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Abstract: The Taklimakan Desert in northwest China stands as a significant contributor to dust storms,
with its fringe oases already designated as ecologically fragile due to the severe impacts of these
storms. This study focuses on Moyu County, situated on the southwest edge of the Taklimakan Desert,
examining the origin and transport pathways of dust storms from 2004 to 2021. The classification
involves utilizing a 36 h backward trajectory model and the k-means clustering technique, resulting
in three clusters displaying distinct transport pathways and entry directions. Air pollutant concen-
trations at the study site corresponding to each cluster are analyzed to elucidate the contribution of
dust storms from different directions. The results categorize 1952 dusty days into three categories:
NE-SE (cluster 1), N-N (cluster 2), and NW-W (cluster 3). The highest frequency of dust storms,
accounting for 64% of the total suspended dust weather, originates from the northeast and southeast
direction (NE-SE category), with relatively weak intensity, mainly as suspended dust (71.5%). Strong
sand storms predominantly occur from the northwest direction (57.8%). Cluster 1 (the southeast
direction) exhibits a higher concentration of SO2, NO2, and CO, mainly associated with its pathway
over anthropogenically polluted areas. Conversely, Cluster 3 (northwest direction) shows higher
PM10 and PM2.5 concentrations due to increased wind speed and stronger dust storm intensity. The
study develops dust storm early warning schemes based on 15-day advance predictions, utilizing
an 18-year trajectory model and local monitoring data. This proposed warning scheme serves as
a predictive tool for potential dust storm events and air pollution levels, aiding in both scientific
research and policy formulation for dust storm mitigation and adaptation. The data obtained also
hols relevance for conducting further scientific research in this field.

Keywords: dust storm; early warning scheme; development; Taklimakan Desert

1. Introduction
1.1. Dust Storms: A Meteorological Hazard

Dust storms, recognized as significant meteorological hazards, impart substantial
environmental and health repercussions not only within the source region and its environs
but also in areas downstream [1–4]. The occurrence of dust storms entails the transport of
loose particles from deserts and other air pollutants originating from anthropogenic sources
over extended distances by the wind. This process leads to heightened concentrations of
air pollutants, subsequently diminishing air visibility [5–7]. The far-reaching impact of
dust storms underscores their multifaceted influence on both the environment and public
health. The environmental impact of dust storms extends far beyond their source regions,
as the transported particles can settle over vast areas, affecting ecosystems, soil fertility,
and water quality [6]. Dust deposition can alter nutrient cycles, leading to changes in
plant composition and productivity. Moreover, when deposited into water bodies, dust
can contribute to eutrophication and harm aquatic life. In agricultural areas, dust storms
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can damage crops, reduce yields, and degrade soil quality, exacerbating food security
concerns [4,5].

1.2. The Taklimakan Desert: A Source of Dust Storms

Situated in northwest China, the Taklimakan Desert holds the distinction of being the
world’s second-largest shifting-sand desert, covering an expansive 337,000 square kilome-
ters. Long recognized as a primary origin of dust storms in China, this region has been
extensively studied [8,9]. The oases located at the periphery of the desert are considered
more habitable, with Moyu County along the southwest edge of the Taklimakan Desert
being particularly noteworthy. However, this area is characterized as more fragile due to its
historical susceptibility to severe dust storms, as documented in previous studies [10]. The
unique geographical and meteorological characteristics of the Taklimakan Desert contribute
to its role as a primary emitter of airborne particulate matter. With its location surrounded
by high mountain ranges, including the Tianshan and Kunlun Mountains, the desert ex-
periences distinct wind patterns influenced by local topography. During the spring and
summer months, prevailing westerly winds, intensified by thermal gradients between the
desert and adjacent regions, accelerate across the arid landscape, picking up fine particles
of sand and dust along the way [7,8]. Given the significance of the Taklimakan Desert
as a source of dust storms, efforts to mitigate their impact and improve the understand-
ing of their dynamics are imperative. Comprehensive monitoring networks, advanced
modeling techniques, and collaborative research initiatives are essential for enhancing
early warning systems, informing policy interventions, and promoting sustainable land
management practices aimed at reducing aeolian erosion and dust emissions in this iconic
desert landscape.

