
Citation: Zhang, S.; Lv, C.; Cui, C.;

Wang, J.; Wu, J.; Mao, W.

Near-Infrared Spectral Analysis for

Assessing Germination Rate of

Rapeseed Seeds: An Applied

Sciences Approach. Appl. Sci. 2023,

13, 11001. https://doi.org/

10.3390/app131911001

Academic Editor: Zhi-Ting Ye, Pin

Han, Chun Hung Lai and Yi Chin

Fang

Received: 5 June 2023

Revised: 11 July 2023

Accepted: 17 July 2023

Published: 6 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Near-Infrared Spectral Analysis for Assessing Germination
Rate of Rapeseed Seeds: An Applied Sciences Approach
Shuaiyang Zhang 1, Chengxu Lv 1, Cheng Cui 2, Jizhong Wang 1, Jingzhu Wu 2 and Wenhua Mao 1,*

1 National Key Laboratory of Agricultural Equipment Technology, Chinese Academy of Agricultural
Mechanization Sciences Group Co., Ltd., Beijing 100083, China; lvchengxu@caams.org.cn (C.L.);
wangboshi2023@163.com (J.W.)

2 Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University,
Beijing 100048, China; cuicheng0820@outlook.com (C.C.)

* Correspondence: mwh-924@163.com

Abstract: Brassica rapa, commonly known as the rapeseed plant, is globally recognized for its nutrient-
rich composition and oil-packed seeds, earning its distinction as a substantial oil-seed crop. The seed
quality, particularly the germination rate, is instrumental in guaranteeing a high-yield rapeseed crop.
Given this, the accurate, quantitative determination and selection of germination rates in seed batches
prior to sowing is of paramount importance. However, conventional germination tests, employed
to determine the average germination rate of seed batches, are marred by substantial time and cost
inefficiencies. This study proposes the use of near-infrared spectral analysis as a proficient, non-
invasive approach for assessing germination rates in rapeseed seed batches. The research involved
artificial aging of seeds procured from a variety of rapeseed strains, resulting in 228 batches with a
broad germination rate spectrum of 15.73% to 99.13%. We recorded near-infrared diffuse reflectance
spectra and applied a range of strategies for spectral data preprocessing and feature variable selection.
Furthermore, we leveraged support vector regression (SVR) modeling to augment the detection
methodology. SVR training and detection were conducted using MATLAB, with selected feature
wavelengths undergoing rigorous scrutiny and discussion. The results indicated that employing
Savitzky–Golay convolution smoothing for spectral preprocessing, along with Synergy interval
Partial Least Squares (SiPLS) in conjunction with Random Frog (RF) for the selection of 50 feature
wavelength points, yielded optimal germination rate prediction performance within the SVR model.
The coefficients of determination (R2c) for the training set and (R2p) for the testing set were observed
to be 0.8559 and 0.8386, respectively, while the Root Mean Square Errors of Calibration (RMSEC) and
Prediction (RMSEP) were calculated to be 13.76% and 17.04%. The mechanism of detecting seed vigor
through near-infrared spectroscopy was analyzed based on joint variable screening and sensitive
variable traceability. Consequently, the SG–SiPLS–RF–SVR model demonstrates its effectiveness in
predicting the average germination rate of seed batches, offering a rapid, non-invasive detection
method that can be universally applied to various rapeseed strains, thus significantly improving seed
production efficiency.

Keywords: near-infrared spectroscopy; rapeseed plant seeds; germination rate; feature wavelength
selection; support vector machine regression

1. Introduction

Seeds, being the foundational elements for crop growth and development, bear signifi-
cant influence on agricultural production. The optimization of crop yield and quality de-
pends on a variety of techniques and measures, among which, the provision of high-quality
seeds holds notable significance, contributing to an improvement range of 30–40% [1–3].
The rapeseed plant (Brassica rapa or Brassica campestris L.), appreciated for its unique flavor
and nutrient-dense profile, is a valued leafy vegetable and ranks among the world’s top
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four oilseed crops, showcasing an oil content of 37% to 46%. Consequently, the rapeseed
plant commands a distinguished status within the realm of agricultural production [4–6].

Traditional methods for testing germination rates rely heavily on germination tests
conducted under meticulously controlled conditions—temperature, humidity, and light,
to name a few—as stipulated by seed germination techniques. However, these tests come
with their own set of challenges, including stringent experimental conditions, lengthy
durations (spanning 7–15 days), potential seed damage, and non-reusability [7]. These
shortcomings underscore the urgency for a rapid, non-destructive, and precise method for
detecting germination rates, aimed at minimizing costs while enhancing detection speed
and accuracy. Near-infrared spectroscopy (NIR) technology, capable of providing charac-
teristic information about substances, enables efficient and economical sample analysis
without causing sample destruction, thereby presenting itself as a viable tool for detecting
germination rates in seed batches [8,9].

