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Abstract: Post-consumer plasterboard waste sorting is carried out manually by operators, which
is time-consuming and costly. In this work, a laboratory-scale hyperspectral imaging (HSI) system
was evaluated for automatic refurbishment plasterboard waste sorting. The HSI system was trained
to differentiate between plasterboard (gypsum core between two lining papers) and contaminants
(e.g., wood, plastics, mortar or ceramics). Segregated plasterboard samples were crushed and
sieved to obtain gypsum particles of less than 250 microns, which were characterized through
X-ray fluorescence to determine their chemical purity levels. Refurbishment plasterboard waste
particles <10 mm in size were not processed with the HSI-based sorting system because the manual
processing of these particles at a laboratory scale would have been very time-consuming. Gypsum
from refurbishment plasterboard waste particles <10 mm in size contained very small amounts of
undesirable chemical impurities for plasterboard manufacturing (chloride, magnesium, sodium,
potassium and phosphorus salts), and its chemical purity was similar to that of the gypsum from
HSI-sorted plasterboard (96 wt%). The combination of unprocessed refurbishment plasterboard
waste <10 mm with HSI-sorted plasterboard ≥10 mm in size led to a plasterboard recovery yield
>98 wt%. These findings underpin the potential implementation of an industrial-scale HSI system for
plasterboard waste sorting.

Keywords: refurbishment plasterboard waste; gypsum recycling; hyperspectral imaging

1. Introduction

Plasterboard waste is generated during construction, refurbishment and demolition
projects. Refurbishment plasterboard waste usually carries small amounts of other con-
struction materials such as concrete, foam, paint, plastics, wood, ceramics, glass and ferrous
metals. It may also contain non-construction materials due to cross-contamination or poor
on-site segregation practices. Nowadays, gypsum from refurbishment plasterboard wastes
can be recycled through several physical separation methods that remove contaminants.
These separation methods comprise manual segregation, grinding, sieving, and ferrous and
non-ferrous magnetic separators. Several quality specifications are required for recycled
gypsum to be used as feedstock in plasterboard manufacturing. The most important quality
parameter of recycled gypsum is its purity in terms of calcium sulphate dihydrate content.
The European Union, through the Life+ Gypsum to Gypsum (GtoG) project defined a
minimum dihydrate content of 80 wt% for recycled gypsum [1]. This is comparable with
the minimum dihydrate content of at least 85 wt% recommended by the Eurogypsum
Recycling Working Group [2] and above 85 wt% recommended by the British standard
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document BSI PAS 109 [3]. However, recycling of gypsum from refurbishment plaster-
board waste for the manufacturing of new plasterboards is still very low in the European
Union due to the high degree of contamination. As a result, most of the gypsum from
refurbishment plasterboard waste usually ends up in dedicated landfill cells to prevent its
decomposition and the release of toxic hydrogen sulphide gas. Recycled gypsum purity
depends mainly on the quality of the plasterboard waste received, as current physical
recycling processes have limited efficiency and customization possibilities. Furthermore,
there are water-soluble chemical impurities present in the gypsum waste, such as chlo-
ride, magnesium, sodium, potassium and phosphorus salts, that migrate to the paper-core
interface during plasterboard drying and affect paper bonding during plasterboard pro-
duction [4]. Recently, manual physical segregation combined with a sulfuric acid leaching
process has been proven to be an effective technology for producing recycled gypsum from
refurbishment plasterboard waste with consistently high chemical purity levels of >96
wt% [5]. However, physical segregation of the contaminants present in the plasterboard
waste must be highly effective to obtain recycled gypsum with >96 wt% chemical purity
after acid leaching.

Hyperspectral imaging (HSI) is a technique that combines the properties of digital
imaging with those of spectroscopy. Algorithms and procedures for spectral data pre-
processing, exploration and classification are usually implemented. HSI systems have
been used for the identification of materials coming from construction and demolition
waste, waste from electric and electronic equipment, municipal solid waste and end-of-
life vehicles [6,7]. For instance, HSI systems have been used to separate different types
of plastics in municipal solid wastes [8–10]. HSI systems have also been used for the
recovery and recycling of concrete, mortar aggregates, bricks, tiles and ceramics present in
construction and demolition waste [11], for the separation of concrete, rubber, bricks, wood
and plastics in construction waste [12], and to detect gypsum, foam, wood, plastic and
brick in demolition waste [13,14]. Other applications include the classification of polyolefin
particles in construction waste, and the detection of asbestos in construction and demolition
waste [15,16].