1.3. Advancements in Dust Storm Research and Early Warning Systems

Currently, some advanced research methods and measuring techniques are used to
determine the source regions of pollutants. The HYSPLIT model, capable of identifying
source–receptor relationships over long distances of air pollutants, has become the most
widely applied tool [11,12]. By integrating meteorological data, satellite observations,
and ground-based measurements, these models provide valuable insights into the spa-
tiotemporal distribution of dust storms and their potential environmental impacts [13–15].
Additionally, advancements in remote sensing technology have enabled researchers to mon-
itor dust emissions in real time, allowing for the timely detection and tracking of dust storm
events [16,17]. These technological innovations have paved the way for the development
of early warning systems that can alert communities and authorities to impending dust
storms, enabling them to take proactive measures to mitigate their adverse effects on public
health, infrastructure, and the environment. Most previous research work on dust storms
in the Taklimakan Desert focused on the spatiotemporal distribution and environmental
impact of dust storms, with little emphasis on mitigation and adaptation strategies [18,19].
To address this gap, this study develops an early warning system for dust storms based on
HYSPLIT cluster analysis results. This early warning scheme aims to minimize exposure
risks, thereby reducing the effects on human health and properties, while also improving
the accuracy of dust storm forecasting services and technical support.

2. Data and Methods
2.1. Description of the Study Area

Moyu County, one of the severe dust-affected areas in China, is located at the southwest
edge of the Taklimakan Desert and the north slope of Kunlun Mountain. The vast area
of this county, with a total area of 25,788.86 km2, is geographically stretched between
36.6◦~39.61◦ N and 79.12◦~80.85◦ E, and the total population is 632,740 [20]. The terrain
of the county gradually decreases from south to north, the average altitude in the plain
area is 1120 m, and in the mountain areas in the south it is 3663 m [17,20]. The county is
surrounded by the Taklimakan Desert to the north, northwest, and northeast (Figure 1).
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Figure 1. Location and surrounding environment of the study area (Note: Driving number of this
map: GS (2020)4619).

As part of the temperate zone, Moyu County has an extremely arid climate with four
distinct seasons. In the summer, it is hot and dry, and the temperatures rise rapidly in the
spring. January is the month with the lowest temperature (−6.5 ◦C) and July has the highest
average temperature (26.4 ◦C). Temperatures differ greatly between day and night, it does
not frost for a long period, the annual precipitation averages 36–37 mm, the evaporation
averages 2239 mm, and the average sunshine hours are 2655 [21].

The large areas of desert and complicated atmospheric circulation are the substantial
basis of the thermo-dynamical force of dust storm formation in the study area. The annual
frequency of dusty days in the study area is around 220 days. The frequency of dust storms
in the spring (from March to May) accounts for approximately 60% of annual dust storms.
April is the most active period with the highest frequency and intensity of dust storms [21].

2.2. Data Sources

Surface meteorological data including types of dust storms and wind speed data in
the dusty season of each year (from 1 March to 30 June) from 2004 to 2021 were collected
from the Moyu Meteorological Bureau and the official website of the National Meteoro-
logical Administration of China (http://cdc.cma.gov.cn, accessed on 18 July 2023). Other
meteorological data related to the air mass along with the dust storm pathway were ob-
tained by running a 36 h backward trajectory model, which is available at the NOAA-ARL
(National Oceanic and Atmospheric Administration—Air Resources Laboratory) website:
http://www.arl.noaa.gov/ready.html (accessed on 18 July 2023). Daily average concen-
trations of six types of air pollutants, PM2.5, PM10, SO2, NO2, O3, and CO, in the same
period were used in this study. Air pollutant concentration data for the period of 2004–2011
were collected from Hetian Environmental Protection Bureaus, and data for the period of
2012–2021 were collected from Xinjiang Environmental Monitoring Centers, respectively.

http://cdc.cma.gov.cn
http://www.arl.noaa.gov/ready.html
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Three types of dust storm weather, that is, suspended dust, blowing dust, and sand
storm, were considered in this study, and were classified by using the criteria given by the
National Standard Committee (2006) into 3 intensity grades based on the severity. Among
them, suspended dust is the weaker type of dust storm, which refers to floating dust in the
air under lower wind forces. Blowing dust is a medium–severe type of dust storm with a
horizontal visibility of 1–10 km. The sand storm is the most severe type of dust storm with
a horizontal visibility below 1 km and a wind speed of over 25 m/s [22–24].