In the realm of crop seed germination rate detection (i.e., vitality), Kandpal et al.
(2016) [10] employed infrared spectroscopy to evaluate the vitality of melon seeds. They
subjected seeds to artificial aging, collected near-infrared spectral data, and established
discriminant models for differing vitality levels using Partial Least Squares Discriminant
Analysis (PLS-DA). The research yielded an impressive 94.6% accuracy rate in identifying
the vitality of melon seeds through the combined use of SR variable selection and PLS-DA.
In another study, Baek et al. (2019). Ref. [11] used PLS-DA to analyze data derived from
NIR-HSI of soybean seeds, achieving classification accuracies exceeding 95%. Meanwhile,
Wu et al. (2017). Ref. [12] developed a prediction model for wheat seed germination rate
using Si-cPLS, with the average correlation coefficients of PLS, cPLS, and Si-cPLS models
achieving 0.935, 0.949, and 0.967, respectively, thus underscoring the efficacy of multiple-
model consensus in bolstering prediction performance. Hui et al. (2022). Ref. [13] gathered
near-infrared spectra of 100 Medicago sativa seed samples from different provinces and
formulated a support vector machine prediction model. The application of first-order
derivatives for spectral preprocessing with a penalty factor c = 2.896 and a kernel function
g = 0.5 led to an impressive 96.67% accuracy rate in the detection set. Overall, the ad-
vancement in current research indicates the potential applicability of NIR for the rapid and
non-destructive detection of seed germination rates. However, the majority of these studies
primarily focus on vitality classification, germination capacity identification, and seed ger-
mination rate prediction in large-grain crops, leaving the research on rapid non-destructive
detection of germination rates in multi-variety, small-grain seeds such as the rapeseed plant
somewhat underexplored. The diversity of rapeseed varieties encompasses a variety of
seed attributes such as color and shape, which can differ significantly. These variances in
physical characteristics can influence the quality of the collected spectral sample, thereby
escalating the complexity associated with accurately predicting the germination rate across
differing seed types. This study seeks to address the gaps associated with the detection
of rapeseed plant germination rates and introduces a rapid and non-destructive detection
method underpinned by NIR.

This study entails the collection of near-infrared diffuse reflectance spectra data from
rapeseed plant seeds of varied varieties and aging levels. The reference values for the aver-
age germination rate of rapeseed plant seed batches were ascertained using the standard
method for testing the rapeseed plant seed germination rate. A support vector machine
regression (SVR) prediction model was subsequently developed to predict the germination
rates of mixed-variety rapeseed plant seeds.

2. Materials and Methods
2.1. Materials

This study incorporated a collection of 24 distinct rapeseed plant seed varieties sourced
from various regions. The majority of the seeds were procured from Qinghai Academy
of Agriculture and Forestry Sciences at Qinghai University (Xining, Qinghai, China) and
Jingyan Yinong (Beijing) Seed Sci-TechCo., Ltd. (Beijing, China), effectively representing
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the primary rapeseed plant production zones in China. The chosen varieties were intended
to create a comprehensive sample. Table 1 illustrates the characteristics of the differing
seed varieties.

Table 1. Characteristics of seed samples.

Variety Type Planting Date Color Particle
Size/(mm) Shape Quantity

Milky white Milky white type Year-round Gray and white 1.86~2.10 Subspherical 8
Jing Green and

spring oil
Late green
stem type

Autumn
and winter

Brownish
yellow 1.25~1.40 Irregular

diamond 4

Hua oil Late draw green
stem type

Autumn
and winter Yellow 1.10~1.36 Oval 2

Jing Guan and
Jing Green

Xia Qiu green
stalk type

Summer
and Autumn Brown 1.74~2.00 Oval 4

Kyoyan Black
Leaf Black leaf type Year-round Black 1.55~1.80 Subsphere 6

Total 24

2.2. Preparation of Artificially Aged Rapeseed Plant Seed Samples

Artificial aging was applied to an array of rapeseed plant seed varieties to augment the
range of germination rates within the rapeseed plant seed sample set, thereby enhancing
the near-infrared model’s generalization ability for rapeseed plant seed germination rates.
The duration of aging was controlled to induce varying degrees of aging, thus resulting in
seeds displaying diverse germination rates.

The process began by documenting the initial moisture content of the seed batches.
Seeds were then placed in a sealed container with water added at the bottom, careful to
prevent any direct contact with the seeds. The container was then covered to sustain a
specific level of humidity. Following this, the container was set in a drying oven calibrated
to a temperature of 40 ◦C, with an error margin of ±1 ◦C in the actual temperature inside
the oven [14]. The maximum aging duration was limited to 6 days, and at 12 h intervals,
the aging seeds were extracted from the container, air-dried, and weighed. The moisture
content of the seeds was rigorously controlled to return it to its initial state prior to the
experiment. This procedure enabled the procurement of rapeseed plant seeds with variable
germination rates, which formed the dataset for subsequent modeling exercises.

2.3. Spectral Acquisition and Determination of Germination Rate Reference Values

A VERTEX 70 Fourier-transform infrared spectrometer (BRUKER, Karlsruhe, Ger-
many) was employed to acquire the near-infrared spectra of the rapeseed plant seed
samples. The sampling procedure involved the use of a large sample cup in rotation mode
to guarantee representative measurements. Prior to loading the samples, a thorough inspec-
tion was conducted to exclude any impurities or empty grains. The instrument parameters
were set as follows: a wavenumber range of 4000 cm−1 to 12,500 cm−1, a resolution of
8 cm−1, 64 scans, and 2074 data points. The near-infrared spectra derived from the collected
rapeseed plant seed samples are depicted in Figure 1.

