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Abstract: Neuroblastoma, a paediatric malignancy with high rates of cancer-related morbidity and
mortality, is of significant interest to the field of paediatric cancers. High-risk NB tumours are usually
metastatic and result in survival rates of less than 50%. Machine learning approaches have been
applied to various neuroblastoma patient data to retrieve relevant clinical and biological information
and develop predictive models. Given this background, this study will catalogue and summarise the
literature that has used machine learning and statistical methods to analyse data such as multi-omics,
histological sections, and medical images to make clinical predictions. Furthermore, the question
will be turned on its head, and the use of machine learning to accurately stratify NB patients by risk
groups and to predict outcomes, including survival and treatment response, will be summarised.
Overall, this study aims to catalogue and summarise the important work conducted to date on
the subject of expression-based predictor models and machine learning in neuroblastoma for risk
stratification and patient outcomes including survival, and treatment response which may assist and
direct future diagnostic and therapeutic efforts.

Keywords: neuroblastoma; machine learning; multi-omics; classification; risk; outcome; survival;
treatment

1. Introduction

Neuroblastoma (NB) is the second most common malignancy in infants and children,
presenting as a tumour of the sympathetic nervous system. Circa 60% of these tumours
occur in the abdominal region, and of those, half are located in the medulla of the adrenal
glands [1,2].

NB staging is based on the international neuroblastoma risk group staging system
(INRGSS) and relies on image-defined risk factors (IDRF), in which locoregional tumours
(L1 and L2) display the absence and presence of IDRF, respectively. IDRFs represent surgical
risk factors that can be identified in medical images. M displays disseminated disease, and
MS encompasses L1 and L2 with metastasis limited to locations such as the skin, liver, and
bone marrow (but not cortical bone) in infants younger than 1.5 years (18 months) [3,4].

Previously, the international neuroblastoma staging system (INSS) was utilised and
included stages 1 and 2, which encompass locoregional tumours that can be completely or
partially resected, respectively, while stage 3, which crosses the midline, is unresectable
and unilateral and may or may not involve local lymph nodes. Stage 4 describes distant
metastasis of any primary tumour, and 4S represents stages 1 or 2 tumours with limited
metastasis to the liver, skin, and bone marrow (but not cortical bone) in children younger
than the age of 12 months [3,4].

Risk stratification in NB patients divides cases into low, intermediate, and high-risk
groups based on multiple parameters such as histological features, MYCN amplification,
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DNA ploidy, age, chromosomal alterations (including alterations to 11q), differentiation
status, and stage at diagnosis [5–9]. Risk groups bear substantial differences in prognoses;
for example, low- and intermediate-risk groups may display an overall survival (OS) of 95%,
while high-risk cases will display a dismal survival of less than 50% and may experience a
higher rate of recurrence despite treatment [5–8]. On a molecular level, high-risk MYCN
amplification constitutes circa 40–50% of this category, while the alternating length of
telomerase (ALT) and the arrangement of the telomerase reverse transcriptase (TERT) gene
also constitute 25% and 23–31% of high-risk cases, respectively [10,11].

Big data technologies have shown great promise to process data from various sources
in the form of structured and unstructured data, and have yielded clinically valuable
information. These technologies have also led to the proposition and improvement of
predictive models of patient prognosis and survival [12]. Many studies have used machine
learning (ML) and statistical methods to develop multi-gene models or other predictor
models to anticipate patient subgrouping, risk, outcome (including survival, relapse, and
recurrence), and treatment response [13]. It is important to note that patient outcomes
refer to the destination of the clinical intervention used, which will provide feedback on its
efficacy, and therefore patient survival and mortality rate would be viewed as a subset of
the patient outcomes [14].

One example of a multi-gene predictor model is a study that identified a 59-gene
signature to predict NB patient survival [15]. This study built a gene-expression signature
based on 30, 313, and 236 training, testing, and validation samples, respectively (579 patient
samples in total). The resulting signature showed performance, sensitivity, and specificity
of 85.4%, 84.4%, and 86.5%, respectively, in predicting the patient outcome [15]. Also,
patients with a higher risk signature would be deemed at higher risk of death and relapse,
with an odds ratio for overall survival (OS) and progression-free survival (PFS) of 19.32 and
3.96, respectively, suggesting that the 59-gene signature predict NB patient outcomes [15].

Moreover, ML has been applied to a multitude of patient data, including multi-omics
(genomic, transcriptomic, and methylome-sequencing data) in addition to microarray
data [12,16] and histological and medical imaging data [17,18] to establish risk and predict
outcomes and survival and treatment outcomes. ML methods include support vector
machines (SVM) [19], artificial neural networks (ANN) [20], decision tree (DT) [21], and
random forest (RF) [22]. Consistently, SVMs are used for classification and regression in a
supervised fashion [23]. ANN is an adaptive self-learner that imitates biological networks’
behavioural properties [24], while multilayer perception (MLP) is a feedforward ANN
architecture that is known to be a robust approximator for classification and prediction
purposes and may be viewed as the most commonly used ANN system [25]. Further, DTs,
on the other hand, recursively separate observations made into branches to generate a tree
to improve prediction and decision accuracy [21,25]. RF is an ensemble ML algorithm that
can process complex interactions and classification features, learns rapidly, and performs
robustly even with missing data [26]. Moreover, logistic regressions are used to make
binary or multi-class variable predictions and are borrowed by ML methods to predict the
probabilities of classes [27]. Deep learning (DL), as a subsection of ML, is generally used
synonymously with deep neural networks (DNN) and can transform data through various
representation levels. DL (DNN) can also predict clinical outcomes in NB patients [28], and
it can be utilised for image detection and analysis in cancer [29]. Also, convolutional neural
networks (CNN), as a type of DL (DNN), have been shown to learn patterns within images
for classification and object recognition [27] (Figure 1). Finally, ML can be supervised or
unsupervised; in the supervised fashion, the input data is labelled, while it is not in the
unsupervised learning method.
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Figure 1. ML in NB. Various patient big data, including genomics, radiology, histology, and patient 
information, can be processed by ML methods such as artificial neural networks (ANN) and multi-
layer perceptron (MLP), which is a feedforward ANN architecture, support vector machines (SVM), 
random forest (RF), decision tree (DT), Deep learning (DL)/deep neural network (DNN). The tasks 
that can be used by ANN/MLP are the analysis of radiological/imaging data and can be used to 
predict outcomes, including survival. SVM can be used for methylome, histological, and radiologi-
cal images and can be used to predict risk and outcomes, including survival. RF can analyse 
methylome data and radiological images and predict patient survival; DTs can be used to predict 
survival; and finally, DL/DNN can be used for transcriptomics and histological data. It can also be 
used for predicting INSS staging, risk groups, and patient outcomes including survival, treatment 
and network analysis. Notably, SVM can be used with SIFT or RFE, for histological data classifica-
tion and methylome data, respectively. 

Many studies use ML tools for patient outcome prediction. For example, Oberthuer 
et al. have shown that SVM can be utilised to classify high-risk NB patients based on 4 × 
44 K microarray data from 709 NB samples. The classification model was built on 75 NB 
tumours with contrasting characteristics and clinical courses, while validation was per-
formed on the remaining 634 samples, and Kaplan–Meier and multivariate Cox regression 
were also utilised [23]. The classifier generated predicted patient outcomes with an accu-
racy of 0.95, and this showed the highest clinical value for low and intermediate-risk pa-
tients (low-risk, event-free survival (EFS): 0.84, OS: 0.99, and intermediate-risk, EFS: 0.88 
and OS: 1 for these groups, respectively). This method could be integrated into the risk 
stratification system for low- and intermediate-risk patients [23]. 

Given this background, in this study, the utility of multi-omics, histological, and ra-
diological data for ML processing was discussed. Finally, studies reporting data pro-
cessing by ML to stratify risk groups and predict outcomes, survival, and treatment re-
sponse were examined. 
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Figure 1. ML in NB. Various patient big data, including genomics, radiology, histology, and pa-
tient information, can be processed by ML methods such as artificial neural networks (ANN) and
multilayer perceptron (MLP), which is a feedforward ANN architecture, support vector machines
(SVM), random forest (RF), decision tree (DT), Deep learning (DL)/deep neural network (DNN).
The tasks that can be used by ANN/MLP are the analysis of radiological/imaging data and can be
used to predict outcomes, including survival. SVM can be used for methylome, histological, and
radiological images and can be used to predict risk and outcomes, including survival. RF can analyse
methylome data and radiological images and predict patient survival; DTs can be used to predict
survival; and finally, DL/DNN can be used for transcriptomics and histological data. It can also be
used for predicting INSS staging, risk groups, and patient outcomes including survival, treatment
and network analysis. Notably, SVM can be used with SIFT or RFE, for histological data classification
and methylome data, respectively.

Many studies use ML tools for patient outcome prediction. For example, Oberthuer
et al. have shown that SVM can be utilised to classify high-risk NB patients based on
4 × 44 K microarray data from 709 NB samples. The classification model was built on
75 NB tumours with contrasting characteristics and clinical courses, while validation
was performed on the remaining 634 samples, and Kaplan–Meier and multivariate Cox
regression were also utilised [23]. The classifier generated predicted patient outcomes with
an accuracy of 0.95, and this showed the highest clinical value for low and intermediate-risk
patients (low-risk, event-free survival (EFS): 0.84, OS: 0.99, and intermediate-risk, EFS: 0.88
and OS: 1 for these groups, respectively). This method could be integrated into the risk
stratification system for low- and intermediate-risk patients [23].

Given this background, in this study, the utility of multi-omics, histological, and radio-
logical data for ML processing was discussed. Finally, studies reporting data processing
by ML to stratify risk groups and predict outcomes, survival, and treatment response
were examined.
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2. The Use of Patient Data for Predicting Patient Outcomes
2.1. The Use of Expression-Based Data for the Development of Multi-Gene Predictor Models and
INSS Staging

Expression-based data, including RNA-sequencing, and microarrays, can be useful
for the molecular classification of cancers and for identifying biomarkers, drug targets,
and patient prognosis [16]. Three putative genomic subtypes have been proposed in
NB, inclusive of types 1, 2A, and 2B. Accordingly, type 1 displays high TrkA expression,
low-risk tumour, and triploid DNA content; 2A comprises intermediate-risk tumours,
frequent 11q deletions, and 17q gain with no MYCN-amplification; while 2B comprises
high-risk tumours with MYCN amplification, a high frequency of 1p deletions, and 17q
gains [30,31]. The most aggressive NB type comprises MYCN amplification and low
expression of NTRK1, while elevated expression or mutations in ALK are also linked to
unfavourable outcomes [32]. This study explored subgroups based on the gene expression
profiles of 47 microarray samples, and 4 subgroups (p1–p4) were identified within these
2 separate datasets using principal component analysis and verified using unsupervised
hierarchical clustering of a third dataset (comprising 101 NB samples) [32]. For example,
the p3 subgroup was significantly linked to MYCN amplification and 1p deletion, while
INSS stages 3 and 4, unfavourable outcomes, and 17q gain were linked to subgroups p2,
p3, and p4, respectively, rather than p1. The occurrence of the 11q deletion was higher in
the p2 and p4 groups [32].

The authors then performed literature mining and found that the expression of six
genes, including ALK, BIRC5, MYCN, CCND1, NTRK1, and PHOX2B, distinguished four
clusters. For example, ALK and BIRC5 were upregulated in subgroups p3 and p2, while
these genes were downregulated in p1 and p4. MYCN was upregulated five times in p3
compared to p1 and p4. These subgroups also displayed differential Kaplan–Meier-based
OS and EFS; for example, p3 and p4 showed an OS of 50% and 62.5%, while the EFS for these
two subgroups was 22.2% and 25%, respectively [32]. This subgrouping could be tested
by unsupervised hierarchical clustering in a testing and validation dataset comprising
101 NB samples, and accordingly, 90 samples clustered into 4 hierarchical clusters of h1–h4
similar to p1–p4 [32]. Overall, the clusters identified by principal component analysis
yielded p1, p2, and p3 groups, which corresponded to the genomic subgroups (1, 2A, and
2B, respectively), while a new cluster was also found in all datasets (p4) that, in some
cases, was similar to 2A but in other cases was similar to the other subgroups [32]. This
fourth subgroup comprised samples with 11q deletion, non-MYCN-amplification status,
and reduced expression of ALK, PHOX2B, and BIRC5, and interestingly, this group was
linked to unfavourable patient outcomes and reduced survival [32]. In conclusion, this
study identified a 6-gene signature for NB classification (Figure 2A).