2.3. Methods
2.3.1. Classification of Dust Storm Transport Pathway

In this study, a total of 1952 dusty days from 2004 to 2021 were selected for the
HYSPLIT model analysis. Each of the selected days was run through the HYSPLIT model
to obtain the 36 h backward trajectories of the air mass. In this model, the starting point
was 37.26◦ N, 79.72◦ E (center of Moyu County), and the starting time was 10:00 UTC
(Universal Coordinated Time). As a result of the topography of the Taklimakan Desert
and surrounding areas, as well as friction effects from the surface, the height of air masses
at the arriving point was set at 500 m above ground level (AGL). Due to the inclusion of
meteorological variables in the “model vertical velocity option”, the HYSPLIT model was
run using this option. Using the SPSS 20 software, k-means clustering was used to classify
air mass trajectories by considering meteorological variables at the arriving location (Moyu
County) such as ambient temperature (K), potential temperature (K), rainfall (mm/day),
mixing layer depth (m), relative humidity (RH, %), solar radiation flux (W/m2), and wind
speed (m/s). Backward trajectories of air masses are defined by their latitudes, longitudes,
and altitudes at four points on their trajectory: 9 h, 18 h, 27 h, and 36 h. Data points are
divided into homogeneous clusters (k) using k-means clustering. The cluster membership is
determined by the distance between each data point and the centroids in each cluster [25,26].
The concentration of air pollutants corresponding to each cluster is also obtained by using
cluster analysis.

K-means clustering separates the observations into k clusters such that the observations
are distributed near the centroids of their clusters. The clustering is conducted such that
the following error function is minimized:

E = ∑k
1=1 ∗ xj∑k

x∈Ci
d(x, µ(Ci)) (1)

where C1, C2, . . ., Ck are the k disjoint clusters, µ(Ci) is the centroid of each cluster, and d(x,
µ(Ci)) is the observation-to-centroid distance.

2.3.2. Establishment of Dust Storm Early Warning Scheme

To develop an early warning scheme for dust storms, principal component analysis
(PCA) was applied based on long-term (18 years) statistical data, which were obtained by
using k-means clustering. The selected variables (19 variables) were first standardized so
that the mean value of each variable equaled 0 with a standard deviation of 1.

Standard value = (original data − mean)/standard deviation.

The PC score was obtained by using the following equation. For example, let X = [xi]
be any k × 1 random vector. We now define a k × 1 vector Y = [yi], where for each i the ith
principal component of X is

yj = ∑k
j=1 βijxj (2)

where βij is a regression coefficient, and since each yi is a linear combination of the xj, Y is a
random vector.

Detailed processes to develop an early warning scheme are presented in Section 3.4.
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3. Results and Discussions
3.1. Overview of Existing Dust Storm Early Warning Scheme

To enhance the comprehension of our dust storm forecasting system, we undertake
a comprehensive analysis of existing dust storm forecasting systems both within China
and globally. Through this comparative examination, we construct a framework diagram
elucidating the variances between these systems. This comparative analysis stands as
a noteworthy discovery in our study. Nowadays, some countries including Australia,
South Korea, China, and Iran have already established dust storm monitoring and fore-
casting systems. The World Meteorological Organization (WMO) has also developed and
implemented a Sand and Dust Storms Warning Advisory and Assessment System (SDS-
WAS) [27]. Most of these schemes rely on surface-based observation data and satellite-based
observation data. Using this forecasting system, the forthcoming dust storm events can be
predicted, and early warning can be employed. The operational framework of monitoring,
forecasting, and early warning is shown in Figure 2.
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China is one of the most severely affected countries by dust storms and desertification
in the world. The total area of desert land coverage is 2.67 million km2 [27]. The vast areas
of deserts in China have always been considered as the major source region of Asian dust
storm events. The China Meteorological Administration (CMA) is the only authorized
agency to issue public advisories on forthcoming dust storm events [27]. In 2001, the
CMA developed a dust storm forecasting and early warning system, the monitoring and
forecasting framework of dust storm events as seen in Figure 3.
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This forecasting scheme consists of a forecast model, a dust aerosol module, and a
data assimilation system. Both surface-based observation data (absolute value of visibility,
TSP, PM10, etc.) and satellite-based observation data (land use/cover, soil moisture, and
distribution of dust storms) are used in this system. These data are first transferred to
the data assimilation system and then sorted and analyzed in the system to provide
new information for rolling forecasting [27]. The warning information, including source
information, spatial distribution, and deposition of dust aerosols, which are derived from
dust storm forecasting systems, can be used as a scientific basis to assess the impact of dust
storms on the environment, human health, economic loss, and so on.

