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Abstract: The current recommendation for bioprosthetic valve replacement in severe aortic stenosis
(AS) is either surgical aortic valve replacement (SAVR) or transcatheter aortic valve replacement
(TAVR). We evaluated the performance of a machine learning-based predictive model using existing
periprocedural variables for valve replacement modality selection. We analyzed 415 patients in a
retrospective longitudinal cohort of adult patients undergoing aortic valve replacement for aortic
stenosis. A total of 72 clinical variables including demographic data, patient comorbidities, and
preoperative investigation characteristics were collected on each patient. We fit models using LASSO
(least absolute shrinkage and selection operator) and decision tree techniques. The accuracy of
the prediction on confusion matrix was used to assess model performance. The most predictive
independent variable for valve selection by LASSO regression was frailty score. Variables that predict
SAVR consisted of low frailty score (value at or below 2) and complex coronary artery diseases
(DVD/TVD). Variables that predicted TAVR consisted of high frailty score (at or greater than 6),
history of coronary artery bypass surgery (CABG), calcified aorta, and chronic kidney disease (CKD).
The LASSO-generated predictive model achieved 98% accuracy on valve replacement modality
selection from testing data. The decision tree model consisted of fewer important parameters, namely
frailty score, CKD, STS score, age, and history of PCI. The most predictive factor for valve replacement
selection was frailty score. The predictive models using different statistical learning methods achieved
an excellent concordance predictive accuracy rate of between 93% and 98%.

Keywords: aortic valve replacement; decision tree; LASSO; SAVR; TAVR

1. Introduction

Aortic stenosis (AS) is a major cardiovascular problem which is projected to affect a
significant portion of the older population [1]. Surgical aortic valve replacement (SAVR) has
traditionally been considered the standard treatment. Over the past 10 years, transcatheter
aortic valve replacement (TAVR) has emerged as a non-surgical alternative modality that
can provide comparable efficacy and safety for selected severe AS patients [2]. The current
recommendation for severe AS patients who have been approved to receive a bioprosthetic
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valve is either SAVR or TAVR. Patients with prohibitive risk for SAVR are recommended
for either TAVR or palliative care as a destination therapy [3].

SVAR’s efficacy is supported by more than 50 years of experience, with sufficient
data across different age groups. While TAVR is a non-surgical option that brings benefits
including a lower risk of all-cause death and atrial fibrillation, valve durability continues to
be a major concern. Balancing the goals of patient longevity and valve durability is critical
in making a valve replacement modality selection [4].

Several patient-specific factors also have been incorporated for the final decision based
on a shared decision-making process by a multidisciplinary heart team consisting of at
least a non-invasive cardiologist, an interventional cardiologist, and a cardiac surgeon [5,6].
A definite consensus on the first-line therapy has not yet been achieved for the patient
age group between 65 and 85 years [3]. Increased use of predictive models has become a
significant part of health management decisions [7–10]. Currently, data on factors related
to aortic valve replacement remain limited.

Our study aims to develop predictive models to assess readily available patient
information collected during the preprocedural assessment, which includes demographic,
clinical, laboratory investigation, and cardiac imaging data that impact the selection of an
aortic valve replacement modality. Using medical records from a university hospital in
Thailand, these models reflect the decision-making process for patients older than 65 years
in a high-volume tertiary center in a developing country.

2. Materials and Methods

We conducted a retrospective chart-review study of older patients with symptomatic
severe aortic stenosis who consecutively underwent TAVR or SAVR between January
2010 and December 2020, based on our own institution databases as stated in prior pub-
lications [11]. The study was carefully appraised and approved by the Ethics Review
Committee. Inclusion criteria were older adults aged 65 years old and above. Variables
on demographic and preoperative clinical characteristics were extracted from electronic
medical records, including comorbidities, cardiovascular intervention history, medications,
symptoms of aortic stenosis, baseline 12-lead electrocardiography (ECG), baseline echocar-
diographic characteristics, the Society of Thoracic Surgery (STS) risk score, and frailty
score [12].

2.1. Treatment of Missing Data

To ascertain the randomness of missing data, analysis of missing data distribution
was performed for quality assurance. Variables with more than 5% missing values were
excluded. For the remaining variables, random forest method was employed to impute on
any missing data, for which repeated procedures were executed on each iteration.

2.2. Model Selection and Creation

In each round of iteration, 20% of subjects with complete data were randomly sepa-
rated to serve as a test set. The remaining 80% along with imputed data formed the training
set. Following the training set with a 10-fold cross-validation method, the model predicting
intervention modality could be generated. The resulting model was tested for precision
using the test set. These processes were repeated for 100 iterations (Figure 1).
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Figure 1. Model development and 100 iterations scheme. (The excluded data (10% of dataset) during
bootstrap method is symbolized by the blue block).