In another study, the authors attempted to develop quantitative RT-PCR-based pre-
dictors of NB patient outcomes using 96 NB samples [33]. This outcome predictor model
utilised 11 differentially expressed genes. Accordingly, of the 96 samples, 36 were utilised
to develop a gene expression-based model, 60 were used to test the model, and an ad-
ditional 120 NB samples were used to validate the model by RT-PCR. Of the 36 training
datasets used for qRT-PCR studies, 11 normalised gene expression levels were initially z
score-transformed and analysed using Cox regression, and of these, only 5 (PAFAH1B1,
GNB1, CHD5, PTPRF, and RERE) were found to be statistically significantly linked with
favourable patient outcomes, including longer EFS and OS, while NME1 was linked to
unfavourable clinical outcomes [33]. Furthermore, having applied principal component
analysis and univariate Cox regression in a backward selection fashion, only CDH5, NME1,
and PAFAH1B1 were found to be most robustly linked to OS and EFS, and this formed the
basis of the Y36 outcome prediction score. Accordingly, low and high Y36 levels were linked
to decreased and increased patient survival, respectively. The 60 testing NB samples were
also utilised to study these 3 genes (i.e., CDH5, NME1, and PAFAH1B1) and the outcome
predictor could distinguish 2 groups with significant differences in OS and EFS (HR, 9.3
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and 3.1, respectively) [33]. The model was then updated to capture all the 96 NB samples
used and was therefore referred to as the Y96 predictor model.
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Figure 2. The use of expression-based data for the development of multi-gene predictor models
and INSS staging. (A) The established subgroups of NB comprise 1, 2A, and 2B, in which the
1 subgroup includes Trk expression, ploidy, and low-risk stratification; 2A includes intermediate-
risk stratification, 11q deletion, and 17q gains but no MYCN-amplification; and finally, 2B includes
MYCN-amplified samples with a high frequency of 1p deletion and 17q gains. The study classified
NB samples based on 47 microarray samples into 4 subgroups (p1–p4); this was verified using 101 NB
samples. For example, p3 was linked to MYCN amplification and 1p deletion, while p4 was linked to
11q deletion and non-MYCN amplification. As for gene expression, ALK and BIRC5 were upregulated
in subgroups p3 and p2, while these genes were downregulated in p1 and p4. The p4 subgroup
was novel and showed some features of 2A. P4 also showed an ALK expression reduction. (B) of
the 96 NB samples, 36 were utilised to develop a gene expression-based model, and 60 were used
to test the model. 11 normalised gene expression levels were z-transformed and analysed using
Cox regression, and of these only 6 genes, 5 (PAFAH1B1, GNB1, CHD5, PTPRF, and RERE) were
found to be statistically significantly linked with favourable patient outcomes, while NME1 was
linked to unfavourable clinical outcomes. Using principal component analysis and Cox regression
in a backward selection fashion, CDH5, NME1, and PAFAH1B1 were found to be strongly linked to
outcomes and this formed the basis of the Y36 outcome prediction score. The 60 testing samples
were also successfully distinguished by the outcome predictor, and the predictor model was updated
to Y96. 352 patient gene expression datasets were tested using the Y96 predictor model, yielding
two groups with distinct OS and EFS values. (C) A study used the gene expression data of the
GSE85047 dataset, INSS staging information and patient data to form matrices that were then fed to
the DNN architecture. This matrix contained 280 patients and 13,091 gene names, and these were
split by training and testing datasets. The accuracy, macro-average, and micro-average values for
each dataset were then calculated. The accuracy of the training and test datasets was 100% and
55.56%, respectively. Also, the macro-average and micro-average AUCs were calculated as 1 for the
training dataset, and 0.71 and 0.77 for the testing dataset, respectively.



Med. Sci. 2024, 12, 5 6 of 34

In addition, 352 patient gene expression datasets obtained from microarrays (namely
set 2, n = 101, and set 3, n = 251) were used for further validation using the Y96 predictor
model [33]. The predictor model accurately separated these patients into two groups with
distinct OS and EFS levels. For example, set 2 had a 5-year OS of 0.97 (HR = 10.5) and a
5-year EFS of 0.91 (HR = 13.3), while set 3 had a 5-year OS of 0.99 (HR = 28.1) and a 5-year
EFS of 0.96 (HR = 15.6). Further, for set 2, only one patient with low-risk classification
(stage 3 with no MYCN amplification) was misclassified and suffered a fatal disease, while
for set 3, 7/148 patients had an event despite being assigned to the low-risk group [33].
Finally, the AUC for the ROC test was shown to be 0.87 and 0.89 for OS and EFS for the
outcome predictors proposed in this study. In conclusion, the authors showed that CDH5,
NME1, and PAFAH1B1 genes formed a 3-gene signature predictive of patient outcomes
(Figure 2B) [33].

A study attempted to link gene expression profiles with INSS stage prediction by
using a DNN [28]. Accordingly, the DNN was constructed based on gene expression
omnibus (GEO) and the cancer genome atlas databases (TCGA), which, in association with
patient information and INSS staging, could allow the examination of correlations between
genomic data and clinical parameters [28]. Consistently, 280 NB datasets deposited in
GSE85047 and its associated clinical data were obtained, and matrices inclusive of INSS
stage and gene expression array data were formed and fed to the DNN architecture [28].
This matrix contained 280 patients and 13,091 genes and was divided by training and
testing datasets (by a ratio of 8:2), and the accuracy of the model was calculated for both
datasets and reported as AUC-ROC curves. For example, after 5000 iterations, the accuracy
of the approach for training and test datasets was 100% and 55.56%, respectively. Also, the
macro-average, micro-average, and all the AUC values for the estimation of one-versus-
rest (OVR) were calculated as 1 for the training dataset. Also, for the testing dataset, the
macro-average and micro-average AUCs were 0.71 and 0.77, respectively [28]. The OVR
AUCs for patient stages ranging from 1–4S were 0.8, 0.66, 0.59, 0.85, and 0.58, respectively.
Overall, the poor AUC for the test datasets may have been due to overfitting for stages 2, 3,
and 4S, and this model distinguished stage 1 and 4 patients (alternatively, there may not
have been distinguishable genes between 2, 3, and 4S stage expression profiles) [28]. In
conclusion, the DNN model developed by this study could be improved by adding more
labelled samples (Figure 2C).

In summary, this section suggested that transcriptomics efforts (including microarray
and RNA-sequencing) can be analysed for the establishment of multi-gene predictor models
capable of discriminating amongst NB subtypes. To this end, unsupervised expression
profiling can be achieved by principal component analysis followed by unsupervised
hierarchical clustering, and this approach can distinguish between subtypes. In addition,
differentially expressed genes tested by qPCR could be z-transformed and analysed by
univariate Cox regression and principal component analysis in a backward selection fashion,
yielding a subset of genes linked to various clinicopathological aspects such as OS and EFS.
Using these methods, it is possible to form a useful multi-gene one-score predictor model
of outcome (for example, Y96). DNN can be applied to NB expression data from the GEO
and TCGA databases to accurately classify patients based on the INSS stage.

2.2. Methylome Data to Predict MYCN Status-Linked Outcomes

NB is, for the most part, epigenetically regulated [34,35], and the CpG island methy-
lator phenotype (CIMP) is linked to poor NB patients; therefore, it stands to reason that
methylation signatures may indeed be of significant interest for NB prognosis studies [36].
In a study, the link between CpG methylation signature and MYCN amplification status
was investigated in a total of 126 NB samples, inclusive of 45 MYCN-amplified and 81
non-MYCN-amplified datasets deposited to therapeutically applicable research to generate
effective treatment (TARGET); from these datasets, 396,065 CpGs were retrieved [37]. Dif-
ferential methylated CpGs were obtained using the ChAMP programme, and the authors
found 663 differentially methylated CpGs of 369 differentially methylated genes. Of these
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369 differentially methylated genes, 238 and 131 genes displayed high and low methylation
status, respectively, in MYCN-amplified compared to non-MYCN-amplified samples [37].
Additionally, 14 genes, including NXPH1 and SOX2-OT, were methylated at high levels
(defined as having at least six differentially methylated CpGs) between MYCN-amplified
and non-amplified samples. Furthermore, gene ontology analyses showed the enrichment
of the extracellular matrix and neural crest differentiation term, suggesting links to NB [37].

Further, recursive feature elimination (RFE) was utilised to retrieve the most important
features. Accordingly, 25/663 of these islands were processed by RFE and ML (SVM), and
these CpG enabled a 100% clustering accuracy of these 126 TARGET samples based on
their MYCN amplification status (with no misclassification) [37]. Similarly, a dendrogram
plot was generated using ensemble hierarchical and K-means clustering applied to the 663
CpGs. This led to the correct clustering of the 122/126 TARGET datasets [37].

The 25/663 CpG feature selected by RFE was utilised to build an SVM ML model to
classify the 126 TARGET samples. This model was then tested on three testing datasets
(GSE54719 (n = 35), GSE65306 (n = 28) and GSE120650 (n = 58)) obtained from the GEO,
yielding accuracies of 100, 93, and 97%, respectively [37].

The study also utilised Kaplan–Meier survival plots and Cox regression. Furthermore,
specific CpGs associated with patient survival were also established [37]. Accordingly, eight
CpGs showed links to survival, while five CpGs were associated with EFS. For example,
cg00540828, linked to the CUX1 gene, showed a coefficient of −0.0146 and was linked to
OS. Also, cg01710189 loci, linked to the PDLIM2 gene, displayed a coefficient of −1.254
and was associated with EFS. It is noteworthy that positive coefficient CpGs were linked to
the MYCN-amplified category, while negative coefficient CpGs were linked to the MYCN
non-amplified category [37].

Kaplan–Meier analyses also showed that MYCN amplification status was associated
with CpG score and patient survival (OS, hazard ratio, HR = 5.11, EFS, HR = 4.84) since
CpG high and low scores were linked to MYCN amplification and non-amplification,
respectively [37]. Notably, CpG scores were based on their coefficients and were given a
value of 1 or 0 for each patient. In conclusion, this study utilised statistical and ML methods
to extract features of DNA methylome data to retrieve signatures predictive of MYCN
amplification status and patient prognosis, which may be useful for early patient diagnosis
and risk stratification (Figure 3A) [37].

Another study attempted to understand DNA methylation as part of the epigenetic
mechanisms of gene regulation in NB by utilising RF [38]. RF is simple, intuitive, and
computationally less costly, and this study attempted to identify an intermediate-risk
group within the low-risk subpopulation of NB patients [38]. RF could be slightly slow
in forming a model once trained. Accordingly, 493 NB methylome data, referred to as
the Human Methylation 450 K dataset, was collected from TARGET and other sources.
Initially, the data was processed using principal component analysis, and it was shown that
MYCN amplification formed a cluster, unlike the INSS stage, which did not show a clear
cluster. This suggested that perhaps MYCN amplification status was linked to the DNA
methylation pattern [38]. Moreover, this analysis distinguished 4 clusters of patients: A,
MYCN-amplified patients; B, stage 4 INSS without MYCN amplification; C, stage INSS 4
patients; and D, stage 1–3 without MYCN amplification [38].