3.2. Classification of Dust Storm Pathway in Study Area

A total of 2196 days were extracted from 18 years of the study period (March–June:
122 days/year × 18 years) for dust storm classification. Among them, suspended dust
weather occurred on 1378 days, blowing dust weather occurred on 406 d, and sand storm
weather occurred on 168 days, while the other 244 d were non-dusty days.

The 36 h of the HYSPLIT backward trajectories, which show the origin and pathways
of the air masses arriving at Moyu County, were obtained on 1952 dusty days in the study
period (2004–2021). Based on the trajectory data obtained by using the HYSPLIT model, air
mass trajectories arriving at Moyu County were classified into three clusters by using the
k-means clustering technique. These clusters have different origins and entry directions
into the study area (Figure 4).
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It can be seen from Figure 4 that the length, shape, vertical position, and origins of the
36 h backward trajectories of the three clusters are quite different.

(1) Cluster 1: NE-SE category

Air masses within this cluster originate in the middle of the Taklimakan Desert at
440 m above ground level (Figure 4), then move westward through the desert, turning
south, and finally arriving at Moyu from the southeast. As the cluster with the highest
frequency (64.1%) of all the clusters, it was observed on 1251 days out of the total dusty
season over 18 years. Suspended dusty weather makes up 71.5% of the total dusty weather
frequency. Besides crossing desert areas, it passes over populated areas as well.

(2) Cluster 2: N-N category

This cluster of air masses originates in the middle-west part of the Taklimakan Desert
(390 m at AGL, Figure 4), moves southward through the desert, and arrived at Moyu from
the north. This cluster, which accounts for 11.1% of the days examined, has the lowest
number of trajectories. There is a high ambient temperature and little rainfall in this cluster
of air masses due to their dry and hot characteristics (Table 1). Similar to Cluster 1, this
cluster also has a longer pathway above desert areas.

(3) Cluster 3: NW-W category

In this cluster, air masses start from the northwestern Taklimakan Desert and move
westward, turning south along the western edge of the desert, then arriving at Moyu
from the west (Figure 4). There are 486 days or 24.8% of occurrences for this cluster, the
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second most frequent among the three clusters. Cool and damp air masses are characteristic
of this type of air mass, characterized by the lowest ambient temperature of 282 K, the
highest rainfall (0.42 mm/day), and the highest relative humidity (34%) (Table 1). The wind
speed is the highest (8.6 m/s). The high-speed movement of the air mass determines the
higher frequency of strong sand storm weather in this cluster. The occurrence frequency,
meteorological characteristics, and air pollutant concentration within each cluster are
presented in Table 1.

Table 1. Frequency and meteorological characteristics of dust storms from different pathways and air
pollutant concentrations.

Parameters Cluster 1
(NE-SE Category)

Cluster 2
(N-N Category)

Cluster 3
(NW-W Category)

Dust storm
frequency

Total frequency (d) 1251 (64.1%) 215 (11.1%) 486 (24.8%)
Suspended dust (d) 986 (71.5%) 118 (8.6%) 274 (19.9%)

Blowing dust (d) 233 (57.4%) 58 (14.3%) 115 (28.3%)
Sand storm (d) 32 (19.1%) 39 (23.1%) 97 (57.8%)

Non-dusty days (d) 69(28.3%) 79 (32.4%) 96 (39.3%)

Meteorological
conditions

Potential temperature (K) 291.23 ± 23.2 297.3 ± 24.7 282.46 ± 25.3
Ambient temperature (K) 276 ± 0.11 279 ± 12 269 ± 12