The germination experiment followed the standard method, preparing germination
beds using the paper-on-paper (TP) method. For each trial, 100–150 rapeseed plant seeds
were selected at random and arranged evenly on a Petri dish lined with three layers of
sterilized, moist filter paper [15]. The environment was controlled with a temperature
of 20 ± 1 ◦C, relative humidity of 90%, and continuous exposure to light for 24 h. Each
sample was subjected to three replicate trials. After a span of 7 days since the inception of
the experiment, germinated seeds were tallied, and the average germination rate for the
7-day period was calculated for each batch of rapeseed plant seeds of different varieties
and aging levels. The statistical outcomes of the germination rates for the samples are
displayed in Table 2.
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Table 2. Statistical results of germination rates of samples.

Item Sample Number Minimum/(%) Maximum Value/(%) Average Value/(%) Standard Deviation

Average
germination rate 228 15.73 99.13 83.46 15.09

2.4. Data Processing and Model Development
2.4.1. Spectral Preprocessing

Various environmental factors, instrument conditions, noise, and scattering due to
disparities in size, shape, and surface color of distinct rapeseed plant seed types can impact
the quality of spectral data acquisition. To enhance the differences between spectral samples
and eliminate noise, spectral preprocessing techniques are utilized. The Unscrambler X
10.4 software was employed to compare the efficacy of diverse preprocessing methods,
including Mean Centering (MC), First Derivative (FD), Standard Normal Variate (SNV),
Multiplicative Scatter Correction (MSC), and Savitzky–Golay smoothing filter (SG), applied
to the near-infrared spectra of rapeseed plant seed samples. The results informed the
selection of the optimal preprocessing method.

2.4.2. Feature Wavelength Selection

The goal of feature wavelength selection, which employs variable selection algorithms,
is to identify the primary influencing factors of seed germination rate in NIR quantitative
prediction model from a chemometric perspective. This procedure minimizes the effect
of interfering variables on the model and heightens its predictive ability and stability.
MATLAB2020a software was leveraged for feature wavelength selection and modeling. A
comprehensive comparison was undertaken amongst an assortment of variable selection
algorithms to identify the most effective method. This suite of algorithms included Synergy
Interval Partial Least Squares (SiPLS), Backward Interval Partial Least Squares (BiPLS),
Iteratively Retains Informative Variables, (IRIV) (IRIV), Variable Combination Population
Analysis (VCPA), Competitive Adaptive Reweighted Sampling (CARS), Random Frog
(RF), and combinations of these. Each was meticulously assessed to determine the optimal
selection approach.

2.4.3. Model Development

Model development and evaluation were conducted utilizing MATLAB2020a soft-
ware. A Support Vector Regression (SVR) model was created to predict the germination
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rate of rapeseed plant seeds. SVR, a supervised learning model extensively used in re-
gression analysis, provides advantages in situations characterized by limited sample size,
high-dimensional data space, and nonlinear quantitative analysis. The sample set was
partitioned into a calibration set (training set) and a prediction set (testing set) at a 4:1
ratio using the Sample set Partitioning based on joint x-y distance (SPXY) method. Grid
search was conducted to optimize the SVR penalty parameter (c) and the kernel function
parameter (g). Model performance was assessed using determination coefficients (R2c
and R2p) for the training and prediction sets, along with the Root Mean Square Error of
Calibration (RMSEC) and Prediction (RMSEP).

3. Results
3.1. Preprocessing of Original Spectra

The near-infrared spectra data of rapeseed plant seed samples underwent various pre-
processing methods, encompassing MC, FD, SNV, MSC, SG, and combined SG smoothing.
Subsequently, SVR prediction models for seed germination rate were established using the
preprocessed spectra data. Figure 2 showcases the spectra data after application of distinct
preprocessing methods, whereas Table 3 depicts the outcomes of the SVR modeling.
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Table 3. SVR modeling results with different preprocessing methods.

Spectral Preprocessing Method
Modeling Parameters Training Set Test Set

c g RMSEC/(%) R2
c RMSEP/(%) R2

p

MC 181.0193 0.0009765 27.13 0.6760 26.99 0.4188
SNV 11.3137 0.0027621 28.29 0.6491 28.96 0.3232
MSC 4 0.0039063 29.35 0.6212 29.29 0.2837
FD 1.4142 0.0009765 24.81 0.7452 27.71 0.3777

SG Convolutional smoothing 256 0.0009765 26.76 0.6839 26.87 0.4276
SG Convolutional smoothing + MC 181.0193 0.0009765 27.17 0.6750 26.98 0.4187
SG Convolutional smoothing + SNV 0.35355 0.03125 29.35 0.6479 29.43 0.2457
SG Convolutional smoothing + MSC 4 0.0039063 29.39 0.6199 29.29 0.2835