The authors also evaluated the adequacy of the classification method of group A–D
by applying RF to the Human Methylation 450 K dataset. For groups A and B with more
high-risk characteristics, the recall was much better (0.881 and 0.926) than the low-risk
groups C and D (0.73 and 0.35), respectively, indicating that groups A and B were linked
to alterations in DNA methylation. In addition, the authors established precision scores
for samples, and it was shown that groups A and B (0.93 and 0.833, respectively) were
correctly and accurately classified; this did not stand true for groups C and D (0.577 and
0.414, respectively) since circa half the samples were accurately predicted [38].
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Figure 3. Applying ML methods to methylome data to predict MYCN status-linked outcomes.
(A) 128 NB samples with methylation information were split into 45 MYCN-amplified and 81 non-
MYCN-amplified datasets, and 369,065 CpGs were obtained. Using the ChAMP programme, 663 dif-
ferentially methylated CpGs pertinent to 369 genes were obtained. Of these 369 differentially methy-
lated genes, 238 and 131 had high and low levels of methylation in MYCN-amplified samples
compared to non-MYCN-amplified samples. 14 genes, including NXPH1 and SOX2-OT, showed
at least 6 differentially methylated CpGs. 25/663 features were deemed most important, and after
processing these features using RFE and ML, 100% accuracy of MYCN amplification status (amongst
the 126 datasets) was achieved. This model was then tested on three testing datasets (GSE54719
(n = 35), GSE65306 (n = 28) and GSE120650 (n = 58)) yielding accuracies of 100, 93, and 97%, respec-
tively. Finally, 8 CpGs showed links to OS, while 5 CpGs were associated with EFS. (B) The 493 NB
methylome data (Human Methylation 450 K dataset), was processed using principal component
analysis, and it clustered with MYCN status and yielded 4 groups. The 4 clusters of patients included:
A, MYCN-amplified patients; B, stage 4 INSS without MYCN amplification; C, stage INSS 4 patients;
and D, stages 1–3 without MYCN amplification. RF was applied to this dataset and for group A-D,
the recall was 0.881, 0.926, 0.73, and 0.35, respectively, while precision was 0.93, 0.833, 0.577, and
0.414, respectively. MYCN-amplified group A was accurately classified when 450 K-enhancer probes
were used.

Moreover, the feature selection aspect utilised in this study was based on probe
annotation since the number of samples (n = 493) was fewer than the variables (p > 480,000).
Expert knowledge about the transcription start site, enhancer, and CpG islands was used
to design probes. The prediction power of these probe annotation groups was expressed in
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metrics like the F1-score. For example, the F1-score for 24 probe groups, including but not
limited to the promoter, transcription start site, 3′-untranslated regions, and CpG islands
within the regions, was plotted for groups A and B. Group A was accurately classified
when 450 K-enhancer probes were used, but promoter regions bearing CpG islands showed
lower prediction capacity [38]. This suggested that enhancer-annotated regions had strong
predictive power, and this was more profound for MYCN-amplified NB.

In conclusion, this study showed that the MYCN-amplified A group was linked to
DNA methylation of the enhancer regions. In addition, this RF-based model showed high
predictive power compared to other models (Figure 3B) [38].

In summary, 25/663 CpGs can be selected by RFE and used to build the SVM model
capable of stratifying NB patients based on MYCN amplification status, wherein these
unique CpGs may be useful for building a diagnostic indicator for MYCN amplification
in this cancer. Cox regression can be used to assess the impact of these 25 CpGs on NB
patient survival. Finally, analysing NB methylome data from TARGET with principal
component analysis can yield clusters of patients based on MYCN amplification status and
the adequacy and accuracy of the approach for each of the four clusters (subgroups) can
be established using RF. Subgroup classification based on probe annotation may also be
relevant, and enhancer probes may display a higher level of accuracy compared to other
loci. Overall, this section outlined the study of methylome data using ML for predicting
subgroups based on MYCN status.

2.3. Histological Data for ML to Assist NB Diagnostics

The management of NB can be greatly improved by histopathological classification,
and histopathological studies are considered the gold standard for NB diagnostics and
classification [39]. Pathologists use microscopes to classify tumour samples deposited onto
glass slides and stained, usually with H&E stain, and these slides are then examined at
low and then high magnification in search of representative regions that may assist in the
NB classification [39]. As such, the NB grading process requires a trained pathologist to
accurately determine the morphological properties of the tumour tissue using a micro-
scope [17]. However, digital scanners have enabled the scanning of tissue samples in a
cross-sectional fashion to obtain whole-slide digital scans. As a result, these images can
allow for qualitative and quantitative parameter evaluation [17]. A study by Kong et al. in
2009 applied image analysis to H&E-stained slides of neuroblastic cancer patients. Texture
features obtained from tissue-segmented components were extracted and processed by a
classifier previously trained by training images comprising various neuroblastic differentia-
tion grades. Accordingly, the training dataset consisted of 387 image tiles obtained from
three whole slides. This approach yielded a good representation of the input discriminating
data, and on a plot, each class was compact and defined. The selected features were then
analysed by different classifiers for each resolution level over the training datasets using
a leave-one-out validation strategy. In this method, all samples except one were used
for training, and the left-out sample could then be used for testing. For example, feature
extraction followed by classification by SVM for resolution levels 1, 2, 3, and 4 yielded
3, 6, 10, and 5 features, respectively [17]. Further, the authors obtained the accuracy of
this classification on a tile level. For example, SVM for resolution levels 1, 2, 3, and 4
yielded 98.7, 97.44, 98.71, and 97.44% accuracy, respectively. The authors also established
classification accuracy per 33 whole slides as testing datasets. These neuroblastic types,
comprising 10 undifferentiated NB, 13 differentiated NB, and 10 poorly differentiated NB,
yielded accuracies of 90, 84.62, and 90%, respectively, and the overall accuracy was 87.88%;
therefore, the tool was promising for improving NB grading (Figure 4A) [17].
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Figure 4. The use of patient histological data for ML-based classification. (A) A study used 3 whole
H&E slides of neuroblastic cancer to retrieve 387 image tiles so that they were a good representation
of the discriminating features. The authors used a leave-one-out method to select features for each
resolution level. For example, feature extraction followed by SVM-based classification yielded 3, 6,
10, and 5 features for resolution levels 1, 2, 3, and 4, respectively. For the testing dataset, inclusive of
33 whole slides, accuracies of 90, 84.62, and 90% were obtained for undifferentiated, differentiated,
and poorly differentiated NB classes, respectively. (B) This study used 6 TMA slides and 7 whole
sections from 125 NB patients. H&E-stained tissue slides (under 5 categories of undifferentiated
NB, poorly differentiated NB, differentiating NB, ganglioneuroma, and ganglioneuroblastoma).
These images were cropped into 300 × 300 pixels, representing key features of subtypes (a total of
1043 cropped images, 5 subtypes, and 125 patients). Having extracted features, the SVM classifier
could classify five clinical classes. Testing datasets were also processed. Overall, by using SIFT, a
bag of features, and SVM, precision, recall, and F-measure were 83.81, 86.61, and 85.19, respectively.
For testing, they used 5 whole slides and applied the described method, yielding a tissue section
(4905) of ganglioneuroma, and 10/10 sub-images were assigned as this. (C) 563 H&E whole-slides
were obtained from 107 NB patients, including 2 groups of favourable (67) and unfavourable (40)
prognoses. Processing included nuclear instance segmentation, feature extraction, and per-patient
feature aggregation. The ML method for prognosis prediction included feature reduction, feature
selection, and model construction. The AUC for the training and validation datasets were 0.946 and
0.938, respectively.
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Computer-aided diagnostics (CAD) is gaining momentum to assist in patient classifi-
cation, which was adapted to the current study [40]. The classification methods from NB
histological images relied on segmentation and feature extraction. Segmentation relies on
morphological features, including the shape and size of cells, while extracting key features
of NB images may allow the recognition of features that are not easily noticeable by the
eye [39]. The study aimed to combine Scale Invariant Feature Transform (SIFT) (robust to
scale variation) with an encoding algorithm to retrieve distinct features from the images.
The use of the bag of features reduced the number of features extracted [39]. Accordingly,
the authors used images of NB, including six H&E-stained tissue microarrays (TMA) slides
retrieved from the tumour bank of a children’s hospital in Australia and seven whole
sections for 125 NB patients. The diameter of the TMAs was in the region of 1.2 mm, and a
thickness of 3 µm stained with H&E. These samples were initially classified into (1) undif-
ferentiated NB, (2) poorly—differentiated NB, (3) differentiating NB, (4) ganglioneuroma,
and (5) ganglioneuroblastoma [39]. To reduce the size of the images, the images were
cropped into regions of 300 × 300 pixels, in which the cropped regions contained all the
specifications of a subtype; this amounted to 1043 cropped images under the five described
subtypes for a total of 125 patients. The 1043 cropped images were split into three datasets:
623 for training, 209 for testing, and 211 for the second section of the validation process.
Having extracted distinct features and fed them to the encoding block to refine them into
discriminative features, SVM then classified the images into five clinical classes. Overall,
the algorithm (SIFT-descriptor) extracted feature vectors consisting of 128 aspects [39].

The authors reported contrast and edge thresholds for the SIFT process and relevant
classification accuracies. Contrast and edge thresholds eliminated key points bearing low
contrast and unstable key points near edges, respectively [39]. For example, for a contrast
threshold of 0.04, the classification accuracy was 76.58%, and for an edge threshold of 11,
the classification accuracy was 81.76%. The authors then tested the remaining training
set and the testing set, repeated the analyses 10 times, and reported the average accuracy.
The proposed method comprising SIFT with the bag of features and the SVM classifier
outperformed other methods since the precision, recall, and F-measure were 83.81, 86.61,
and 85.19%, respectively [39].

Finally, 623 sub-images from the Australian dataset were used for training, and five
whole tissue sections from Bristol, consisting of one ganglioneuroblastoma, one ganglioneu-
roma, three poorly differentiated NB, and ten randomly selected sub-images from each
whole image were used for validation. The algorithm first assigned a label and then classi-
fied them using a majority vote of 10 sub-images [39]. For example, a tissue section (4905)
was ganglioneuroma, and 10/10 sub-images were assigned as this. In conclusion, the
proposed method was viewed as a useful method for H&E-based predictions that may
facilitate diagnostics (Figure 4B) [39].

Moreover, the diagnosis and prognosis of NB are largely assisted by the international
neuroblastoma pathology classification (INPC). Although there may be inconsistencies in
the analysis of patient samples by pathologists, a study sought to establish a method of
reducing variability in classification. To that end, 563 H&E whole-slides were obtained from
107 NB patients who had undergone surgery for tumour resection, and two distinct groups
of favourable (67) and unfavourable (40) prognoses were established [41]. Accordingly,
the authors streamlined the multiple processes of nuclear instance segmentation, feature
extraction (including nucleus-level morphological and intensity feature extraction), and
per-patient feature aggregation [41]. For example, after nuclear instance segmentation,
the number of nuclei, those nuclei identified by the algorithm, and false positives were
established as 3408, 3407, and 46, respectively. That would represent a recall and precision of
98.62% and 98.65%, respectively. The next step was the ML method for prognosis prediction,
which included feature reduction, feature selection, and optimal model construction. For
example, patient-level features were reduced to 25, after which the datasets were split by
training and testing and underwent bootstrap resampling (1000×) [41]. A logistic regression
was also used to incorporate features into a multivariate model, and then various feature
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combinations were tested and AUCs were generated. Optimal model construction also
entailed boot-strapping resampling (1000×) with adjustments. For example, in both the
training and testing datasets, parameters such as age and nucleus morphology intensity of
features could accurately classify the patients (AUC of 0.946), while the validation dataset
achieved an AUC of 0.938 (Figure 4C) [41].

In conclusion, this study suggested that features derived from images, including nu-
clear morphology, could be prognostic, and therefore this feature could assist pathologists
with more accurate classifications.

Overall, this subsection highlighted the use of ML and statistical methods to facilitate
NB diagnostics predicated on histology slides. Feature extraction from tissue-segmented
components of scanned slides can be analysed using a classifier trained on images of
neuroblastic differentiation grades. For example, a training dataset might include image
tiles obtained from whole slides, which can then be analysed by a classifier (such as an
SVM) for multiple resolution levels using a leave-one-out approach and the accuracy of
the approach can be calculated. Also, the use of SIFT can assist in the retrieval of distinct
features that are robust to scale variation from images, while using the bag of features
can reduce the number of features. The method can obtain good precision, recall, and F-
measure. Finally, nuclear instance segmentation, feature extraction, and per-patient feature
aggregation can be conducted, and this can be followed by feature reduction, selection, and
model construction (ML), and good accuracy can be obtained.