The main aim of this work was to determine for the first time whether an HSI-based
sorting system can effectively segregate plasterboard mixed with contaminants found in
refurbishment plasterboard waste. The specific objectives of this work were to train the HSI-
based sorting system with manually segregated refurbishment plasterboard waste prior
to testing the system with non-segregated refurbishment plasterboard waste containing
contaminants, such as wood, plastics, mortar and ceramics. The impact of HSI-based
segregation on gypsum’s chemical purity was determined and compared to results obtained
with conventional manual segregation. The potential beneficial implications of replacing
manual segregation with the automatic HSI-based sorting system would be lower labour
costs, higher quality control of the sorted material and higher recycling capacity.

2. Materials and Methods
2.1. Refurbishment Plasterboard Waste Samples

Two batches of refurbishment plasterboard waste were collected at a skip in Lenton
Household Waste and Recycling Centre in Nottingham (United Kingdom). Batch 1 of
refurbishment plasterboard waste was collected on 15 October 2020 for HSI system training
purposes (Figure 1). Batch 2 of refurbishment plasterboard waste was collected from the
same skip on 21 December 2021 and was used to validate the HSI-based classification
process. The amount of batch 1 and batch 2 of refurbishment plasterboard waste used in
each trial was approximately 10 kg.
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spectral footprint of every pixel of a sample image, air-cooled tubular halogen lamps and 
a sliding scanning table. The HSI camera (HySpex short-wavelength infrared-384 model, 
Norsk Elektro Optikk) was the main component of this experimental setup and worked 
in the spectral range of shortwave infrared (930–2500 nm). The camera is based on the 
push-broom scanning method for data recording, by which all spectral wavelengths from 
a narrow line of a spatial scene are simultaneously measured. Table 1 presents the main 
characteristics of the camera. The illumination system comprised two halogen 100W/12V 
lamps, one on each side of the camera, oriented at 45°. The sample moving system con-
sisted of a translation stage with a 1040 mm lab rack and controller. 
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of classification models based on machine learning algorithms, and ultimately, running of 
sorting applications in real-time.  
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2.2. HSI-Based Sorting System

Automated in-line sorting of plasterboard contained in refurbishment plasterboard
waste was carried out at laboratory scale by means of a table-top setup based on an HSI
system. The HSI system included an advanced HSI camera that provides the complete
spectral footprint of every pixel of a sample image, air-cooled tubular halogen lamps and
a sliding scanning table. The HSI camera (HySpex short-wavelength infrared-384 model,
Norsk Elektro Optikk) was the main component of this experimental setup and worked
in the spectral range of shortwave infrared (930–2500 nm). The camera is based on the
push-broom scanning method for data recording, by which all spectral wavelengths from
a narrow line of a spatial scene are simultaneously measured. Table 1 presents the main
characteristics of the camera. The illumination system comprised two halogen 100W/12V
lamps, one on each side of the camera, oriented at 45◦. The sample moving system consisted
of a translation stage with a 1040 mm lab rack and controller.

Table 1. HSI camera characteristics.

Description Specification

Spectral range 930–2500 nm
Spatial pixels 384
Spectral channels 288
Spectral sampling 5.45 nm
Field of view (FOV) 16◦

Pixel FOV across/along 0.73/0.73 mrad
Resolution 16 bits
Maximum speed (at full resolution) 400 fps
Working distance 21.1 cm
Lens 30 cm close-up lens

The experimental setup was controlled with a Breeze software package (Prediktera)
that allowed the recording of hyperspectral images of materials, training and validation
of classification models based on machine learning algorithms, and ultimately, running of
sorting applications in real-time.