Machine learning models used in this study were LASSO regression models and
decision tree models. To ensure the robustness and validity of individual essential features,
the best models generated from each iteration were archived and compared. Models
derived from LASSO regression were displayed with coefficients. For decision trees, the
percentage of deviation improvement of each variable was displayed. Concordance index
(C-index) was utilized for precision measurement on both models.. Data were analyzed
with R version 4.0.5 using packages “randomForest”, “glmnet”, and “rpart” [11].

2.3. Outcomes

The outcome of interest in this study was the precision of the model on the prediction
of aortic valve replacement modality selected for the patient. The two possible aortic valve
replacement modalities included either a surgical aortic valve replacement (SAVR) or a
transcatheter aortic valve replacement (TAVR).

3. Results
3.1. Study Population

From January 2010 to December 2020, 415 participants were included, with 238 (57%)
receiving SAVR and 177 (43%) receiving TAVR. Table 1 shows the preoperative characteris-
tics of the SAVR versus TAVR group. TAVR patients were older, frailer, had a higher STS
score, and had worse heart failure status compared to those in the SAVR group.
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Table 1. Baseline characteristics of patients in SAVR and TAVR cohorts.

Overall SAVR TAVI p

n 415 238 177
Age (mean (SD)) 78.41 (7.41) 75.41 (6.50) 82.44 (6.63) <0.001

Gender (%) 220 (53.0) 121 (50.8) 99 (55.9) 0.353
STS.score (mean (SD)) 5.63 (4.27) 3.97 (1.73) 7.89 (5.49) <0.001

Frailty.score (mean (SD)) 3.26 (1.06) 2.71 (0.78) 4.01 (0.93) <0.001
Frailty score > 4 = TRUE (%) 150 (36.1) 31 (13.0) 119 (67.2) <0.001

NYHA (%) <0.001
0 2 (0.5) 0 (0.0) 2 (1.1)
1 4 (1.0) 4 (1.7) 0 (0.0)
2 196 (47.2) 134 (56.3) 62 (35.0)
3 192 (46.3) 94 (39.5) 98 (55.4)
4 20 (4.8) 6 (2.5) 14 (7.9)

CAD (%) 113 (27.2) 55 (23.1) 58 (32.8) 0.038
AF AFL (%) 57 (13.7) 19 (8.0) 38 (21.5) <0.001

CKD (%) 141 (34.0) 27 (11.3) 114 (64.4) <0.001
HF (%) 234 (56.4) 91 (38.2) 143 (80.8) <0.001

COPD (%) 33 (8.0) 10 (4.2) 23 (13.0) 0.002
Smoke (%) 19 (4.6) 7 (2.9) 12 (6.8) 0.107

HT (%) 339 (81.7) 191 (80.3) 148 (83.6) 0.455
DM (%) 144 (34.7) 73 (30.7) 71 (40.1) 0.058
DLP (%) 297 (71.6) 162 (68.1) 135 (76.3) 0.085

LVEF (mean (SD)) 62.52 (15.83) 63.18 (15.53) 61.67 (16.23) 0.343
TVD (%) 89 (21.4) 45 (18.9) 44 (24.9) 0.168

Calcify.Ao (%) 22 (5.3) 1 (0.4) 21 (11.9) <0.001
CABG (%) 38 (9.2) 2 (0.8) 36 (20.3) <0.001

RVSP (mean (SD)) 22.22 (21.62) 18.57 (21.35) 26.83 (21.14) <0.001
mPAP (mean (SD)) 1.52 (6.40) 0.82 (4.73) 2.19 (7.63) 0.057

MS. . .Mod (%) 7 (1.7) 1 (0.4) 6 (3.4) 0.007
MR. . .Mod (%) 35 (8.4) 12 (5.0) 23 (13.0) 0.003

MR. . .Severe (%) 4 (1.0) 1 (0.4) 3 (1.7) 0.05

Abbreviation: AF, atrial fibrillation; AFL, atrial flutter; Ao, aorta; CABG, coronary artery bypass graft; CAD,
coronary artery disease; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; DLP,
dyslipidemia; DM, diabetes mellitus; HF, heart failure; HT, hypertension; LVEF, left ventricular ejection fraction;
mPAP, mean pulmonary arterial pressure; MR, mitral regurgitation; MS, mitral stenosis; NYHA, New York Heart
Association; RVSP, right ventricular systolic pressure; TVD, triple vessel disease.