2.4. Radiological Data for Clinical Predictions

Radiological patient data can be processed by ML [18]. As such, a study analysed
radiomics based on CT scans to establish intra-tumoural heterogeneity, relying on specific
statistical features within an image obtained from the entire primary tumour volume [18].
Accordingly, the authors hypothesised that CT-based radiomics features were linked to
heterogeneity, and, through that, to patient outcomes including IDRF, tumour differenti-
ation, metastasis, and MYCN amplification status. To that end, the authors used six ML
tools (radiomics-based ANN, Lasso and elastic-net regression, RF, and SVM) to retrospec-
tively process medical images and link them to patient outcomes. For example, an ANN
method was used to extract tumour radiomics features from the CT scans, and the other
ML tools were also trained alongside this and then tested for various patient outcomes.
This study also used a pre-trained 2D CNN on some images for comparison [18]. Nested
cross-validation strategies were also implemented for splitting the datasets.

Of these 65 patients, 35 and 30 were obtained from two children’s hospitals, respec-
tively. Primary tumours were segmented from CT scans and reviewed by a trained radiolo-
gist. A pyradiomics library was utilised to retrieve 105 radiomic features categorised into
classes (including but not limited to 23 grey-level co-occurrence matrices and 16 grey-level
run-length matrices) to characterise tumours [18]. The authors prevented overfitting by
applying nested cross-validation approaches to split the training and testing datasets (for
example, fivefold outer cross-validation and threefold internal cross-validation). Also, for
the CNN, working with 2D slices of 3D images was a useful strategy to increase the training
and testing dataset size 25-fold. In addition, each experiment (cross-validation process)
was repeated 10 times to evaluate the ROC-AUC. For the CNN model, the mean prediction
score of 25 images was calculated per patient, and then AUC for fivefold testing datasets
were generated. As mentioned, six ML algorithms were utilised. For example, the authors
formed a 3-layer ANN architecture with 1 and 10 hidden layers and units, respectively, to
predict outputs including metastasis, differentiation grade, MYCN status, IDRFs, mortality,
and mitosis to karyorrhexis index (MKI) [18].

ROC-AUC was also conducted, and the radiomics-based ANN, the best-performing
model, obtained a ROC-AUC value (and standard deviation) of 0.79 (0.045) for mortality,
while this algorithm also obtained 0.83 (0.043) for metastasis. For neuroblastic differenti-
ation grade, elastic-net regression performed better and obtained a ROC-AUC value of
0.82 (0.044) [18]. As for secondary outcomes, the radiomics-based ANN obtained 0.76
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(0.021), 0.66 (0.031), and 0.77 (0.038) for IDRF, MKI, and MYCN status, respectively. A
pre-trained 2D CNN model performed worse when compared to the best-performing
model proposed in this study; for example, for metastasis, a ROC-AUC of 0.77 (0.068) was
obtained (Figure 5) [18].
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Figure 5. CT-based radiomics data used by ML for key clinicopathological factor predictions. CT scan-
based image data was used in this study to establish factors such as MKI, IDRF, tumour differentiation,
metastasis, MYCN amplification, and mortality. 65 patients, comprising 35 and 30 from 2 children’s
hospitals. Primary tumour sections were segmented and reviewed; a pyramidomics library was also
used to obtain 105 radiomic features, and these features were categorised into at least 7 categories.
Six ML algorithms and a 2D-CNN model were utilised; overall, the authors formed a 3-layer ANN
architecture. The table summarises the ROC-AUC values (with standard deviations) for the six
clinicopathological aspects obtained by the best-performing algorithms.

In summary, the study revealed that ANN methods performed better than other
algorithms (2D-CNN, Lasso and elastic-net regression, RF, and SVM) for predicting all
the indicated aspects, except for the grade of differentiation from CT scans. In addition, it
was possible to use nested cross-validation methods to split training and testing datasets
repeatedly to prevent overfitting.

3. ML for 3 Critical Clinical Aspects (Risk, Outcomes including Survival, and Treatment)

The previous section dissected the use of various patient data for predicting patient
outcomes. In this section, the topic was turned on its head and dissected the use of ML
methods for the determination of patient risk, outcomes (including survival), and treatment.

3.1. ML to Determine Risk Stratification

In a study, the high-risk NB group was studied in greater detail using a DL (DNN)
algorithm [42]. Accordingly, 407 high-risk NB samples were collected from TARGET,
comprising 217 and 380 gene expression and copy number alteration datasets, respectively.
Within this dataset, 190 samples had both expression and copy number alteration data and
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were used for training and identifying prognostic aspects. An extra 176 NB samples (SEQC)
were used for external validation [42].

The authors stacked high-risk subtypes based on matrices of copy number alteration
and gene expression of the 190 training samples. This information was transformed
into 100 new features obtained from the autoencoder. The autoencoder (a DL method)
comprised five layers of NN and three hidden layers (with 500, 100, and 500 nodes). Cox
proportional hazard regression reduced these 100 new features to 35 that were linked to EFS
and OS scores (p < 0.05). Using K-means clustering analysis, the 35 new features clustered
with clustering numbers ranging from 2–6. The authors also used the C index to determine
the optimal number of clusters, which is two (two clusters G1 and G2 were formed) [42].

Given this setup, the authors assessed the prognostic differences between high-risk
subgroups, G1 and G2, in which G1 was assigned ultra-high risk. For example, the
autoencoder could distinguish G1 and G2 based on EFS and OS readouts with p values
of 2.2 × 10−7 and 2.8 × 10−8, respectively. The C-index for the autoencoder was 0.74 for
EFS and 0.71 for OS. Notably, the principal component analysis and iCluster could also
distinguish G1 and G2, and the autoinducer outperformed all other methods [42]. For
example, principal component analysis obtained EFS and OS p values of 0.068 and 0.012,
while iCluster, obtained EFS and OS p values of 1.22 × 10−4 and 3.76 × 10−5), respectively.
As mentioned, the validation dataset was also considered, and four classifiers, including
SVM, naïve Bayes, logistic regression, and XGBoost, were utilised for the classification and
prognostic prediction. SVM performed better than the other three classifiers (average AUC
of 0.844) and was also able to split the high-risk cases into two subgroups [42].

The authors used a t-test to distinguish between the two subtypes, and 302 and 851 up-
and downregulated genes in the G1 subgroups were studied using gene ontology. It was
shown that MYC target genes such as PLK1, FARSA, RRP9, and IMP4 were upregulated in
the G1 subtype (p value of 9.81 × 10−7) [42]. MYCN amplification was more frequently
found in the ultra-high-risk group in association with the overexpression of MYCN/MYC
genes [42]. Interferon alpha-related genes were represented in the downregulated genes of
the G1 subgroup (p value of 5.14 × 10−3) [42]. In conclusion, the prognostic subtypes were
identified by DL (DNN) approaches and validated by other classifiers, showing two distinct
groups within the NB high-risk groups with distinct prognoses (Figure 6A).

Interestingly, NB risk groups may also be linked to the tumour intracellular micro-
biome, and a study aimed to link these two aspects [43]. This study used 120 NB patient
RNA-sequencing datasets from the National Cancer Institute for human and microbial
genetic sequences. In this cohort, the mean age at diagnosis was four years and three
months, and the majority were male and were classified as high-risk based on COG criteria
(80.8%) [43]. Microbiota was found in the NB patient RNA-sequencing data by Skmer,
which extracted k-mer (K = 32) patterns of microbiome sequences, and this was referred
to as the MKP profile; as a result, the group was split into MKP1 and MKP2. The sur-
vival probability of MKP1 was lower than that of MKP2 (p = 9.5 × 10−8). The Pearson
Chi-square test also showed that risk groups were linked to MKP groups (p = 0.0195).
Accordingly, the high-risk patients were represented in both MKP clusters, but the low- and
intermediate-risk cases were represented in the MKP2 cluster only [43]. This suggested that
the risk group was linked to the MPK profile. As expected, the high-risk cases allocated
to the MKP1 group showed lower survival than their counterparts in the MKP2 group
(p value of 6.422 × 10−6, HR = 3.78). High-risk NB patients allocated to MKP2 also had
lower survival than the low-intermediate risk NB patients in MKP2 (p value of 0.0004
and HR = 5.56) [43]. In addition, it was shown that microbial gene abundance was highly
linked to prediction accuracy, and as such, the microbiome prediction score (M-score) was
introduced. The M-score split the high-risk patients into two Mhigh and MLow groups
with high accuracy compared to the current COG risk stratification. For example, the
Cox regression for survival showed that patients with Mhigh had shorter survival and
higher clinical risk compared to the Mlow group (p value = 0.0016). Finally, the Mhigh group
showed CREB activation, which may induce genes involved in proliferation, angiogenesis,
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and apoptosis [43]. In conclusion, the intracellular microbiota may impact signals that
influence patient survival and inform COG risk stratification (Figure 6B).
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Figure 6. NB patient risk stratification studies informed by ML and associated methods.
(A) 407 high-risk NB samples from TARGET comprised 217 and 380 gene expression and copy num-
ber alteration datasets. 190 samples had both expression and copy number alteration data, and
176 NB samples were used for validation. Stacked matrices were formed based on the expression
and copy number data, and 100 new features were obtained from the autoencoder (DL/DNN). Cox
regression reduced the 100 new features to 35 features that were linked to EFS and OS (p < 0.05).
K-means clustering and C-index split the group into G1 and G2. The autoencoder could distinguish
G1 and G2 based on EFS and OS readouts with p values of 2.2 × 10−7 and 2.8 × 10−8, respectively.
302 and 851 up- and downregulated genes in the G1 subgroup. For example, MYC targets PLK1,
FARSA, RRP9, and IMP4 were upregulated in the G1 subtype, and interferon alpha-related genes
were downregulated in G1. (B) 120 NB patient RNA-sequencing datasets were processed for human
and microbial sequences. Skmer extracted k-mer patterns (K = 32) of microbiome sequences (MKP
profile); therefore, the group was split into MKP1 and MKP2 (the survival probability of MKP1 was
lower than that of MKP2). The high-risk patients were represented in both MKP clusters, but the
low- and intermediate-risk cases were represented in the MKP2 cluster only. The high-risk cases
allocated to the MKP1 group showed lower survival than their counterparts allocated to the MKP2
group (p value of 6.422 × 10−6, HR = 3.78). High-risk NB patients allocated to MKP2 also had lower
survival than the low-intermediate-risk NB patients in MKP2 (p value of 0.0004 and HR = 5.56). Cox
regression for survival showed that patients with Mhigh had shorter survival compared to the Mlow

group (p value of 0.0016). Finally, the Mhigh group showed CREB expression.

In summary, copy number and expression data can be transformed into matrices; these
will then be fed to the encoder (DL), followed by Cox regression to reduce features and
estimate EFS and OS. K-means clustering and C-index can support deciphering specific
groups. The performance of the encoder (DL) can be compared to other methods. Each
risk group identified can be further tested with gene ontology. Finally, microbiota in NB
expression data could be identified by SKmer analysis, and this defined an MKP profile
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with distinct survival estimates. Using the Pearson Chi-square test, it is possible to link the
risk groups with the MPK profiles. Cox regression could link the microbiome prediction
score with survival.

3.2. ML to Predict NB Patient Outcomes, including Survival

As mentioned earlier, patient outcomes may encapsulate a range of measurable metrics,
including survival, mortality rate, and the like. This section aims to summarise studies
that have measured outcomes, including survival. A study used a gene expression-based
classification system to predict NB patient outcomes, and these outcomes were linked to
tumour hypoxic conditions [44]. Hypoxia, defined as low oxygen levels in tumours, may
influence tumour growth, treatment, and cancer stem cells and drive more aggressive
tumour behaviour, making this aspect relevant to patient outcomes [44–47]. This study
utilised an ANN (MLP) method to establish an NB patient predictive model linked to
tumour hypoxia. The study set up a classifier (ANN), which they refer to as the “NB-hypo
classifier”, and a total of 182 patient microarray datasets were obtained from four cohorts
(including data from a children’s university hospital in Essen, Germany) and were split
into 100 and 82 for training and testing, respectively. The classifier was trained based
on a leave-one-out cross-validation strategy, while it was then tested using the 82 testing
datasets [44]. Accordingly, for the 82 NB tumour datasets, the classifier predicted 53/59
(90%) good outcomes and 18/23 (78%) poor outcomes; as a result, the accuracy for patient
outcome prediction was estimated at 87% [44]. In addition, the performance of the classifier
for various pathological parameters, such as MYCN and age, was established. For example,
MYCN status displayed the highest sensitivity and the lowest specificity, while age at the
point of diagnosis showed an opposite trend, and the INSS stage showed more balanced
specificity and sensitivity levels.