The principal component analysis (PCA) and the partial least square discriminant
analysis (PLS-DA) algorithms are the multivariate data analysis tools that were applied
to build the classification models [6,11,16–19]. On one side, PCA is a statistical tool for
exploratory data analysis and attempts to find the hidden structure in large and complex
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data sets. Hidden structure results from the influence of all variables acting simultaneously
and extracting this information reveals, for example, patterns or groupings. Basically, PCA
is used to investigate the relationships between samples and measured variables in order to
find patterns or groups in the data. It searches for common features, but not for differences
between classes. On the other hand, PLS-DA is an algorithm used for the elaboration of
linear classification models able to predict the class of unknown samples. The PLS-DA
approach consists of building a classification model of all classes, where discrimination is
achieved based on inherent class-wise differences. It assumes that any new sample has to
belong to just one of the defined classes. For instance, a sample that belongs to class A when
the PLS-DA algorithm is applied cannot belong to any other class. The main advantage
of PLS-DA is that the relevant sources of data variability are modelled by latent variables,
which are a linear combination of the original variables. This allows graphical visualization
and understanding of the different data patterns and relations by latent variables scores and
loadings [16]. The PLS-DA algorithm for developing classification models of refurbishment
plasterboard waste was the only algorithm used in this work because it assigns only one of
the available categories, based on its spectral signature, to each unknown sample in the
hyperspectral image, making the interpretation of the results easier [17]. Furthermore, this
machine learning method has also provided satisfactory results at the laboratory scale with
other construction and demolition waste fractions [11,13,14,16].

Predictive classification models based on the PLS-DA algorithm were developed with
manually sorted plasterboard fragments 40–50 mm in size (Figure 2a) and other materials
typically found in refurbishment plasterboard waste. These other materials included
mortar, aggregates, plastics, foam, ceramics, concrete, wood, glass, plastics, metal and
rubber. Paper was not classified as a contaminant because plasterboard is constituted by a
gypsum core sandwiched between two lining papers. Initially, individual samples were
manually positioned on the sliding scanning table and scanned in-line by the HSI camera
(Figure 2b).
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Figure 2. Refurbishment plasterboard waste fragments composed of gypsum core and lining paper
(a) and laboratory-scale experimental setup with advanced HSI camera, air-cooled tubular halogen
lamps and sliding scanning table for in-line material classification (b).

The methodology for modelling is described in Figure 3 and consisted of recording
short-wavelength infrared (SWIR) hyperspectral images of different reference samples
by the laboratory setup; adding the class information to the training data set; creating
a sample model by means of PCA to remove the background pixels and identify the
objects within the images (for instance, plasterboard fragments); and developing the PLS-
DA classification model considering the average spectrum of each training sample, the
centring pre-treatment of raw spectra and the classes previously defined. The number of
measurements or recorded images for model training was 11. The training set consisted of
107 samples made of 51 plasterboard fragments (47.7%) and 56 contaminants (52.3%). The
next step was to create a prediction workflow based on the sample and classification models
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to analyse and classify unknown materials (test samples—not used for training). According
to this workflow, firstly, a measurement (or recorded image) was analysed by the sample
model to find or recognize the materials by removing the background. Afterwards, the
classification model was applied to the materials in order to predict the class to which the
scanned materials belong (plasterboard or contaminants). The model classified individual
samples contained in each measurement or recorded image analysing the spectral footprint
of each pixel. Thus, the classification approach used was pixel-based.
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Figure 3. Scheme of the HSI methodology.

Additionally, the number of spectral bands used as explanatory variables was reduced
to those with the highest contribution to the discrimination. As a result, 111 out of 288
spectral bands were used to train the model, corresponding to the wavelength range
1617.33–2216.68 nm. The spectra of the samples used to train the calibration model by
classes are presented in Figure 4.

The correctness or performance of the model was assessed considering the values of
R2X (model fit to the training/known data), R2Y (model fit to the predicted data), Q2Y
(prediction capacity from cross-validation), RMSE (root mean squared error) and F1 score,
and the confusion matrixes for the calibration samples and the laboratory sorting trials.
The F1 score was calculated from the precision and recall of the laboratory test using
Equations (1)–(3).

F1 score = 2 × (Precision × Recall)/(Precision + Recall) (1)
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Precision = True positives/(True positives + False positives) (2)

Recall = True positives/(True positives + False negatives) (3)
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Figure 4. Spectra of samples used during model training.