SG Convolution Smooth + FD 1.4142 0.0009765 24.92 0.7423 27.67 0.3745

Upon examining the outcomes of diverse preprocessing models, it was evident that
the SG convolution smoothing method facilitated improved modeling results compared to
the no-preprocessing strategy. The determination coefficients (R2c and R2p) for the training
and prediction sets were more pronounced, suggesting a superior fit of the model to the
data. Moreover, the RMSEC diminished post the application of SG smoothing, signaling a
reduction in the discrepancy between the predicted and factual values. The closer values of
RMSEC and RMSEP indicated augmented model stability and refined prediction accuracy.
Based on these observations, the SG convolution smoothing method was chosen as the
preprocessing method for the SVR modeling of rapeseed plant seed germination rates. The
prediction outcomes employing this preprocessing method are demonstrated in Figure 3,
where the predicted values show a closer alignment with the actual values. Nonetheless,
despite the enhancements in data quality and model performance via preprocessing, the
modeling outcomes still did not fully satisfy the sought-after prediction requirements. Con-
sequently, SG convolution smoothing was utilized as input for subsequent data processing
techniques to further enhance the model’s performance.
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3.2. Feature Wavelength Selection

Feature wavelength selection is pivotal in diminishing model complexity and en-
hancing model performance for NIR spectra data from rapeseed plant seeds. A rigorous
comparative analysis was undertaken across six distinct wavelength selection algorithms,
including SiPLS, BiPLS, RF, IRIV, VCPA, and CARS, as well as their combinations. The
intent was to screen the characteristic wavelengths inherent to the modeling data. Subse-
quently, the modeling outcomes produced via different variable selection methodologies
were contrasted and evaluated.
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3.2.1. Methodology for Feature Wavelength Interval Screening

(1) Feature interval selection based on SiPLS

The SiPLS algorithm was applied to the preprocessed standard sample dataset for
feature wavelength selection. The joint interval numbers were set to 2, 3, and 4, and for
each joint interval, optimal PLS models were established using a subset of subinterval
principal component numbers that ranged from 6 to 30. The results of this analysis are
consolidated in Table 4, and the optimal feature interval combinations selected by the SiPLS
method are visualized in Figure 4.

Table 4. Optimal SiPLS model results with different joint interval numbers.

Number of
Joint

Intervals

Number of
Intervals

Interval
Combinations

Spectral
Range/(cm−1) n R2

c RMSECV/(%) R2
p RMSEP/(%)

2 28 14 28 8280–7990
4280–4000 6 0.4490 10.76 0.6495 11.19

3 11 1 9 10 12,000–11,270
6170–4725 8 0.5185 10.15 0.7329 9.27

4 21 1 13 16 19

12,000–11,617
7413–7035
6267–5889
5129–4755

9 0.6003 9.21 0.7465 9.13
Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 18 
 

 

Figure 4. Feature wavelength selection using SiPLS algorithm with joint intervals 4. 

The modeling outcomes indicate that the optimal model performance is attained with 
a joint interval number of 4, a partition interval number of 21, a modeling interval combi-
nation of [1, 13, 16, 19], and nine principal components. The model displays an R2c value 
of 0.6003, a Root Mean Square Error of Cross-Validation (RMSECV) of 9.21%, an R2p of 
0.7465, and an RMSEP of 9.13%. The selected feature wavelength intervals are 11,617 cm−1 
to 12,000 cm−1, 7035 cm−1 to 7413 cm−1, 5889 cm−1 to 6267 cm−1, and 4755 cm−1 to 5129 cm−1. 
(2) Feature interval selection based on BiPLS 

Feature interval selection using the BiPLS algorithm divided the preprocessed stand-
ard sample dataset into intervals that ranged from 3 to 30, with models compared accord-
ingly. The optimal model performance was realized with a partition interval number of 
415 and a modeling interval combination of [1, 3, 4, 5]. The selected spectral regions are 
depicted in Figure 5a, and the variation of RMSECV with the number of principal compo-
nents is demonstrated in Figure 5b. The model displays an R2c value of 0.5769, an RMSECV 
of 9.43%, an R2p of 0.7280, and an RMSEP of 9.48%. The selected feature wavelength inter-
vals are 4000 cm−1 to 5600 cm−1 and 7200 cm−1 to 12,000 cm−1. 

  
(a) (b) 

Figure 5. Feature wavelength selection using BiPLS algorithm. (a) Screening feature interval. (b) 
RMSECV as a function of the number of principal Components. 

  

Figure 4. Feature wavelength selection using SiPLS algorithm with joint intervals 4.

The modeling outcomes indicate that the optimal model performance is attained
with a joint interval number of 4, a partition interval number of 21, a modeling interval
combination of [1, 13, 16, 19], and nine principal components. The model displays an
R2c value of 0.6003, a Root Mean Square Error of Cross-Validation (RMSECV) of 9.21%,
an R2

p of 0.7465, and an RMSEP of 9.13%. The selected feature wavelength intervals
are 11,617 cm−1 to 12,000 cm−1, 7035 cm−1 to 7413 cm−1, 5889 cm−1 to 6267 cm−1, and
4755 cm−1 to 5129 cm−1.