NB-hypo classifier, followed by Kaplan–Meier curves and log-rank analyses, split the
patients into two groups with good and poor prognoses with distinct OS and EFS values
(p < 0.0001). For good versus poor distinction, the NB-hypo obtained an HR of 3.3 and 3 for
OS and EFS, respectively. INSS and MYCN status were also linked to OS and EFS based on
a multivariate Cox analysis. For example, for MYCN normal and amplified status, an HR
of 1.3 and 1.5 for OS and EFS were obtained, respectively [44]. The concordance between
predicted and actual patient outcomes was 48/49 (98%) in localised disease (stages 1–3)
and 4S, therefore, a 2% error rate was detected [44]. In contrast, the most misclassified
patients were stage 4. The classifier predicted five low/intermediate-risk patients with
100% accuracy. Gene ontology analyses showed the enrichment of the hypoxia term for
the poor outcome group, revealing that prognosis classification was linked to hypoxic
states [44]. In conclusion, this model enhanced the NB patient outcome predictions and
was useful for early-stage patients (Figure 7A).

In an interesting study from Javed Khan’s group, the authors attempted to use ANN
to more accurately predict outcomes for NB patient risk groups, since even though the
current risk stratification criteria are thorough, the survival rate of high-risk NB patients
remains at less than 30% [48]. To that end, they performed cDNA microarray profiling,
comprising clones, to train an ANN to accurately predict survival. Specifically, they
collected 56 treatment-naïve primary NB tumours (from 49 NB patients) and patients were
split into good and poor outcome groups based on EFS. For example, the former displayed
no relapse or progression for at least a total of 36 months (n = 30), while the latter died due to
NB (n = 19) and these tissues were studied by microarray. It is also noteworthy to mention
that the 56 samples were split into 35 and 21 training and testing groups, respectively [48].
The 56 NB samples were studied for 37,920 clones and processed using principal component
analysis, and this analysis split the samples by their outcomes. Of the 37,920 clones
selected, 10 passed the principal component analysis, which reduced dimensionality and
overfitting. Further, an ANN network with three layers (an input layer with 10 principal
component analysis or gene expression data, a hidden layer with 3 nodes, and an output
layer providing outcome votes) was generated. Using a leave-one-out strategy, the authors
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tested the samples during training of the ANN and assessed the prediction of outcomes
for all 37,920 clones [48]. Accordingly, this ANN predicted 16/19 poor outcomes and
27/30 good outcome patients, thus bearing a sensitivity and specificity of 84 and 90% for
poor and good outcomes, respectively. Further, positive predictive values of 84% and 90%
were obtained for poor and good outcomes, respectively [48].
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Figure 7. ML to predict NB patient outcomes. (A) A study comprised 182 patient microarray datasets
split into 100 and 82 training and testing datasets, respectively. This study developed an MLP
(ANN) method, and the training dataset underwent sampling and testing using a leave-one-out
and retesting method. For example, the 100 datasets were split into 99 and 1 (for training and
validation) and the classifier was therefore trained and validated. The model was tested using the
82 testing datasets. This ANN classifier performed well, for example, it predicted 53/59 (90%) good
outcomes and 18/23 (78%) poor outcomes, and the accuracy for patient outcome prediction was 87%.
(B) Another study also used an ANN to predict high-risk NB patient outcomes. Accordingly, 56 NB
patient samples (from 49 patients) were split into 30, and 19 alive and deceased groups, respectively.
These samples were studied for 37,920 expression clones and were reduced to 10 using principal
component analysis. Following this, an ANN model was built. A leave-one-out and retesting strategy
was employed and successfully predicted poor and good outcomes in 16/19 and 27/30 patients,
respectively. Further, recalibrating the ANN-based analysis (for 19 genes, including DLK1 and SLIT3)
and gene minimisation were performed, and 35 and 21 datasets were selected for training and testing,
respectively. This classifier predicted 5/5 poor outcomes and 15/16 good outcomes. Kaplan-Meier
analysis also revealed that the ANN successfully split the high-risk patients into good and poor
prognosis groups based on 37,920 clones (p = 0.0067) and 19 ANN-ranked genes (p = 0.0005).
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Further, the top 24 ANN-ranked clones (linked to 19 genes, including DLK1 and SLIT3)
more robustly separated poor from good outcomes compared to the 37,920 clones; this
was performed by gene minimisation methods and principal component analysis [48].
By recalibrating the ANN with the 19-gene signature and 35 training datasets, this clas-
sifier predicted 5/5 poor outcomes and 15/16 good outcomes, with a sensitivity and
specificity of 100 and 94%, respectively [48]. Finally, the Kaplan–Meier analysis was used
for survival prediction and showed that the ANN could partition the high-risk patients
based on 37,920 clones (p value of 0.0067) and 19 ANN-ranked genes (p value of 0.0005)
(Figure 7B) [48].

In summary, ANN methods with a leave-one-out strategy can be used to test NB
expression data, followed by statistical analysis to identify patients with good or poor
outcomes and distinct OS and EFS. Samples of patients with poor outcome classifications
were linked to hypoxia. Finally, the latter study provided evidence that gene expression
clones can be reduced in dimensionality with principal component analysis and then
classified by ANN. Kaplan–Meier analysis can predict the survival of patients.

The accurate prediction of survival of NB patients can be viewed as a strategy for
refining treatment stratification to minimise overtreatment [49]. ML has been applied to
patient survival prediction using algorithms including SVM [19], DNN/DL [20] and RF [22].
Ensemble classifiers enhance prediction performance, and outperform single classifiers
such as DT and SVM, and can be homogenous or heterogeneous based on the classification
algorithms used [19,49,50].

In a study, the authors applied a heterogenous ensemble learning method (DRGXG)
to assist NB patient survival prediction [49]. This learning method consisted of data
preprocessing by selecting 1119 NB patient records with 31 specific variables from TARGET.
Preprocessing eliminated datasets with missing values, leaving a total of 1115 samples and
22 variables. Further, these patient datasets received a vs. label to denote the status of
survival, alive (−1) or dead (1). By that token, 689 patients were alive, and the remaining
were dead [49]. This data was then split 70/30 for training and testing processes [49].
The heterogeneous ensemble learning strategy used was composed of three sections: the
heterogenous feature selection (HFS), heterogeneous base learners, and the weighted
area under the curve-based base learner integration (WAUCE). Accordingly, after data
preprocessing, 5 heterogenous base learners were developed, comprising 5 base learners
(DT, RF, SVM, and light and extreme gradient boosting (lightGBM and XGBoost)). Each
of these base learners was then processed by an HFS method to retrieve relevant optimal
features from each base learner. The effective feature subsets for each base learner guided
the formation of the base learners (priori knowledge). Subsequently, the five heterogeneous
base learners were integrated by the WAUCE [49]. The resulting method described formed
DRGXG, which was also applied to testing datasets [49]. The proposed method (DRGXG)
obtained 0.916, 0.911, 0.8741, 0.892, and 0.913 for accuracy, recall, precision, F1-score, and
AUC, respectively, performing better than single classifiers. Thus, the proposed method
achieved accuracy, recall, and AUC of over 90% [49]. By setting a binary outcome of
“survival” and “death” by the proposed method, in NB patients, the earlier the diagnosis,
the greater the likelihood that the prediction model would predict a “survival” outcome.
Also, age at diagnosis was significant; the older the patient is at diagnosis, the greater
the risk of “death” outcome. Also, the larger the ploidy value, the greater the likelihood
that the prediction model would assign “survival” as the status of the patient [49]. Finally,
10 rules were extracted from DRGXG to predict the survival status of patients (i.e., “dead”
or “alive”) with a higher than 90% accuracy. One example is the year of diagnosis > 2000,
year of last follow-up ≤ 2013, INSS state = 4, and grade = 0, classing the patient as 1
(alive) [49]. In conclusion, the proposed method extracted valuable information, performed
well, and may be able to assist clinical judgements (Figure 8A).
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Figure 8. ML to predict NB patient survival. (A) 1119 NB patient samples and 31 variables were
initially selected, and reprocessing reduced this value to 1115 NB patient samples and 22 variables.
After preprocessing, 5 base learners were developed (DT, RF, SVM, XGBoost, and LightGBM). Further,
a method was devised to extract optimal features relevant to each base learner and this guided
the formation of the base learner (priori knowledge). The heterogeneous base learners were then
integrated by WAUCE. DRGXG obtained 0.916, 0.911, 0.8741, 0.892, and 0.913 for accuracy, recall,
precision, F-score, and AUC, respectively. The classifier could predict a binary, alive (1) or dead (0)
outcome. Early diagnosis, age at diagnosis, and ploidy were all significant. (B) Survival in NB patients
was predicted using a DL method based on gene expression profiles. 721 NB patient microarray data
accompanied by survival and other clinical data, was obtained. Chi-square tests supported feature
selection, and 172 features were retrieved. K-means clustering divided the patients and features into
S1 and S2 groups. A DL/DNN comprising an encoder (with an attention mechanism) was fed the
subgroup features, and the decoder predicted survival (alive/dead status) in NB patients. F1-score,
accuracy, sensitivity, specificity, AUC, and 5-year AUC were established for the classifier in this study;
for the training set it was 0.881, 0.918, 0.913, 0.944, 0.968, and 0.974 and for the testing, it was 0.886,
0.852, 0.911, 0.605, 0.891, and 0.896, respectively. Patients with MYCN amplification status, of any
age, or gender, at stage 4 with a high-risk classification were placed in the S2 group.

In another study, the authors utilised DL to accurately predict survival in NB pa-
tients based on gene expression. Accordingly, 721 NB patient microarray data, including
GSE49710, was utilised and the accompanying clinical information, including patient sur-
vival, was also downloaded. Having applied the chi-square test to features and survival
in the patient datasets, 172 features were selected. These patients and features were then
divided into two groups using K-means clustering, whereby 50 genes marked the S1 group,
and 122 genes marked the S2 group. MYCN amplification was associated with the S2 group
and the S2 group also showed reduced survival compared to S1 [51]. Further, gene ontology
analyses showed that the S1 group was enriched for the JAK/STAT pathway, while the S2
group showed enrichment for bone morphogenesis and migration [51].
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Further, in a supervised classification model with attention mechanisms, a DNN (DL)
was constructed in which both groups of features were fed to the encoder, while the decoder
predicted survival probabilities with binary alive and dead outputs [51]. F1-score, accuracy,
sensitivity, specificity, AUC, and 5-year AUC were established for the proposed classifier
in this study for the training set as 0.881, 0.918, 0.913, 0.944, 0.968, and 0.974, and for the
testing set as 0.886, 0.852, 0.911, 0.605, 0.891, and 0.896, respectively [51]. The proposed
classifier in this study (the encoder-decoder) was compared with other classifiers. For
example, AUCs of 0.65, 0.43, 0.72, and 0.89 were obtained for the MYCN amplification
model, Zhong, De Preter, and the current model, respectively [51].

Clinical relevance analyses were established using multivariate Cox regression, and
parameters such as MYCN status, age, risk, and stage were tested, which were significant
(p > 0.05). The authors also built a nomogram with a calibration curve capable of predicting
patient survival. For example, patients with MYCN amplification status, of any age or
gender, at stage 4 with a high-risk classification were placed in the S2 group, suggesting
high clinical relevance [51]. Overall, this study used a DL-based model using 172 features
to class patients into two groups and predict their survival status (Figure 8B).

In summary, heterogeneous ensemble learners can be used for patient survival pre-
diction. These heterogeneous ensemble learners usually comprise an HFS, heterogeneous
base learners, and WAUCE. The output of this machine can then be tested using various
metrics. Finally, DL can also be used for survival prediction. Based on gene expression
data, chi-square and K-mean clustering can select features and partition patients and genes
into groups. The groups of features can then be fed to a DL method with an attention
mechanism to make survival predictions. This section outlined the prediction of outcomes
using ML methods.