On the other hand, the number of measurements or recorded images for model
validation in the real-time classification laboratory test was 113. The validation test set
comprised 3766 samples that weighed 8.249 kg, being 91.66 wt% (3536) plasterboard and
8.34 wt% (230) contaminants. An example of a validation trial is shown in Figure 5 and
examples of classification images are shown in Figure 6.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 6 of 14 
 

 
Figure 4. Spectra of samples used during model training. 

The correctness or performance of the model was assessed considering the values of 
R2X (model fit to the training/known data), R2Y (model fit to the predicted data), Q2Y (pre-
diction capacity from cross-validation), RMSE (root mean squared error) and F1 score, and 
the confusion matrixes for the calibration samples and the laboratory sorting trials. The F1 
score was calculated from the precision and recall of the laboratory test using Equations 
(1)–(3). 

F1 score = 2 × (Precision × Recall)/(Precision + Recall) (1) 

Precision = True positives/(True positives + False positives) (2) 

Recall = True positives/(True positives + False negatives) (3) 

On the other hand, the number of measurements or recorded images for model vali-
dation in the real-time classification laboratory test was 113. The validation test set com-
prised 3766 samples that weighed 8.249 kg, being 91.66 wt% (3536) plasterboard and 8.34 
wt% (230) contaminants. An example of a validation trial is shown in Figure 5 and exam-
ples of classification images are shown in Figure 6. 

  
Figure 5. Example of validation trial showing a picture of scanned samples and table of classifica-
tions carried out by the PLS-DA model (real category vs. predicted category). Note that plasterboard 
was defined as ‘GYPSUM’ in the model software. 

N
or

m
al

is
ed

 p
se

ud
o 

ab
so

rb
an

ce
 Plasterboard 

Contaminants 

Wavelength (nm) 

Figure 5. Example of validation trial showing a picture of scanned samples and table of classifications
carried out by the PLS-DA model (real category vs. predicted category). Note that plasterboard was
defined as ‘GYPSUM’ in the model software.
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The input material was classified into three outputs, as outlined in Figure 7. The input
material and outputs 1 and 2 were in turn sub-classified into plasterboard and contaminants.
Output 3 was recorded to account for small amounts of material that was not classified by
the HSI system. In fact, the model software automatically created an additional category
(unclassified or no class) to allocate scanned samples that could not be classified as product
(plasterboard) or reject (contaminant).
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Figure 7. Classification of the input material to the HSI-based sorting system into three output
streams.

The distribution of the input material among the three output fractions was determined
and the components of the product (output 1) and rejects (output 2) were quantified. The
overall plasterboard recovery yield was calculated using Equation (4).

Recovery yield (wt%) = (Plasterboard in Output 1/Plasterboard in Input) × 100 (4)

2.3. X-ray Fluorescence

Manually sorted refurbishment plasterboard waste and refurbishment plasterboard
waste sorted with the HSI-based classification process were crushed to obtain gypsum
particle sizes <250 microns. This particle size fraction was produced with porcelain mortar
and pestle, followed by sieving with a 300 mm sieve according to standards ISO 3310-1 and
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BS 410-1. The chemical purity of the samples was determined through X-ray fluorescence
(XRF). XRF analyses were performed with an Orbis micro-XRF spectrometer. Sample
pellets were prepared by blending 0.8 g of gypsum powder with 0.2 g of boric acid powder
(binder). The blend was placed in a die and piston 5 mm in diameter and compacted in
a manual hydraulic press applying 10 tons of force to produce the pellet. XRF data were
acquired under vacuum in five regions of the pellet using a voltage of 30 kV, current of
0.4 mA, amplifier time of 1.6 µs and acquisition time of 120 s. The weight percentages of
SO3, CaO, SiO2, Al2O3, Fe2O3, MnO, MgO, P2O5, K2O, Na2O, Ni2O3, SrO and Cl were
recorded. The chemical purity of the samples was calculated as the sum of SO3, CaO, SiO2,
Al2O3 and Fe2O3 contents expressed as a weight percentage. The mean standard deviation
of the chemical purity values was also determined.