(2) Feature interval selection based on BiPLS

Feature interval selection using the BiPLS algorithm divided the preprocessed standard
sample dataset into intervals that ranged from 3 to 30, with models compared accordingly.
The optimal model performance was realized with a partition interval number of 415 and
a modeling interval combination of [1, 3, 4, 5]. The selected spectral regions are depicted
in Figure 5a, and the variation of RMSECV with the number of principal components is
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demonstrated in Figure 5b. The model displays an R2
c value of 0.5769, an RMSECV of

9.43%, an R2
p of 0.7280, and an RMSEP of 9.48%. The selected feature wavelength intervals

are 4000 cm−1 to 5600 cm−1 and 7200 cm−1 to 12,000 cm−1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 18 
 

 

Figure 4. Feature wavelength selection using SiPLS algorithm with joint intervals 4. 

The modeling outcomes indicate that the optimal model performance is attained with 
a joint interval number of 4, a partition interval number of 21, a modeling interval combi-
nation of [1, 13, 16, 19], and nine principal components. The model displays an R2c value 
of 0.6003, a Root Mean Square Error of Cross-Validation (RMSECV) of 9.21%, an R2p of 
0.7465, and an RMSEP of 9.13%. The selected feature wavelength intervals are 11,617 cm−1 
to 12,000 cm−1, 7035 cm−1 to 7413 cm−1, 5889 cm−1 to 6267 cm−1, and 4755 cm−1 to 5129 cm−1. 
(2) Feature interval selection based on BiPLS 

Feature interval selection using the BiPLS algorithm divided the preprocessed stand-
ard sample dataset into intervals that ranged from 3 to 30, with models compared accord-
ingly. The optimal model performance was realized with a partition interval number of 
415 and a modeling interval combination of [1, 3, 4, 5]. The selected spectral regions are 
depicted in Figure 5a, and the variation of RMSECV with the number of principal compo-
nents is demonstrated in Figure 5b. The model displays an R2c value of 0.5769, an RMSECV 
of 9.43%, an R2p of 0.7280, and an RMSEP of 9.48%. The selected feature wavelength inter-
vals are 4000 cm−1 to 5600 cm−1 and 7200 cm−1 to 12,000 cm−1. 

  
(a) (b) 

Figure 5. Feature wavelength selection using BiPLS algorithm. (a) Screening feature interval. (b) 
RMSECV as a function of the number of principal Components. 

  

Figure 5. Feature wavelength selection using BiPLS algorithm. (a) Screening feature interval.
(b) RMSECV as a function of the number of principal Components.

3.2.2. Methodology for Feature Wavelength Point Screening

(1) Selection of Feature Points Based on IRIV

The IRIV algorithm was utilized for feature wavelength point selection on the full spec-
trum region. The selection process incorporated establishing a PLS prediction model using
5-fold cross-validation and using RMSECV as the evaluation metric to classify informative
variables. During each iteration, uninformative and interfering variables were eliminated,
while the relevant feature variables were retained. The analysis of the selection process
revealed a substantial reduction in the number of variables: from 2074 to 241 after three
iterations. By the fifth iteration, uninformative and interfering variables were successfully
eradicated, leading to the final retention of 27 feature variables through backward selec-
tion. The variable selection process is demonstrated in Figure 6a, and the chosen feature
wavelengths are presented in Figure 6b.
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(2) Selection of Feature Points Based on VCPA

Feature interval selection was accomplished using the VCP algorithm, configured
with a Decreasing Exponential Function (EDF) for the VCPA feature variable selection
index. This process entailed 50 iterations of Binary Matrix Sampling (BMS) with a mean of
100 samples for each iteration. An optimal subset ratio was established at 10%, yielding
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100 remaining variables following the execution of EDF. A PLS model was constructed
using 5-fold cross-validation, with RMSECV serving as the evaluation metric to gauge the
modeling performance of randomly partitioned subsets and choose the optimal subset.
Throughout the 50 iterations, the EDF process purged variables with minimal contribution
rates. The RMSECV was calculated for all variable combinations among the remaining
variables, and the variable combination with the lowest RMSECV was chosen as the
optimal subset. Ultimately, 12 feature wavelength points were selected. The variable
selection process and the dispersion of feature wavelength points for VCPA are portrayed
in Figure 7.
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(3) Selection of Feature Points Based on RF

The initialization parameters of RF were configured, setting the algorithm iteration
count at 1000 and the number of variables encompassed within the initial subset of random
frog-leaping to five. Through this process, the selection probability for each wavelength was
calculated. Wavelengths demonstrating a lower likelihood of selection during the iteration
were indicative of interfering or redundant information within the full spectral data. After
604 iterations, the error was found to be at its minimal point. Adopting the principle
that higher selection probability equates to greater variable importance, all variables were
ranked according to their respective probabilities. Subsequently, RF concluded with the
screening of 50 feature variables. Figure 8 illustrates the variable screening process via the
RF algorithm and the dispersion of characteristic wavelength points.
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(4) Feature point selection based on CARS