3.2. Model Derivation

We conducted a LASSO regularization and decision tree analysis to develop models
to predict intervention modality selection. As shown in Tables 2 and 3, we demonstrated
the variables with their respective discrimination ability, ordering them by their frequency
of being included in the models. Age, STS score, frailty score, and CKD were the most
frequent variables included in models derived from both methods.

Table 2. Parameter coefficients obtained through LASSO regression.

Best Model Median 1st Quartile 3rd Quartile Frequency

Precision 98.6% 92.1% 89.5% 93.4% -
Age −0.0703 −0.0903 −0.1286 −0.0697 100

STS.score −0.2019 −0.2688 −0.3731 −0.1797 100
Frailty.score2 1.7302 2.2415 1.9649 2.6769 100
Frailty.score4

[MU4] −0.5575 −0.9194 −1.2795 −0.6159 100

CKD1 −1.0407 −1.7186 −2.124 −1.481 100
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Table 3. Best model parameters derived from the decision tree method.

Best Model Median 1st Quartile 3rd Quartile Frequency

Precision 93% 86% 83% 88% -
Age 0.08 0.09 0.08 0.11 100
CKD 0.11 0.15 0.13 0.32 100

Frailty score 0.39 0.29 0.2 0.33 100
STS.score 0.23 0.2 0.18 0.22 100

CABG 0.03 0.04 0.02 0.05 86
NYHA 0.02 0.01 0 0.01 82

Model Validation

We used C-index to evaluate the precision of the prediction models (LASSO in Table 2,
decision tree in Table 3 and Figure 1) on the test set. The results of our models were
excellent, with 98.6% and 93% precision for LASSO and decision tree, respectively.

The precision of the LASSO model and the coefficients of the 10 most frequent variables
derived from 100 iterations are displayed in Table 2. The most precise model yielded 98%
accuracy. The median precision of all models was 92% (IQR 89–93%). The variables present
in all models were age, STS score, frailty score, and CKD.

Next, the precision of the decision tree model and the improvement in the deviation
of the 10 most frequent variables derived from 100 iterations are illustrated in Table 3. The
best decision tree model yielded 93% precision. The median precision of all models was
86% (IQR 83–88%). Variables presented in all models included age, STS score, frailty score,
and CKD.

Figure 2 shows the best decision tree model as an example of how decision trees
predict intervention modality. High frailty score, high STS score, and presence of CKD
aided in the decision to choose TAVR.
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4. Discussion

In our study, we used observational data to construct a model predicting the selection
of aortic valve replacement modality (SAR vs. TAVR) in our institution in Thailand. The re-
sults represent one of the first predictive models on this aspect among developing countries.
Our model relies on fundamental information routinely obtained during preprocedural
assessment in tertiary care settings among patients eligible for bioprosthetic aortic valve
replacement. Generalizability of model application is a key strength of our model. This
model could aid in the shared decision making between care providers and patients in
selecting a suitable valve replacement modality. Furthermore, in non-conventional scenar-
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ios, in which patients’ characteristics are non-parallel to clinical trials, our model could be
beneficial in providing a greater confidence level to modality selection guidance.

Current recommendations on valve selection between TAVR and SVAR are based
primarily on the patient’s clinical profile. In symptomatic or asymptomatic left ventricular
systolic dysfunction (LVEF < 50%) with severe AS, favorable factors for choosing SAVR
are younger patients (age < 65 years) with longevity greater than 20 years and challenging
vascular anatomy for TAVR [13]. In the absence of anatomical considerations for TAVR,
elderly patients who are older than 80 years or younger patients with a life expectancy of
less than 10 years are preferable candidates for TAVR. Shared decision making should be
made for patients over 65 years old since both TAVR and SAVR show merit as a first line
recommendation. Valve selection for this age category continues to be very challenging
and assessing data to determine factors related to selection modality can help inform both
doctors and patients. Our study demonstrates the great value of information on the local
clinical practice, representing limited resources, countries, and local patient population.

Owing to the growing demand for transcatheter aortic valve replacement (TAVR),
numerous less-experienced medical centers are now undertaking this procedure. However,
most validated models are derived from highly proficient centers, potentially lacking
a representation of real-world evidence in settings with limited resources. Despite the
acknowledged increased surgical risk associated with additional factors such as CKD, these
elements are not explicitly integrated into decision-making algorithms for selecting between
TAVR and surgical aortic valve replacement (SAVR). Clinical decisions often rely on the
expertise of the operator, which may not be in line with established scientific guidelines.
This study illustrates that predictors observed in settings with lower case volumes align
with recommendations in guidelines, establishing a quality control metric for real-world
clinical practices in resource-constrained environments.