3. Results
3.1. HSI System Training with Manually Sorted Components of Refurbishment Plasterboard Waste

Table 2 shows the composition of the refurbishment plasterboard waste used to train
the HSI classification system (batch 1). This composition is not representative of refurbish-
ment plasterboard waste, which can vary greatly depending on the level of contamination.
However, this composition provided significant amounts of reference materials (51 plaster-
board fragments and 56 contaminants) that enabled the development of the classification
model to be implemented in the HSI system.

Table 2. Composition of the refurbishment plasterboard waste used for HSI system training.

Sample Plasterboard (wt%) Contaminants (wt%)

Refurbishment plasterboard
waste (batch 1) 94.81 5.19

The chemical composition of the gypsum obtained from manually sorted and HSI-
sorted plasterboard contained in refurbishment plasterboard waste was determined. The
chemical purity of the gypsum obtained from both plasterboard samples was very sim-
ilar within experimental error (96.65 wt% and 96.85 wt%). These results indicate that
the HSI classification system will perform similarly to manual sorting in an ideal case
scenario, where plasterboard fragments and contaminants are homogeneously distributed
and separated from each other.

3.2. Validation of the HSI-Based System for Refurbishment Plasterboard Waste Sorting

Small particles in batch 2 of the refurbishment plasterboard waste were removed
with a screen with an aperture of 10 mm. These particles were removed because the
laboratory-scale HSI classification process setup was operated manually and the classifi-
cation of particles <10 mm in size would be a very lengthy process. The sieved material
with particles ≥10 mm in size represented 90.73 wt% of the refurbishment plasterboard
waste, and thus, small particles <10 mm in size accounted for the remaining 9.27 wt%.
Refurbishment plasterboard waste particles ≥10 mm in size were used as input of the
HSI-based classification process, whereas particles <10 mm in size were discarded. The
input material was placed in the sliding scanning table and analysed by the HSI-based
classification system (Figure 2b). The amounts and percentages of the input and output
streams and their components were quantified (Table 3). The percentage of paper in the
product was 6.1 wt%, which can mostly be removed during subsequent crushing and siev-
ing stages of the physical recycling process. The percentage of contaminants in the product
was very small (0.64 wt%). The plasterboard recovery yield of the HSI-based classification
system calculated using Equation (4) was 98.53 wt%, which implies that only 1.47 wt%
of plasterboard was lost in the rejects. However, 9.27 wt% of the collected refurbishment
plasterboard waste had sizes <10 mm, which were discarded as rejects. Therefore, the actual
plasterboard recovery yield of the HSI sorting process will depend on whether particles
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<10 mm in size present in the refurbishment plasterboard waste are discarded as rejects
or not.

Table 3. Composition of the input and output materials as determined by the HSI-based classification
process.

Stream Weight (g) Weight (%) Component Weight (g) Weight (%)

Input
(≥10 mm fragments) 8249 100

Plasterboard 7561 91.66
Contaminants 688 8.34

Output 1
(product) 7498 90.90

Plasterboard 7450 99.36
Contaminants 48 0.64

Output 2
(rejects) 700 8.49

Plasterboard 111 15.86
Contaminants 589 84.14

Output 3
(unclassified
material)

51 0.61 Not
applicable

Not
applicable

Not
applicable

Figure 8 shows the contaminants in outputs 1 and 2, the unclassified material found
in output 3, and the refurbishment plasterboard waste with particles <10 mm that was
not processed. The contaminants in outputs 1 and 2 were mainly wood and mortar.
There was also loose paper in these outputs that did not come from the plasterboard.
The unclassified material of output 3 was mostly constituted of rubber fragments. The
unprocessed material with particles <10 mm in size was mostly constituted of gypsum
powder and plasterboard fragments.
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The chemical purity of gypsum from the discarded refurbishment plasterboard waste
fraction <10 mm in size and from the sorted plasterboard in outputs 1 and 2 was determined.
Figure 9 shows that the chemical purity of gypsum obtained from unprocessed refurbish-
ment plasterboard waste <10 mm in size and gypsum obtained from the plasterboard in
output 1 (product) was about 95.8 wt%. Therefore, the unprocessed refurbishment plas-
terboard waste could be incorporated into the sorted refurbishment plasterboard waste in
output 1 to increase the plasterboard recovery yield without compromising gypsum quality.
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Figure 9. Chemical purity of gypsum obtained from refurbishment plasterboard waste fraction
<10 mm in size and from HSI-sorted plasterboard in outputs 1 and 2.