The feature interval selection process and distribution employing the CARS algorithm
are depicted in Figure 9. The quantity of selected variables declines as the number of
Monte Carlo samples escalates. Initially, with an increase in sample size, the quantity
of variables diminishes rapidly, but the rate of variable elimination gradually slackens
over time, as shown in Figure 9(a1), demonstrating the trend of variable selection count.
During the sampling process, cross-validation is carried out on each variable subset, and
RMSECV is computed to identify the subset with the lowest RMSECV. Irrelevant variables
are systematically eliminated as the sample size increases, causing a slow decline in RM-
SECV. However, if critical variables are removed, RMSECV spikes significantly, signaling a
substantial deterioration in model performance. Based on the RMSECV trend portrayed in
Figure 9(a2), the sample size corresponding to the minimum RMSECV value is chosen. In
this instance, a sample size of 24 delivered the smallest RMSECV value, and the variable
subset attained at this sample size is designated as the final variable combination. The
variation of regression coefficients for each wavelength variable across different sample
sizes is presented in Figure 9(a3) as the regression coefficient path. These paths represent
the regression coefficients for all wavelength variables and provide insights into the cor-
relation between different wavelength variable subsets and their regression coefficients.
Variables with higher regression coefficients contribute more significantly to the model.
The vertical dashed line indicated by a blue asterisk represents the position where the
minimum RMSECV is achieved, signifying the optimal sample size and variable subset.
Across 24 sampling iterations, the CARS algorithm selected a total of 80 variables. The
distribution of the selected feature wavelengths is portrayed in Figure 9b.
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The germination rate SVR prediction model was constructed utilizing Near Infrared
(NIR) spectral data from rapeseed plant seeds, undergoing SG convolution smoothing
preprocessing and feature variable selection. Table 5 summarizes SVR modeling outcomes
obtained via different variable selection algorithms. Notably, the SVR model, built with
80 selected feature wavelength points using the CARS algorithm, exhibited superior per-
formance. It registered a training set RMSEC of 14.57% and a determination coefficient R2c
of 0.8266. The testing set RMSEP was 19.10%, accompanied by a determination coefficient
R2p of 0.8149. Comparison of the modeling results, using the selected data and the original
spectra, revealed significant improvements. R2p increased from 0.4196 to 0.8149, while
RMSEP decreased from 26.63% to 19.10%. This data signifies a substantial improvement in
the predictive capability of the germination rate model, with a 94.21% improvement in R2p
and a 28.28% reduction in RMSEP. The training set and testing set prediction results for the
optimal model are visually represented in Figure 10.

Table 5. SVR modeling outcomes of feature variables utilizing various wavelength point screening
algorithms.

Variable Selection
Method

Number of
Variables

SVR Modeling Parameters Training Set Test Set

c g RMSEC/(%) R2
c RMSEP/(%) R2

p

There is no 2074 128 0.0009765 27.88 0.6595 26.63 0.4196
IRIV 27 1024 0.0625 15.02 0.8144 26.44 0.6189

VCPA 12 181.02 0.1767766 15.38 0.8063 22.49 0.7320
RF 50 181.02 0.0027621 14.66 0.8275 21.35 0.7668

CARS 80 1024 0.0055242 14.57 0.8266 19.10 0.8149

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 18 
 

spectra, revealed significant improvements. R2p increased from 0.4196 to 0.8149, while 
RMSEP decreased from 26.63% to 19.10%. This data signifies a substantial improvement 
in the predictive capability of the germination rate model, with a 94.21% improvement in 
R2p and a 28.28% reduction in RMSEP. The training set and testing set prediction results 
for the optimal model are visually represented in Figure 10. 

Table 5. SVR modeling outcomes of feature variables utilizing various wavelength point screening 
algorithms. 

Variable Se-
lection 
Method 

Number of 
Variables 

SVR Modeling Parameters Training Set Test Set 

c g RMSEC/(%) R2c RMSEP/(%) R2p 

There is no 2074 128 0.0009765 27.88 0.6595 26.63 0.4196 
IRIV 27 1024 0.0625 15.02 0.8144 26.44 0.6189 

VCPA 12 181.02 0.1767766 15.38 0.8063 22.49 0.7320 
RF 50 181.02 0.0027621 14.66 0.8275 21.35 0.7668 

CARS 80 1024 0.0055242 14.57 0.8266 19.10 0.8149 
 

  

(a) (b) 

Figure 10. CARS algorithm optimized feature variable SVR modeling detection results (a) Training 
set. (b) Testing set. 

3.2.3. Joint-Feature Variable Screening Method 
Based on the test findings from Sections 3.3.1 and 3.3.2, it is apparent that different 

variable screening algorithms optimize the modeling of characteristic wavelengths, 
thereby enhancing detection performance. Notably, the SVR modeling performance of the 
SiPLS and CARS methods proves superior. In a bid to further enhance data quality and 
improve the model’s detection performance, a refined approach incorporating SiPLS and 
CARS has been introduced. A comparative analysis was conducted on the SVR modeling 
results from diverse feature variable screening algorithms to identify sensitive variables, 
simplify model complexity, and bolster detection performance. The modeling outcomes 
are displayed in Table 6. 

Table 6. Comparison of SVR modeling results using different variable selection methods. 