Rainfall (mm/day) 0.24 0.0 0.42
Relative humidity (%) 26.3 ± 1.4 27.1 ± 2.0 34.3 ± 3.1

Mixing layer depth (m) 1338.52 ± 109 1749.89 ± 152 1841.55 ± 234
Downward solar radiation

flux (W/m2) 436.88 ± 47 557.17 ± 49 592.31 ± 43

Wind speed (m/s) 7.6 ± 1.4 7.3 ± 1.2 8.6 ± 1.7

Air pollutants
concentration

PM10 (µg/m3) 597.13 579.23 619.51
PM2.5 (µg/m3) 502.44 479.13 539.66
SO2 (µg/m3) 39.56 35.12 31.07
NO2 (µg/m3) 41.14 38.76 31.68
CO (µg/m3) 15.89 14.24 12.04
O3 (µg/m3) 30.96 31.23 29.21

Air pollutant concentrations associated with different clusters of air mass were also
analyzed together with the dust storm frequencies and meteorological characteristics. It
can be seen from Table 1 that both the PM10 and PM2.5 concentrations corresponding to
Cluster 3 (coming from the west direction) show higher values than those of the other two
clusters (619.51 µg/m3 and 539.66 µg/m3) because of the higher wind speed (8.6 m/s) and
stronger dust storm intensity (57.8% of sand storms come from this direction) of this cluster.
The concentration of SO2, NO2, and CO corresponding to Cluster 1 (which comes from the
southeast direction) shows a higher value than that of the other two clusters because of the
longer pathway of this cluster above the anthropogenic polluted areas.

3.3. Development of Dust Storm Early Warning Scheme

The warning system for the likelihood of dust storm occurrence and potential pollution
levels was made using forecasted meteorology data. There were 19 variables requested
for clustering, including ambient temperature (K), potential temperature (K), daily rainfall
(mm/day), mixing layer depth (m), relative humidity (RH, %), solar radiation flux (W/m2),
as well as the coordinates of air mass backward trajectories including latitudes, longitudes,
and altitudes of the air masses at four points on a trajectory: 9 h, 18 h, 27 h, and 36 h. The
wind speed (m/s) was measured at the arriving location (Moyu County). Among them,
daily wind speed data are available from the local weather forecast with 15 d in advance.
The other 18 variables can be obtained by running the HYSPLIT model, which is available
from the NOAA ARL website (http://ready.arl.noaa.gov/hypub-bin/traj1.pl, accessed on
12 September 2022). The proposed scheme for an early warning system of the likelihood

http://ready.arl.noaa.gov/hypub-bin/traj1.pl
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of dust storm occurrence and potential air pollution levels was performed in two stages.
By classifying the HYSPLIT pattern of one day in the dusty season into one of the three
clusters (Figure 4), the warning signal can be issued based on the long-term occurrence
frequency of the cluster and the associated pollution levels (Figure 5).
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Figure 5 presents the steps for using meteorological parameters for a particular pre-
dicted day using the PCA and k-means clustering techniques for specified clusters. The
trajectory of the selected day can be matched with one of the three clusters using the
following steps and information.

(a) Step 1: Obtaining 19 variables from a 15 d forecast.

For the 15 d warning, the backward HYSPLIT trajectory was run using the predicted
meteorological data taken from the Global Forecast System (GFS) dataset available on the
NOAA website. The variables of latitude, longitude, and altitude coordinates at the four
time interval points (9 h, 18 h, 27 h, and 36 h) were extracted from the HYSPLIT backward
trajectory results. Other variables of potential and ambient temperature, rainfall, mixed
layer depth, relative humidity, and downward solar radiation flux were obtained from the
website for the starting point of HYSPLIT, i.e., the Moyu County site (37.26◦ N, 79.72◦ E).
The 15 d forecast wind speed data were provided by the local meteorological bureau of
Moyu County. The obtained 19 variables were then tabulated.

(b) Step 2: Standardized 19 variables.

The 19 variable values obtained from Step 1 are then standardized using the following
equation:

Z = (X − Xn)/D (3)

where:
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Z: standardized value of each of the 19 variables.
X: forecasted values for each variable obtained from Step 1.
Xn: mean value of long-term data for the variables.
D: standard deviation of long-term data for the variables.
The long-term mean values and standard deviation of the 19 variables used in the

PCA for HYSPLIT clustering can be obtained by using SPSS software [28]. These were
obtained from the 1952 days of the dusty season in the 18 years (2004–2021).

