pigs is moderately conservative at the 1 Mb
scale between different breeds of the same sex, with more pronounced differences in
recombination patterns between Western pigs and Chinese domestic pigs. Based on the
fine-scale recombination map, we found that the historical recombination rate in pigs
is similar to the meiotic recombination rate, and the recombination hotspots in pigs are
distant from the TSS region. In summary, our research results elucidate the differences
between broad-scale and fine-scale recombination landscapes, emphasizing the important
role of the PRDM9 gene in determining the location of recombination hotspots. This has
important implications for further understanding the potential mechanisms underlying
recombination rate variation in pigs.
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