Variable Se-
lection 

Method 

Number of 
Variables 

SVR Modeling Parameters Training Set Test Set 

c g RMSEC/(%) R2c RMSEP/(%) R2p 

There is no 2074 128 0.0009765 27.88 0.6595 26.63 0.4196 
SiPLS 395 1024 0.0027621 13.20 0.8568 21.05 0.7763 

SiPLS–RF 50 32,768 0.0013811 13.76 0.8559 17.04 0.8386 
SiPLS–IRIV 16 8192 0.03125 18.57 0.7155 25.98 0.6344 

Figure 10. CARS algorithm optimized feature variable SVR modeling detection results (a) Training
set. (b) Testing set.

3.2.3. Joint-Feature Variable Screening Method

Based on the test findings from Sections 3.2.1 and 3.2.2, it is apparent that different
variable screening algorithms optimize the modeling of characteristic wavelengths, thereby
enhancing detection performance. Notably, the SVR modeling performance of the SiPLS
and CARS methods proves superior. In a bid to further enhance data quality and improve
the model’s detection performance, a refined approach incorporating SiPLS and CARS has
been introduced. A comparative analysis was conducted on the SVR modeling results from
diverse feature variable screening algorithms to identify sensitive variables, simplify model
complexity, and bolster detection performance. The modeling outcomes are displayed in
Table 6.
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Table 6. Comparison of SVR modeling results using different variable selection methods.

Variable Selection
Method

Number of
Variables

SVR Modeling Parameters Training Set Test Set

c g RMSEC/(%) R2
c RMSEP/(%) R2

p

There is no 2074 128 0.0009765 27.88 0.6595 26.63 0.4196
SiPLS 395 1024 0.0027621 13.20 0.8568 21.05 0.7763

SiPLS–RF 50 32,768 0.0013811 13.76 0.8559 17.04 0.8386
SiPLS–IRIV 16 8192 0.03125 18.57 0.7155 25.98 0.6344

SiPLS–VCPA 10 32,768 0.0110485 17.74 0.7418 23.94 0.6956
SiPLS–CARS 68 23,170.475 0.0019531 13.97 0.8392 19.51 0.8067

CARS 80 1024 0.0055242 14.57 0.8266 19.10 0.8149
CARS-RF 50 16,384 0.0009765 15.36 0.8073 21.99 0.7564

CARS-VCPA 10 256 0.125 18.27 0.7310 25.39 0.6703

The comparative results indicate that the combination of SiPLS with the RF algorithm
(SIPLS–RF) for feature variable screening results in the most effective SVR modeling detec-
tion. The modeling incorporates 50 feature wavelength points, representing a compression
of wavelengths to 2.41% of the full spectrum. The Root Mean Square Error (RMSEC) of
the training set stands at 13.76%, with a determination coefficient (R2c) of 0.8559. The
Root Mean Square Error (RMSEP) for the test set registers at 17.04%, with a determination
coefficient (R2p) of 0.8386.

When compared to full-spectrum data modeling, the Root Mean Square Error of the
test set decreases by 36.01%, and the coefficient of determination increases by 99.86%. This
marks a significant improvement in the model’s detection performance. The SVR modeling
results derived from the SiPLS–RF feature variable screening are illustrated in Figure 11.
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Figure 11. Detection results of SVR modeling with optimized feature variables via SiPLS–RF algo-
rithm. (a) Training set. (b) Testing set.

By examining the joint-variable screening process of the SIPLS–RF algorithm, we
observed that RF optimization was performed on the 395 feature variables identified via
SiPLS. The variation of the SIPLS–RF iteration error is depicted in Figure 12a, with the
smallest error registered when the iteration count is at 545. The selection probabilities of
different variables are displayed in Figure 12b, with the 395 variables ordered in descending
sequence based on their likelihood of selection. A selection probability of 0.35 serves as the
threshold, with variables surpassing this threshold retained as key variables for modeling.
At this juncture, 50 characteristic wavelengths were chosen, their dispersion is depicted in
Figure 13.
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3.3. Analysis of Feature Wavelengths

The near-infrared spectra of seeds yielded a mixed spectrum that reflects their inter-
nal composition. Within this spectrum, specific wavelength ranges are where the seeds
display spectral peaks. The positions and variations of these peaks correlate with inter-
nal physiological and chemical indicators of the seeds [16,17]. Different feature variable
selection methods employed in model development identify certain common spectral
regions. Figure 14 portrays the feature wavelengths chosen via different variable selection
algorithms.

The feature variables selected via the SiPLS–RF algorithm for SVR modeling yielded
the most accurate prediction results. The traceability analysis of the chosen variables
revealed the wavelength points to be primarily concentrated around 5150 cm−1, 4800 cm−1,
4950 cm−1, and 6920 cm−1. The pronounced absorption peak at 5150 cm−1 corresponds
to the combined spectrum band of water’s (H2O) anti-symmetric stretching and bending
vibration, indicating its relation to the H2O content within the seed. This water activates
the enzymes that control seed germination and is involved in the germination process itself.