3.3. ML to Predict NB Response to Treatment

Predicting response to treatment in NB patients can be of significant clinical value [27].
A study attempted to use a CNN method to analyse diagnostic metaiodobenzylguanidine
(MIBG) scans and thereby predict response to chemotherapy in NB. Accordingly, MIBG
scans utilise radionucleotides to image patients, and this imaging then contributes to the
Curie score for the disease burden assessment [27]. Despite this, no method can currently
predict responses to induction chemotherapy and the related Curie score ≤ 2 at the time
of diagnosis. This study used MIBG scans available in the INRG database of patients
registered with the Children’s Oncology Group trial, ANBL12P1. Of a total of 146 eligible
patients, 43 were excluded due to missing diagnoses or follow-up scans, or scans were
improperly formatted, and a total of 103 patients were selected. The patients with a
Curie score ≤ 2 responded to four cycles of induction chemotherapy (n = 67), whereas the
nonresponders (n = 36) displayed a Curie score >2 and were more likely to have advanced
INSS stage of disease and non-MYCN amplification status. As such, 82% of responders
were MYCN-amplified, and 56% of non-MYCN-amplified patients were responders [27].

From the viewpoint of the tools used, the authors applied a DL method (CNN). In
this case, diagnostic MIBG scans were fed as whole-body 2D images, and the response
to induction chemotherapy was predicted by CNN. In addition, a clinical classification
logistic regression used age, stage, and MYCN amplification status to predict response to
four cycles of induction chemotherapy. Also, a naïve Bayes ensemble classifier was used
to analyse the probabilities obtained from the CNN and clinical model to predict patient
outcomes. Overall, the AUCs for the CNN, clinical, naïve Bayes, and geometric models
were used and their performance was calculated [27].

Class-activation heatmaps were formed using the Grad-CAM method, and this showed
that CNN used disease areas of the scans to produce prediction outputs. For example, an
original MIBG image was given, and the same image superimposed with the grad-CAM
attention-based heatmap obtained from the CNN analysis was also shown. This composite
utilised read colours for the areas that CNN paid the most attention to and was therefore
clinically important [27]. The performance of the CNN, clinical classification, naïve Bayes,
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and the combined models (geometric mean) were assessed as AUC: 0.63, 0.65, 0.67, and 0.73,
respectively. Overall, the geometric means combined model was the highest performer [27].

To understand why the combined model performed better, the errors in each model
were analysed. For example, of the 45 incorrect CNN predictions, 55% were predicted
accurately by the clinical model. The clinical model had a higher accuracy than CNN
(66% compared to 56%), and this may have been because the clinical model predicted that
patients with localised disease or MYCN amplification would respond to chemotherapy.
On the other hand, the clinical model without CNN was also insufficient since CNN could
rely on features other than MYCN and stage to make predictions, and of the 35 patients
predicted incorrectly by the clinical model, 15 (43%) were accurately predicted by CNN [27]
(Figure 9). In summary, the authors demonstrated that ML can be used to make MIBG
diagnostic scans to predict responses to chemotherapy. The studies catalogued in this work
have been summarised in Table 1.
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Figure 9. Predicting response to treatment in NB patients based on MIBG scans and ML. A study
used the information of NB patients from COG represented in the ANBL12P1 trial. Of 146 eligible
patients, 43 were eliminated due to missing scans at diagnosis or follow-up or improper formatting.
Of the remaining 103 patients included in this study, 67 were responders and had a Curie score of ≤2,
while the nonresponders had a Curie core of >2 (36). 4 models were used in this study, including a
DL method (CNN), clinical classification logistic regression, naïve Bayes ensemble classifier, and a
combined model (geometric means). The performance of CNN, clinical classification, naïve Bayes
and the combined geometric method were assessed as having an AUC of 0.63, 0.65, 0.67, and 0.73,
respectively. An original MIBG image and the same image superimposed with the grad-CAM
attention-based heatmap obtained from the CNN analysis was given. This composite utilised read
colours for the areas that CNN paid attention to.
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Table 1. Summary of data type and tools used by the main studies and the findings.

Data Type Used and Lab Method Tools Used Findings Reference

59-gene signature obtained from data
mining from 579 patient datasets

(30 training, 313 testing, 236
validation), and qPCR

Data mining, multivariate Cox
regression

Signature predictor of outcome; for
example, patients with a higher risk

signature, deemed at higher risk of death
and relapse with an odds ratio for OS and

PFS of 19.32 and 3.96.

[15]

4 × 44 K microarray data from
709 NB specimens

SVM, Kaplan–Meier and
Multivariate Cox regression

Classifiers showed the highest clinical
value for low- and intermediate-risk

patients (low-risk: EFS: 0.84, OS: 0.99, and
intermediate-risk, EFS: 0.88, and OS: 1 for

these groups.

[23]

47 microarray samples (dataset 1
comprising 23 NB tumours, and

dataset 2 comprising 30 NB tumours)
and 101 NB samples for validation

Principal component analysis
and unsupervised hierarchical

clustering

6-gene signature (ALK, BIRC5, MYCN,
CCND1, NTRK1, and PHOX2B) identified

4 subgroups (p1–p4). Groups p1–p3
corresponded to subtypes 1,2A, and 2B, but

p4 was novel (11q deletion,
MYCN-non-amplified, low expression of
ALK, BIRC5, and PHOX2B linked to poor

outcomes).

[32]

96 samples and tested on 362 separate
microarray expression datasets, and

RT-PCR

Univariate Cox regression and
principal component analysis

A 3-gene (CDH5, PAFAH1B1, and NME1)
expression signature for risk stratification,
the Y36 predictor model could distinguish
2 groups in OS and EFS (HR, 9.3 and 3.1,
respectively), Y96 was also formed. From
the 352 validation samples, 2 groups with
distinct OS and EFS were distinguished.

[33]

280 NB datasets deposited in
GSE85047 and its clinical data were
obtained; matrices contained patient

data (INSS stage and gene
expression array)

DNN architecture
The OVR AUCs for patient stages ranging

from 1–4S were 0.8, 0.66, 0.59, 0.85, and
0.58, respectively.

[28]

126 NB samples inclusive of
45 MYCN-amplified and

81 non-MYCN-amplified datasets
and 663 differentially methylated

CpGs were obtained

ChAMP programme, RFE,
and ML (SVM), hierarchical

and K-means clustering,
Kaplan–Meier and Cox

regression

14 genes, including NXPH1 and SOX2-OT
were highly methylated.

25/663 of these islands and the 663 CpGs
led to correct clustering based on MYCN
status. MYCN amplification status was
associated with CpG score and patient

survival (OS: HR = 5.11, EFS: HR = 4.84).

[37]

493 NB methylome data referred to as
the Human Methylation 450 K dataset

Principal component analysis
and RF

Clustering based on MYCN led to
4 clusters: A, MYCN-amplified patients; B,
stage 4 INSS without MYCN amplification;
C, stage INSS 4 patients; and D, stage I-III
without MYCN amplification. RF made

accurate classifications for groups A and B
(these groups were linked to DNA

methylome).
MYCN-amplified A group was linked to

DNA methylation of the enhancer regions.

[38]

Training dataset consisted of
387 cropped image tiles obtained

from 3 whole slides

Feature construction,
selection, and extraction,

classification by SVM, and
leave-one-out method

Feature extraction followed by
classification by SVM for resolution levels
1, 2, 3 and 4, yielded 3, 6, 10, and 5 features,

respectively. Neuroblastic types
comprising 10 undifferentiated,
13 differentiated, and 10 poorly

differentiated NB, yielded accuracies of 90,
84.62 and 90%, respectively.

[17]
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Table 1. Cont.

Data Type Used and Lab Method Tools Used Findings Reference

6 TMA slides and 7 whole sections for
125 NB patients (3 datasets in total,
623 for training, 211 for the second

section of the validation process, and
209 for testing). 623 sub-images and

5 whole sections for validation

SIFT with the bag of features
and the SVM classifier

SIFT with the bag of features and the SVM
classifier outperformed other methods with
precision, recall, and F-measure were 83.81,

86.61, and 85.19, respectively. The
algorithm first assigned a label and then
classified using a majority vote. A tissue
section (4905) was ganglioneuroma, and

10/10 sub-images were assigned correctly.

[39]

563 H&E whole-slides were obtained
from 107 NB patients with two

distinct groups of favourable (67) and
unfavourable (40) prognoses

Segmentation, feature
extraction and per-patient

feature aggregation for feature
extraction. Feature reduction,
feature selection and model
construction for ML method

After nuclear instance segmentation, the
number of nuclei, those nuclei identified by

the algorithm, and false positives were
established as 3408, 3407, and 46,

respectively, and, a recall and precision of
98.62% and 98.65%, respectively. In both

the training and testing datasets,
clinicopathological factors such as nucleus
morphology intensity of features, and age
could accurately classify the patients with

an AUC of 0.946.

[41]

3D CT scans of 65 NB patients,
primary tumours were segmented
from CT scans and reviewed by a
radiologist. A pyradiomics library

was utilised to retrieve 105 radiomic
features

Lasso, logistic and elastic-net
regression, ANN, RF and

SVM classifiers and 2D CNN

ANN obtained AUC-ROC of 0.79 (0.045)
for mortality, 0.83 (0.043) for metastasis.

0.76 (0.021) for IDRF, 0.66 (0.031) for MKI
index, and 0.77 (0.038) for MYCN status.

For neuroblastic differentiation grade,
elastic-net regression obtained and AUC of

0.82 (0.044).

[18]

407 high-risk NB samples were
collected from TARGET comprising

217 and 380 gene expression and copy
number alteration datasets, 176 NB

datasets for validation

DL (DNN), Cox regression,
K-means clustering analysis,
SVM, naïve Bayes, logistic
regression and XGBoost

The autoencoder could distinguish G1 and
G2 based on EFS and OS readouts with
p values of 2.2 × 10−7 and 2.8 × 10−8,

respectively.
SVM performed better than the other three
classifiers (average AUC of 0.844) and was

also able to split the high-risk cases into
two subgroups. MYC target genes such as

PLK1, FARSA, RRP9, and IMP4 were
upregulated in the G1 subtype (p value of

9.81 × 10−7).

[42]

120 NB patient RNA-sequencing
datasets, the mean age at diagnosis

was four years and 3 months, and the
majority were male and were

classified as high-risk

Skmer, Pearson Chi-square
test, Cox regression

Microbiome sequences; MKP1/2 profiles.
The survival probability of MKP1 was

lower than that of MKP2 (p = 9.5 × 10−8).
The high-risk cases in the MKP1 group

showed lower survival than their
counterparts in MKP2 group

(p = 6.422 × 10−6, HR = 3.78). High-risk
NB patients in MKP2 also had lower

survival than the low-intermediate-risk NB
patients in MKP2 (p = 0.0004 and

HR = 5.56).

[43]

182 patient microarray datasets
obtained from 4 cohorts (100 training

and 82 testing)

ANN and leave-one-out
method, Kaplan–Meier plots

and log-rank tests

NB-hypo classifiers split the patients based
on good and poor prognosis with distinct

OS and EFS values (p-Value < 0.0001).
Errors occurred when classifying stages 1–4
(including 4S), while 100% accuracy was

obtained when processing
low-intermediate-risk patients.

[44]
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Table 1. Cont.

Data Type Used and Lab Method Tools Used Findings Reference

56 treatment-naïve primary NB
tumours (from 49 patients), 30 alive
and 19 (dead), 37,920 clones selected

Principal component analysis,
ANN, leave-one-out method,

Kaplan–Meier analysis

The ANN could partition the high-risk
patients based on 37,920 clones (p value of
0.0067) and 19 ANN-ranked genes (p value

of 0.0005).

[48]

1119 NB patient records with
31 variables, after preprocessing

1115 samples and 22 variables were
selected. 689 patients were alive and

the remaining were dead

DRGXG: heterogeneous
ensemble learning strategy:
HFS, heterogeneous base

learners (DT, RF, SVM, and
lightGBM, and XGBoost) and

WAUCE

The earlier the diagnosis, the greater the
likelihood that the prediction model would
predict a “survival” outcome. The older the
patient is at diagnosis, the greater the risk
of “death” outcome. The larger the ploidy
value, the greater the likelihood that the

prediction model would assign “survival”
as the status of the patient.

[49]

721 NB patient microarray data,
172 features selected

Chi-square test, K-means
clustering, supervised

classification model (DNN)
with attention mechanism

50 genes marked the S1 group, and
122 genes marked the S2 group. MYCN
amplification was associated with the

S2 group.
Multivariate Cox regression showed

significance for MYCN status, age, risk,
and stage (p > 0.05).

Patients with MYCN amplification status,
of any age, or gender, at stage 4 with

high-risk classification were placed in the
S2 group.