The utilization of artificial intelligence (AI) in the preprocedural planning of TAVR
through CT scans has been demonstrated to diminish interobserver reliability [14]. The out-
comes of this investigation contribute significantly to enhancing preoperative assessments,
particularly in less-experienced medical centers. Consequently, this fosters an equitable dis-
tribution of TAVR procedures across centers with varying levels of expertise. The primary
objective of this approach is to alleviate healthcare disparities on a global scale, mirroring
our own study’s intent to elucidate the factors influencing the determination of a patient’s
eligibility for aortic valve replacement.

Moreover, the assessment of preprocedural extra-aortic valve abnormality parameters
and their subsequent measurements plays a crucial role in determining the long-term
prognosis [15]. Notably, irreversible right ventricular (RV) dysfunction emerges as a
defining factor delineating patients with a poorer long-term prognosis when juxtaposed
with those devoid of RV dysfunction. It is imperative to underscore that these intricate
findings may elude detection through the application of AI, given that such factors may
initially appear inconspicuous within the scope of the available knowledge at that juncture.

The utilization of artificial Intelligence (AI) in the processing of preprocedural mul-
timodality imaging, as elucidated in a study by Maier et al. [16], stands as a noteworthy
initiative aimed at enhancing patient outcomes. Notably, our approach aligns with this
paradigm, specifically in the context of discerning the suitability of patients for transcatheter
aortic valve replacement (TAVR) or surgical aortic valve replacement (SAVR) within a clin-
ical framework analogous to our own. The model, distinguished by its capacity to be
wielded even by operators with limited experience, emerges as a valuable tool for selecting
patients eligible for TAVR procedures. This not only streamlines the decision-making
process but also contributes to a reduction in procedural steps and the overall healthcare
burden, thereby maximizing the utility of readily available information.

Our cohort’s uniqueness stems from the selection of patients with very high cardiovas-
cular risks and compares them to other high-risk Asian cohorts with a comparable 1-year
survival rate of 84.7% and 88.6% for TAVR and SAVR, respectively [17,18].



Med. Sci. 2024, 12, 3 7 of 9

From the variable selection results, our study showed that age, STS score, frailty score,
and CKD are the highest-value predictors. Our findings emphasize distinct predictors of
valve selection in which accessible data collected at the point of service were utilized to
generate the prediction model.

The decision process for valve selection has normally depended on the heart valve
team in collaboration with the patient and their family [19]. Our study identifies factors
associated with these modality decisions. Frailty, STS, and CKD are important variables
selected by the model that achieved 94% accuracy in the prediction of valve modality. These
factors reflect factors that clinicians weigh in real-world practice and further explore in
detail based on what the standard guideline has already recommended [3]. In addition
to our model’s performance in deriving related factors, our cohort demonstrated similar
outcome profiles compared to other clinical cohorts, which indeed supported the efficiency
of the decision model to maintain the status quo. These factors should be prospectively
studied to further explore their significance on the outcome.

Whether these significant parameters are justified to be a part of the patient selection
criteria remains unknown and will need a long-term study to explore the relationship
between the predictive factors and long-term outcomes. Due to the current unavailability
of outcome data, it is important to begin compiling clinical and demographic characteristics
into a large registry database containing future procedure and postprocedural care data as
well as outcome data.

Despite expert-opinion-led decision making on valve replacement for individual
patients being considered as a standard practice, the rationale for each decision under
different circumstances has never been documented. This model pinpoints the clinically
important factors that experts used to determine a suitable valve replacement modality.
Therefore, those factors may be incorporated into a local guideline and used in assisting
the design of further studies to explore the impact on long-term outcomes.

Our study has limitations that must be acknowledged. Firstly, the enrolled subjects
from a single center might not represent the patient characteristics in developed countries.
Furthermore, the present study had a small sample size, which is not feasible for all
machine learning methods. However, the methods used in this study (i.e., imputation,
LASSO regression, decision tree) are valid with a small sample size. Also, our center is one
of Thailand’s highest TAVR volume centers.

5. Conclusions

In conclusion, we have described our machine learning models predictions of the
probability of aortic valve replacement modality selection among our long-term cohort.
This study is among the very first to present models that reflect in-depth clinical practice
in a developing country. We also constructed and validated the tool to predict valve
replacement modality selection. These local data can help address a range of health care-
associated factors that impact decision making in the valve selection process. Information
from this model might also be used to determine patient care quality and shape future
study designs that can optimize patient selection criteria. The results could serve as an
assistance tool to guide clinicians in their assessment of important clinical variables that
impact the selection of the optimal valve replacement procedure based on an individual’s
clinical profile in resource-constrained clinical settings. Further study is required to explore
the clinical benefits of the predictive model and factors in clinical practice.
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