(c) Step 3: PC score calculation for predicted day.

The PC score for the predicted day was calculated using the following equation [15]:

PC score = ∑p
n=1 WiZi = PCND (4)

where:
Wi: component score coefficients from component score coefficient matrix from long-

term data.
Zi: standardized variables obtained from Step 2.

(d) Step 4: calculation of the absolute deviation from mean PC scores of the clusters.

The PC score for the predicted day obtained from Step 3 was used to calculate the
absolute deviation from the long-term mean PC score for each cluster by using the following
equation:

Absolute deviation (AD) = |PCLT − PCND| (5)

where:
PCLT: PC score of each cluster obtained from long-term data analysis.
PCND: PC score of the predicted (new) day developed in Step 3.
Finally, the cluster type for the predicted day was identified as the one that had the

minimum absolute deviation value.

3.4. Evaluation of Early Warning Scheme

Meteorological factors including wind direction, wind speed, temperature, and relative
humidity significantly affect the formation, dispersion, diffusion, and deposition of airborne
PM in the ambient environment. In this study, we propose an early warning system for
dust storms in peri-desert regions based on previous incidents of high concentrations of
airborne PMs from historical data. The system combines an artificial neural-network-based
prediction model, which aims to increase the quality of input data.

To evaluate the application of the dust storm early warning scheme more specifically,
let us use an example to further verify the early warning scheme we propose. The early
warning scheme proposed in Figure 5 was applied on the selected day, e.g., 18 February
2023. HYSPLIT backward trajectory was run to obtain 18 predicted variables while the wind
speed data were taken from the local meteorological bureau of Moyu County. Based on the
mean values and standard deviations of long-term data (18 years) of selected variables, the
PC score of each cluster obtained from the long-term data analysis and the predicted (new)
day were obtained. The PC scores of three clusters were 3.018, 3.198, and 1.487, and the
PC scores of the predicted day were 2.080, 1.610, and 5.780. Based on these PC scores, the
absolute deviation of each cluster was calculated as follows:

ADcluster1 = |3.018 − 2.080| = 0.937;

ADcluster2 = |3.198 − 1.610| = 1.592;

ADcluster3 = |1.487 − 5.780| = 4.298;

ADcluster1 was the minimum, hence the day belongs to Cluster 1. Similarly, the
calculation can be performed for other predicted days 15 days in advance. The trajectory of
the selected day (18 February) was categorized into Cluster 1, so the occurrence frequency of



Environments 2024, 11, 61 11 of 14

dust storms and air pollution levels can be predicted based on our results proposed in this
study. That is, the dust storm would come from the southeast direction, and the possible
occurrence frequency of dust storms on this day is 64.1%. The possible occurrence frequency
of different types of dusty days is 71.5% for suspended dust, 57.4% for blowing dust, 19.1%
for sand storms, and 28.3% for non-dusty days. Similarly, the daily air pollutant levels in
the evaluation period also exhibit a certain discrepancy with the long-term statistics for
different clusters. The possible air pollutant concentration on this day can also be predicted
as follows: 619.51 µg/m3 for PM10, 539.66 µg/m3 for PM2.5, 31.07 µg/m3 for SO2, 31.68 for
NO2, 12.04 µg/m3 for CO, and 29.21 µg/m3 for O3.

Figure 6 shows the likelihood of the occurrence and intensity of dust storms and the
associated air pollution levels for each cluster.
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The early warning can be issued 15 d in advance using this scheme. The information
on the likelihood of dust storm direction, the occurrence frequency of different types of
dust storms, and air pollutant concentrations in the study area can be communicated online
so that people can be informed in advance.