[51]

103 patients: patients with a Curie
score ≤ 2 responded to induction

chemotherapy (n = 67), whereas the
nonresponders (n = 36) displayed a

Curie score > 2

DL (DNN) method (CNN),
clinical classification logistic

regression, naïve Bayes
ensemble learner/classifier,

and geometric models,
Grad-CAM method

An original MIBG image and the same
image superimposed with the grad-CAM

attention-based heatmap obtained from the
CNN analysis were shown. This composite

utilised read colours for the areas that
CNN paid the most attention to. The

performance of the CNN, clinical
classification, naïve Bayes, and the

combined models (geometric mean) were
AUC: 0.63, 0.65, 0.67, and 0.73, respectively.

[27]

4. Discussion

Neuroblastoma, a paediatric malignancy of the peripheral nervous system, is the most
common solid malignancy in this age group, except for the malignancies of the cranium [1].
In NB, risk groups are defined based on various parameters, including age, stage, and
MYCN amplification [7].

4.1. Multi-Omics Data and Relevant Tools for Predicting NB Clinical Aspects

We discussed the utility of approaches to process patient multi-omics data, such
as transcriptomics, to predict NB subgroups, risk groups, and INSS staging [28,32,33].
Similarly, immune-metabolism-linked gene expression similar to MYCN amplification
status can be linked to prognosis in NB. Initially, differentially expressed immune genes
were processed with R software (v4.2.1) and ML [52]. This then led to the development of
risk scores. Based on these models, NB patients were grouped according to their prognostic
scores. Additionally, 89 immune-metabolism genes were differentially expressed between
MYCN-amplified and non-MYCN-amplified states. A subset including GLDC, GNAL1,
ABCC4, and CNR1 was chosen by ML to generate a prognostic model [52]. The Kaplan–
Meier curve and 5-year AUC-ROC showed that the model could predict patient prognosis,
and this was linked to expression levels of immune-related genes [52].

From the viewpoint of the methods used for subtype and INSS stage discrimination
and network building, several points can be made. For subtype stratification, transcrip-
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tomics followed by principal component analysis and unsupervised hierarchical clustering
in NB can be utilised. This approach may also inform specific targets for therapy and the
establishment of personalised therapies (for example, four subtypes, including one new
subtype identified in NB, were predicated on a 6-gene expression profile that corresponded
to previously postulated subtypes) [32]. Although these alternative classification systems
are very important, more work is required for their thorough characterisation and imple-
mentation in routine clinical NB diagnostics. In addition, using qPCR, univariate Cox
regression, and principal component analysis, a one-score Y96 NB risk predictor model
could be generated to reproducibly and easily classify NB risk groups [33]. Although this
model is well-developed and practical and could complement the current risk stratification
systems routinely used in clinics, more testing in large and independent cohorts is required
for a better validation of this predictor. Both studies relied heavily on principle component
analysis, which may suffer from pitfalls such as sensitivity to outliers and the requirement
for the components to be distinct, which otherwise may lead to random and spurious
results [53]. Finally, using ML for INSS staging was discussed earlier. Accordingly, DNN
can be applied to expression data from GEO and TCGA for patient staging predictions,
by which the DNN architecture was fed with INSS stage and gene expression information
matrices. This method yielded a reasonably high AUC and OVRs for the training but not for
the testing dataset. Therefore, the pitfall of the approach might be the overfitting of stages 1,
2, and 4S or the lack of distinct enough features between these stages. The implementation
of this approach in clinics also needs more reliable results and reproducibility [28]. In
conclusion, prognosis in NB is linked to MYCN status, and various expression datasets,
including immune-gene expression [52], can be linked to prognoses, and ML and statistical
tools were effective in deciphering these links.

Next, methylome data analysed by ML was discussed [37,38]. From the viewpoint
of the methods used for analysing methylome data by ML for making clinically relevant
predictions, some points can be made. The link between MYCN amplification and CpG
islands can be investigated using RFE and ML. For example, of the 126 NB samples,
369,065 CpGs were obtained, and the list was narrowed to 663 differentially methylated
CpGs by the ChAMP programme. In total, 25/663 CpG features selected by RFE were used
to build the SVM ML model, which showed 100% accuracy for the classification of NB
patients based on MYCN status. Finally, Kaplan–Meier survival plots and Cox regression
were used to link CpGs with patient survival and MYCN amplification status [37]. Since
the prediction accuracy was high, this showed the strength of the model, and as such, DNA-
methylation-based diagnoses have been applied to clinics for meningioma [54]. Despite
these strengths, the pitfall is that such studies are purely computational, and RFE can also
be affected by higher dimensionality. The results of the study need future functional studies
for implementation in routine clinical practice [37].

Finally, analysing 493 NB methylome data (Human Methylation 450 K dataset) with
principal component analysis yielded four clusters of patients based on MYCN amplifica-
tion status, and the adequacy and accuracy of the approach for each of the four clusters
(subgroups) were established using RF. Feature selection based on probe annotation may
also be relevant, and enhancer probes may display a higher level of accuracy compared to
other loci of the gene model [38]. Overall, DNA methylation can be accurately analysed by
SVM and RF to predict patient clinical aspects [38].

An interesting paper attempted to address one main issue of working with multi-
omics data and generating networks, which is the heterogeneity and differences in the data
dimensionality [55]. They suggested using a two-network-based approach to integrate
these data for NB and called this approach the patient similarity network. The initial
step in setting up this network was computing distances within individual patients from
specific omics features. Also, the fusion of different omics datasets could be envisaged
in two ways: network-level fusion and feature-level fusion. The former was achieved by
similarity network fusion algorithms by merging the patient-similar networks derived for
each multi-omics dataset, and the latter was obtained by the fusion of features obtained
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from individual patient similarity networks. Accordingly, the authors used two high-risk
NB datasets from SEQC and TARGET and applied the DNN and ML methods with RFE.
Finally, for the integration of omics data, network-level fusion worked better [55]. Such
approaches are relevant to complex diseases such as cancer, since network-level integration
may alleviate pitfalls such as small sample size, heterogeneity, and high dimensional-
ity [55]. In conclusion, networks of multi-omics data could handle the heterogeneity and
dimensionality of large datasets.

4.2. Histological Data and Relevant Tools for Predicting Clinical Aspects

Histological data that may be utilised by ML for patient prognosis predictions was
also discussed in this review [17,39,41]. Similarly, DL (DNN) approaches were proposed
by Gheisari et al. to classify digital images of NB into five groups [56]. Accordingly, they
processed the input images by whitening methods, and these data were divided into mini-
batches and fed to the input layer of the three-layer convolutional deep belief network.
This convolutional deep belief network then extracted features from the images and fed
them to the encoding block (bag of features as a feature encoding tool) that enabled distinct
feature yield, followed by classification using an SVM classifier [56]. The data used for
this purpose comprised 1043 NB histological images obtained from the Aperio ScanScope
system, representing 125 patients from various neuroblastic tumour classes (including
differentiating and undifferentiated NB, poorly differentiated NB, ganglioneuroma, and
ganglioneuroblastoma). Accordingly, images were cropped to 300 × 300 pixels and were
large enough to encompass the diagnostic feature per neuroblastic type. The proposed
model (i.e., a convoluted deep belief network, a bag of features, and SVM) gained precision,
recall, and F-measure of 82.54, 85.63, and 84.02%, respectively, by utilising high-level
features, and this setup performed better than other methods. In conclusion, they proposed
that the method was effective in histological image classification for NB [56].

Given the methods used for histological grading and relevant predictions, a classifier
(including SVM) would be trained on features extracted from slides, and then the trained
classifier would be tested on the testing dataset. One of the most important aspects of such
studies is correct feature (input) extraction, and future work might aim at improving higher-
order decision information to improve global labelling and configuration. The expansion
of feature groups and the improvement in training dataset collection will all impact the
performance of the overall system [17]. The use of SIFT can assist in the retrieval of distinct
features since it is robust to scale variation from images while using the bag of features can
reduce the number of features [39]. Having extracted distinct features with SIFT and fed
them to the classifier (SVM) and the bag of features, the samples can be classed, for instance,
into five classes of neuroblastic subtypes, and good precision, recall, and F-measure can
be obtained. The advantage of the proposed method is that it is robust to scale variations,
and combining it with the bag of features can improve classification accuracy. One of the
pitfalls of the classification of NB histology images is the lack of publicly available data,
which severely limits the number of samples included in each study [39]. Also, SIFT did
not give 100% specificity and the extracted features with SIFT were vectors; as such, it
remains to be determined if mathematical features always represent biological features
with clinical sequelae. Also, SVM might suffer from long learning times and issues with
model interpretation [39].

In another study discussed earlier, nuclear instance segmentation, feature extraction,
and per-patient feature aggregation were used for feature retrieval, and this was then
followed by feature reduction, selection, and model construction (ML) and good accuracy
was obtained [41]. As mentioned, one of the limitations of most NB studies is the low
number of samples; further, nuclei segmentation processes may require fine-tuning. One
solution is better labelling of the NB dataset, and therefore improving both input and
training processes. Overall, these extracted nuclear features may complement the INPC
diagnostic module and further assist pathologists [41].
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Finally, other methods can also be used for histological classification in NB. Input data
of mini-batch scale can be fed to a convolutional deep belief network and its encoding
block (containing a bag of features) can yield distinct features, and finally, SVM can be used
for classification [56]. As a common problem with all NB studies, the current study also
suffered from low sample NB, which limited its clinical implementation [56].

Other studies in NB histology have also used ML for the quantification of immune
cell content within the H&E slides. Accordingly, EUNet, a DL/DNN tool with an efficient
encoder, was trained to identify lymphocytes in slides stained with CD3 (a marker of T cells).
The training set included 3782 images (tiles) obtained from 54 NB whole slides and within
this dataset. In total, 73,751 lymphocytes were manually annotated and formed the NeSTBG
database [57]. The indicated tiles were used as a training dataset for DL (DNN) (EUNet,
comprising an encoder and decoder module) to generate density maps. The decoder
contained three layers, the feature map, the up-sampled feature map, and the concatenated
feature map [57], while the encoder also used efficientNet-B3 to output predicted density
maps. These maps from different layers of the NN at various stages of training were then
processed via topological data analysis (TDA). One of the features of TDA was the uniform
manifold approximation and projection (UMAP) to reduce dimensionality and perform
hierarchical clustering. This setup yielded good results with an absolute error of 3.1 for the
testing dataset. In addition, the concordance between the lymphocyte densities predicted
and expertly estimated by pathologists was high [57]. The novelty of the system was the use
of DL (DNN) to predict density maps, which were aligned with the pathologist’s reports
and estimates. This was one of the first attempts to utilise artificial intelligence for the
processing of whole slide images from the viewpoint of CD3 T cells, but this can be extended
to other types of immune cells [57]. Future work might be aimed at the development of
tools to rapidly quantify immune cells in tumour samples to better support pathologists in
the clinical decision-making process [58]. Despite this potential, the current study requires
deepening to cover other markers (with clinical relevance) such as the presence of PD-1
and PD-L1 (immune checkpoints and their ligands) to correlate immune cell infiltration
with the expression of these markers in NB tumours [57].

4.3. Medical Imaging Data and Relevant Tools for Predicting NB Clinical Aspects

CT scans linked to ML can be utilised for predicting MYCN-amplified NB [18]. An-
other study aimed to associate clinicopathological parameters and CT-scan radiographic
features to construct a model to predict MYCN status. In total, 172 patients were selected
with MYCN-amplified (n = 47) and MYCN-non-amplified (n = 125) status [59]. This co-
hort was split into training and testing datasets. The clinical model was built based on
MYCN amplification status, INSS stage, and Shimida classification among other criteria.
Consistently, the authors extracted first, second, and third-order features from regions
of interest retrieved from 3-phrase CT images [59]. Dimensionality was reduced using
tools such as LASSO and mRMR. For example, 1218 radiomic features were retrieved from
the region of interest, and these were reduced to 14 optimal features (1 first-order feature,
5 log-transformed, and 8 wavelets transformed) and were used to construct a radiomic
model. Features of the training and testing groups were selected and used by ML tools
such as logistic regression, SVM, RF, and Bayes, and their performance was reported in
the AUC-ROC values [59]. For example, the AUC for logistics, SVM, Bayes, and RF, were
0.94, 0.94, 0.78, and 0.92 for the training group, respectively. These numbers were 0.909,
0.909, 0.729, and 0.85 for the testing group, respectively. Therefore, the logistic, SVM, and
RF classifiers performed better than the Bayes model (p < 0.005). Finally, a nomogram
comprising data on clinicopathologic aspects and radiomics features was formed using
multivariate logistic regression. The nomogram performed better than the clinical model
alone (0.77 and 0.946 for training, and 0.917 and 0.977 for training datasets, respectively).
The logistic radiomics model performed similarly to the nomogram [59].