The points at 4800 cm−1, 4950 cm−1, and 6920 cm−1 originate from the -OH in the
carboxyl group (-COOH), and the combination frequency of -OH stretching vibration and
-CH bending vibration at 4800 cm−1 and 4950 cm−1. At 6920 cm−1, the carboxylic acid
monomer features non-bonded or free -OH stretching vibration doubled, and -COOH
was the functional group of oleic acid. Research has shown that under identical stress
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conditions, rapeseed seeds with high oleic acid content exhibit a lower germination rate
than those with low or normal oleic acid content, thereby affecting seed vigor [18].
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The characteristic bands identified via the SiPLS–RF variable selection method mirror
the information related to germination rate within the seed and reflect the relationship
between relevant substances and changes in the germination rate. This provides preliminary
insight into the mechanism for detecting germination rates in rapeseed seeds using NIR.

4. Discussion

The near-infrared (i.e., NIR) spectra of seeds impart crucial insights into the con-
stitution of internal substances. Nevertheless, hurdles such as low absorption intensity
and severe peak overlapping in the spectra, along with variations instigated by sample
morphology, environmental factors, and spectrometer conditions, can inject noise into the
spectral acquisition process. Furthermore, the modeling dataset frequently incorporates
a vast number of variables relative to the number of samples, engendering redundancy
and subpar modeling performance. Consequently, preprocessing methods and feature
variable selection techniques were deployed to scrutinize the key elements influencing
NIR quantitative models of seed germination rates from a chemometrics standpoint. By
mitigating noise and non-linear variables and curtailing the impact of interfering variables
on the modeling process, the complexity of the models was diminished, culminating in
enhanced prediction accuracy and stability [19,20].

The integration of the SiPLS and RF algorithm is based on a synergistic principle. The
RF algorithm initiates a random selection for the variable set, which can lead to uncertainty
in variable information. During the variable selection process, the RF algorithm may
incorporate variables devoid of information or those that present interference information,
leading to suboptimal detection performance.

SiPLS, on the other hand, offers an initial filtering process for the characteristic wave-
length interval, generating variables that carry sensitive information related to the germi-
nation rate. This process curtails the influence of other uninformative or weakly associated
variables on the modeling performance.

As such, we initially employed the SiPLS feature interval of the full spectrum for
preliminary screening, followed by using these pre-screened variables as the initial variable
set for the RF algorithm. The goal is to select feature variables of higher importance.
Consequently, the initial variable set consists of information wavelengths with strong
pertinence, which effectively enhances detection accuracy and operational efficiency. This
results in a significant improvement in the model’s detection performance.
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Compared to SiPLS alone, the SIPLS–RF screening process reduces the number of
feature variables to only 12.66%. This reduction results in a decrease of the Root Mean
Square Error for the SVR modeling performance test set of 19.05%, while the determination
coefficient increases by 8.03%. This highlights the beneficial impact of this integrative
approach on the model’s performance.

In this investigation, an SVR model predicated on SiPLS–RF preprocessing was con-
structed to forecast the average germination rate of rapeseed plant seed batches. The model
evinced commendable performance in predicting germination rates for seeds hailing from
different varieties and artificially aged seed batches. However, it is noteworthy that dis-
crepancies may exist between seeds aged artificially and those aged naturally, and ensuing
research could incorporate samples from disparate years to bolster the practicality and
stability of NIR analysis and prediction models.

5. Conclusions

This research proposes an innovative method for the accurate and automatic detection
of rapeseed seed germination rates. The SVR model established by the SG convolution
smoothing preprocessing method combined with the SiPLS-RF variable screening method
was used to construct a robust and reliable rape seed germination rate detection model.

A comparative analysis and optimization of the spectral preprocessing method, SG
convolution smoothing, was performed. Additionally, feature wavelength screening algo-
rithms such as BiPLS, SiPLS, IRIV, VCPA, CARS, and RF, along with their combinations,
were evaluated.

The SIPLS–RF algorithm facilitated the optimization of 50 wavelengths, identified
as critical modeling variables. The key variable wavelengths predominantly originated
from the combined spectrum band of water’s (H2O) anti-symmetric stretching and bend-
ing vibrations, the combination frequency of -OH stretching vibration and -CH bending
vibration in carboxyl groups (-COOH), and the double frequency of unbonded or free -OH
stretching vibration in carboxylic acid monomers. These wavelengths correlate with water
and oleic acid, among other substances that influence the germination rate.

This study also presented an analysis of the mechanism underlying seed germination
rate detection using near-infrared spectroscopy. We established an SVR germination rate
detection model for the rapeseed seed near-infrared spectrum based on SG convolution
smoothing. The determination coefficient and Root Mean Square Error of the test set were
0.8386 and 17.04%, respectively, outperforming the full spectrum model by 99.86% and
36.01%.

Ultimately, this methodology enables the accurate detection of germination rates for
different varieties of rapeseed and seeds with varying degrees of aging. It effectively
addresses the shortcomings of traditional methods, such as insufficient prediction accuracy
and stability issues arising from complex sample properties or limited calibration sample
sizes. This methodology provides substantial technical support for the development of NIR
prediction models for rapeseed plant seed germination rates, particularly for small-sized
seeds and a diverse range of varieties.
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