3.5. Comparison of the Early Warning Scheme Developed in This Study with Other Warning
Systems Based on Dispersion Modeling

In our study, the clustering method is used to identify the dust storm pattern. Cluster-
ing represents an unsupervised machine-learning technique designed to partition unlabeled
datasets into clusters comprising similar data points. In contrast, supervised machine-
learning techniques rely on labeled datasets to predict classifications and values, as outlined
in Table 2. While both supervised and unsupervised learning methodologies are firmly
established, supervised learning predominates in forecasting systems. This prevalence of
supervised learning may stem from several factors, one of which is the challenge associ-
ated with interpreting the clusters generated by unsupervised learning algorithms. This
difficulty in interpretation can deter interest and the adoption of unsupervised learning
approaches within forecasting systems. Our dust storm warning system stands out dis-
tinctively from other dispersion modeling systems due to its comprehensive utilization of
various data types. These encompass emission data, providing insights into the sources
of particulate matter; meteorological data, enabling the consideration of weather patterns
and atmospheric conditions conducive to dust storm formation; satellite data, facilitating
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the observation of dust events over large geographic areas; air pollutant data, aiding in
understanding the composition and concentration of airborne particles; and importantly,
the integration of resultant model outputs and detailed warning information. This multi-
faceted approach enhances the system’s accuracy and effectiveness in the prediction and
alerting of dust storm events.

Table 2. Comparison of early warning development approaches.

Parameters Proposed Early Warning Scheme in This
Study

An Early Warning System Based on the
Dispersion Model

Approach Statistical approach Dispersion modeling (deterministic)

Input data

Emission data Not used Need detailed gridded emission data

Meteorological data

Use online forecast data available from the
NOAA/HYSPLIT website to calculate PC
scores and identify the HYSPLIT cluster for the
forecast day

Need detailed meteorology data
produced by meteorological models

Other data
Long-term average daily air pollutants (SO2,
NO2, TSP) for the HYSPLIT cluster identified
for the forecast day

Satellite image, PM10 observation data,
etc.

Output

Results

The probability of dust storm occurrence and
pollutant concentration is based on statistics of
the forecasted pattern of the day in Moyu
County

Concrete values of PM10 on any grid in
the considered domain

Warning detail

Warnings could be issued for the day with the
probability of occurrence of a dust storm with
different degrees of severity. The range of daily
pollutants is given

Detailed instructions are given to people
to avoid exposure based on the range of
PM10

The proposed early warning scheme in this study has been developed based on
a statistical approach, which is different from those developed based on a dispersion
modeling approach [29,30]. There are advantages and shortcomings associated with each
approach. The differences between these two types of warning system development
approaches are shown in Table 2.

In summary, the proposed early warning scheme in this study has been developed
based on a statistical approach and does not require intensive input data or the operation
of complex dispersion modeling systems to predict dust storm occurrence frequency, type,
and pollution level. The advantages of the scheme developed in this study are listed below.

(1) The scheme relies on accessible website information and is easily implemented.
(2) The origins and entry directions of dust storms at the study site can be predicted

based on the results of cluster analysis.
(3) The occurrence frequency and potential levels of air pollution associated with each

cluster can be predicted 15 days in advance.

4. Conclusions

(1) Dust storms have become a considerable environmental problem for many countries.
At present, many countries have developed different forecasting systems based on
surface-based and satellite-based observation data.

(2) The southwest edge of the Taklimakan Desert is one of the most frequent dust storm
areas. A total of 1952 dusty days were observed in the dusty season from 2004 to 2021.
Among them, suspended dust weather occurred on 1378 days, blowing dust weather
occurred on 406 days, and sand storm weather occurred on 168 days.

(3) A 36 h backward trajectory model classified the dust storms arriving at the study site
into three clusters. The highest frequency of dust storms was observed in Cluster 1
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(coming from the east direction), accounting for 64.1%, but the dust storm intensity
was relatively weak, while strong dust storms came from the west direction.

(4) A dust storm early warning scheme was developed by using principal component
analysis and the k-means clustering technique based on long-term statistical data
obtained in this study. Using this scheme, the moving path of a dust storm and
the corresponding pollutant concentration 15 days in advance can be predicted by
running a simple trajectory model.

(5) Our study is one of the first studies building a prediction model for dust storm events
using PCA, associated with sampling strategies. The dust storm events in peri-desert
regions will be predicted through not only air pollutant concentrations but also dust
storm frequency data. The early warning system in this study is based upon credible
data from historical records, which would be a useful concept for further studies, and
would also be very useful to vulnerable populated areas, in that people would have
sufficient time to implement appropriate risk mitigation measures.
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