From the viewpoint of the methods used for CT scan data analysis reviewed in this
article, ANN methods performed better than other algorithms (2D-CNN, Lasso and elastic-
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net regression, RF, and SVM) for predicting mortality, metastasis, IDRF, MKI, and MYCN
status, except for the grade of differentiation from CT scans. In addition, it is possible to
use nested cross-validation methods to split training and testing datasets repeatedly to
prevent overfitting [18]. Also, there is a difference between 2D and 3D classifiers. The
2D-CNN classification method performed weakly due to the small data size, while the
3D radiomics methods did not suffer from this issue since these models have access to
NB statistical information in a higher dimension compared to the 2D-CNN model. In
addition, heterogeneity and training on slices that were not related to the outcome may
have affected 2D-CNN. CNN is also data-hungry, and the small size of the study could
have been a factor [18]. In addition, another important point may be using multiple ML
methods may be a positive aspect of analysing CT scans to form a more robust final
prediction. Due to the limited sample size, future work could focus on acquiring more
samples and also automating the processes to analyse large-scale datasets [18]. It is possible
to use clinicopathological parameters and radiographic features (from CT scans) to develop
predictive models. Dimensions can be reduced by LASSO and mRMR. The selected features
from the training datasets can be used to develop a radiomic model using SVM, RF, or
logistic regression, and performance can be tested. The combined radiographic and clinical
features can be processed by multivariate logistic regression to develop a useful nomogram
for clinical practice [59]. MRI-based NB clinical aspect classification has also been reported,
which is beyond the scope of this work [60,61].

4.4. Investigating Clinicopathological Aspects of NB Patients

In addition, in this study, three main aspects of the clinicopathological characteristics
of patients that may be investigated using ML, including risk, patient outcome including
survival, and treatment, were discussed.

Risk groups and their survival were addressed in this study [42,43]. Similarly, gene
expression profiles could be used to form prognostic indicators of high-risk groups to allow
for better stratification for treatment purposes. Accordingly, RNA-sequencing data from
UCSC Xena were downloaded, and high-risk survival was split into short (n = 22), and
long (n = 12) survivals (training data). In total, 40 genes linked to survival prediction for
high-risk groups were differentially expressed between short and long-survival groups and
included HOXD10, NHLH2, and EVX2. Further, the ML methods used to classify high-risk
patients based on the test dataset (GSE49711) for SVM and ANN models were 79% and
82% accurate, respectively [62].

For risk stratification and the useful methods linked to analysing this aspect, some
points can be made. For example, high-risk subtype matrices (of expression and copy
number) can be transformed into new features. The new features will then be fed to an
encoder (for example, DL/DNN algorithms). Cox regression can reduce the features and
link them to EFS and OS, while K-mean clustering analysis is complemented by C-index
analysis to decipher subgroups. Based on this, high-risk subgroups with distinct EFS and
OS can be identified. The autoencoder method could be compared with other methods
such as iCluster and principal component analysis [42]. Other ML methods, including
SVM, naïve Bayes, logistic regression, and Xboost can also be used. Overall, DL (DNN)
could significantly improve the high-risk classification method, and the implementation of
this method would reduce over- or undertreatment of high-risk NB cases [42]. In addition,
this was one of the studies using DL (DNN) for personalised medicine, specifically risk
stratification. Despite this, DL can suffer from issues such as large data requirements and
computing power and issues with interpretation and overfitting [63].

Moreover, microbiota in NB expression data could be identified by SKmer and this
defined an MKP profile with distinct survival profiles. Using the Pearson Chi-square
test and Cox regression, it is possible to link the risk group with the MPK profiles and
microbiome prediction score with survival, respectively [43]. ML can be used at the
interface of microbiome and genetic risk and can improve diagnosis and prognosis in
NB and support more effective risk stratification. In conclusion, ML (DL/DNN, SVM,
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and ANN) could be used for the better stratification of high-risk patients with divergent
survival patterns [62].

NB patient outcomes, including survival and disease recurrence, can be predicted
using high-throughput omics data [44,48,64].

From the viewpoint of methods used for outcome analysis, ANN as a classifier can be
used to analyse NB expression data. For example, training data may be analysed by a leave-
one-out strategy, and the classifier may split the patients into good and poor outcomes.
The performance of classifiers for various clinicopathological aspects can be determined.
Classification followed by Kaplan-Meier curves and log-rank tests can split the patients by
prognosis, and the OS and EFS of each group can be determined, while the concordance
between predicted and actual risk and staging groups can also be established [44]. The
extrapolation of this study requires larger cohorts to increase confidence in the classification.
In addition, adding other molecular angles, such as non-coding RNA and protein data,
can further enrich the classification model [44]. In agreement with the previous study,
cDNA microarray data can be used to train an ANN to predict the outcomes of patients.
For example, in the NB samples processed by microarray, a large number of clones can be
reduced to a much smaller number by principal component analyses, and this can then
be fed to an ANN network to develop a classification model. The predicting model can
split the patients by outcomes with specific sensitivity and specificity, and Kaplan-Meier
analysis can express individual survival signatures [48]. The use of larger, prospective
clinical trials could improve confidence in this method and allow physicians to tailor
individualised therapy based on these predictions. It is noteworthy that ANN can suffer
from computational intensiveness and overfitting issues [48].

In addition, other ML tools, such as DNN can be used for NB outcome predictions.
DNN has displayed excellent performance with various datasets and parameters, but some
issues, including small numbers of samples and a large number of features, remain. DNN
can tackle this issue by feature selection and inducing constraints during the learning step.
A study used 4 NB tumour datasets, and the DNN showed an accuracy of 85–87%, while
SVM and RF showed accuracies of 75–82% [64]. For the clinical outcome of death due to
disease and disease progression, DNN obtained balanced accuracies of 87.3% and 84.7%,
respectively [64] suggesting DNN can be useful for outcome predictions.

In the survival section, ML algorithms used for constructing models to predict patient
survival were addressed [13,49,51]. Another study attempted to combine RF- and ANN-
based models to link NB patient genomic data with patient survival [13]. Accordingly, the
authors selected the GSE49710 and GSE73517 datasets for training and testing, respectively.
GSE49710 featured 176 and 322 high- and low-risk cases, respectively, while GSE73517
featured 56 and 49 high- and low-risk cases, respectively [13]. Initially, the differentially
expressed genes in the datasets were determined, and 94 differentially expressed genes
were fed to RF. Of the 500 DTs constructed, 290 with the least error were selected, and
32 differentially expressed genes (variables) with an importance of >2 important values
were obtained (including, PLCD4, NTRK1, and EPS8L1) [13]. Finally, this subset of 32 genes
(variables) was shown to represent the NB high-risk feature genes by the K-means super-
vised clustering [13]. ANN then constructed a model that showed a high AUC when tested
for both the training (0.998) and testing (0.858) datasets. Kaplan–Meier plots also showed a
greater OS and PFS for NB patients with low-risk stratification compared to their high-risk
counterparts (HR = 3.86 and 3.03, respectively) [13].

From the viewpoint of the methods used for survival predictions, multiple studies
were reviewed earlier [13,49,51]. The heterogeneous base learners can be developed,
followed by retrieving optimal features for each based learner [49]. These effective feature
subsets formed a priori knowledge for the base learners for ensemble construction, and
finally, the heterogeneous learners can be integrated and various metrics can be calculated.
Such a classifier can then predict outcomes (including survival and death) and the effect
of clinicopathological aspects on the risk of each binary outcome [49]. The limitations of
such studies could be the dataset size and incomplete patient data. The pros of this method
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include the higher performance and generalisability of the ensemble classifiers. Future
efforts in this field may include dataset retrieval with coordinated molecular and patient
record information, larger data size, and the application of this method to other paediatric
cancers [49]. Finally, DL (DNN) can be used to predict patient survival. Accordingly,
expression datasets can be processed, and features can be selected by chi-square test. K-
means clustering can then partition the patients and features into relevant groups. The
groups of features can then be fed to a DNN encoder with an attention mechanism to
predict a binary alive or dead output and various metrics can be calculated. Links to
clinical parameters can then be conducted by multivariate Cox regression, and nomograms
can be built to facilitate clinical decision-making [51]. The pitfalls of using DL (DNN) for
this purpose can be that DNN may be uninterpretable, and to alleviate this, the authors
used attention mechanisms to understand the role of genes in NB. A larger dataset would
enhance confidence in the performance of the methods used. Finally, RF and ANN-based
models may be useful for survival prediction in the NB [13].

Finally, ML can establish a personalised response to treatment [27,65]. From the
viewpoint of the methods used to predict responses to treatment, 4 models, inclusive
of CNN, clinical classification, logistic regression, naïve Bayes ensemble classifier, and
geometric mean models can be utilised to predict MIBG-informed treatment responses [27].
To enhance the applicability of these methods, it is important to choose larger prospective
cohorts. Larger cohorts may also mean that external validation may be possible, multiple
drug response time points and conditions can be incorporated into the study, and finally,
images and their processing can be standardised [27]. Other methods have also been used.
Lombardo and colleagues formed a computational network model based on intracellular
pathways involved in NB progression to predict response to PD-L1 treatment. Accordingly,
the study simulated the impact of the mentioned intracellular signalling pathways by
developing an integrated network of protein kinases and their associated cascades [65].
This model was termed an “ordinary differential equation”. Some interesting observations
were made using this model. For example, PD-L1 expression was linked to ALK and ERK
activation and AKT inhibition. Further, the model looked at the effect of ALK mutation
status on PD-L1 levels. Also, in an ALKF1174L-mutated tumour, the levels of PD-L1
increased. Similarly, the levels of PD-L1 differed when ALK inhibitors were used, and
the predicted peak of PD-L1 was much lower when crizotinib (an ALK inhibitor) was
administered. This was also seen using COPASI software (version 4.25) to validate the
findings using the GSE107354 dataset, whereby the use of crizotinib led to a 4.33-fold
decrease in PD-L1 expression. The computational tools mentioned were useful for the
therapeutic management of NB patients and were one of the first steps towards a decision
support system for the clinical management of patients [65].

Finally, single-cell and protein biology assayed by flow cytometry can also be linked
to ML in NB. For example, a study found that using ML, it is possible to provide tomo-
graphic imaging and 3D phase-contrast tomograms on single NB cells separated by flow
cytometry [66], a promising method for easier detection of NB.

In this study, the use of patient data (including multi-omics, histology, and medical
imaging) for ML to predict various NB patient clinical attributes was catalogued. Further,
predicting risk groups and outcomes, including survival and treatment, using ML was
catalogued. A robust and closer link between ML methods and clinical pursuits may
substantially improve clinical decision-making, treatment, and patient outcomes [67].
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Abbreviations

ALT Alternating length of telomerase
ANN Artificial neural network
CAD Computer-aided diagnostics
CIMP CpG island methylator phenotype
CNN Convolutional neural network
DL Deep learning
DNN Deep neural network
EFS Event-free survival
GEO Gene expression omnibus
HFS Heterogenous feature selection
HR Hazard ratio
IDRF Image-defined risk factors
INPC International neuroblastoma pathology classification
INSS International neuroblastoma staging system
INRGSS International neuroblastoma risk group staging system
MIBG Metaiodobenzylguanidine
MKI Mitosis-karyorrhexis index
ML Machine learning
MLP Multi-layer perception
OS Overall survival
PFS Progression-free survival
RFE Recursive feature elimination
SIFT Scale Invariant Feature Transform
TARGET Therapeutically applicable research to generate effective treatment
TCGA The cancer genome atlas databases
TDA Topological data analysis
TERT Telomerase reverse transcriptase
TMA Tissue microarrays
OVR One-versus-rest
UMAP Uniform manifold approximation and projection
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