By contrast, the chemical purity of gypsum obtained from the plasterboard in output
2 (rejects) is about 1 wt% lower than the chemical purity of the gypsum obtained from
the plasterboard in output 1. Overall, the results suggest that HSI-based sorting of refur-
bishment plasterboard waste and incorporation of the input material <10 mm in size can
produce recovery efficiencies above 98 wt% and gypsum’s chemical purity close to 96 wt%.

3.3. Performance Evaluation of the PLS-DA Model in Sorting Refurbishment Plasterboard Waste

The confusion matrixes for the calibration model and for laboratory-scale refurbish-
ment plasterboard waste sorting are presented in Tables 4 and 5, respectively. These tables
show the performance of the supervised learning classification algorithm applied to the
calibration samples (training set) and the validation materials (test set), respectively. The
confusion matrix allows us to determine if the algorithm is misclassifying materials. It is
a comparison between the actual and predicted classification sets. Each row represents
the samples in an actual category or class while each column represents the samples in
a predicted category. For instance, Table 4 shows that 51 plasterboard training samples
(actual category) were predicted as plasterboard by the algorithm (0 as contaminants and 0
as non-classified). Table 5 indicates that the prediction rate was 97.45 wt%.

Table 4. Confusion matrix for the calibration model.

Category Total Number of
Samples (Weight %)

Plasterboard
(Weight %)

Contaminants
(Weight %)

Non-Classified
(Weight %)

Plasterboard 51 (47.7) 51 (100) 0 (0) 0 (0)
Contaminants 56 (52.3) 0 (0) 56 (100) 0 (0)
Correct 107 (100) 51 (100) 56 (100) 0 (0)

Table 5. Confusion matrix for laboratory-scale refurbishment plasterboard waste sorting.

Category
Total Sample

Weight in Grams
(Weight %)

Plasterboard
Weight in Grams

(Weight %)

Contaminants
Weight in Grams

(Weight %)

Non-Classified
Weight in Grams

(Weight %)

Plasterboard 7561 (91.66) 7450 (98.53) 111 (1.47) 0 (0.00)
Contaminants 688 (8.34) 48 (6.98) 589 (85.61) 51 (7.41)
Correct 8039 (97.45) 7450 (98.53) 589 (85.61) -



Appl. Sci. 2023, 13, 2413 11 of 14

The cumulative values of the R2X, R2Y and Q2Y with ten latent variables and the RMSE
value in Table 6, the prediction correctness in Table 7, and the values of the precision, recall
and F1 score in Table 8 demonstrate the effectiveness of the PLS-DA classification model.

Table 6. Metrics of the PLS-DA classification model.

Parameter Value

R2X (cumulative) 0.99
R2Y (cumulative) 0.93
Q2Y (cumulative) 0.86
RMSE 0.13

Table 7. Samples classification by the PLS-DA model in the laboratory test.

Classification Number Percentage, %

True positives 3467 92.06
True negatives 174 4.62
False positives 38 1.01
False negatives 69 1.83
No class 18 0.48

Total 3766 100.00

Samples correctly classified 3641 96.68
Samples incorrectly classified 107 2.84
Unclassified samples 18 0.48

Total 3766 100.00

Table 8. Precision, recall and F1 score of the PLS-DA model in the laboratory test.

Parameter Value

Precision 0.99
Recall 0.98
F1 score 0.98

4. Discussion

The HSI classification model shows high effectiveness for its application in refurbish-
ment plasterboard waste sorting. However, there are some potential limitations for the full
implementation of the HSI system for plasterboard sorting on an industrial scale. These
limitations are listed below, and possible solutions are discussed.

1. The plasterboard and contaminants must have particle sizes ≥10 mm. Plasterboard
waste crushing produces significant amounts of gypsum powder and plasterboard
fragments <10 mm in size. These particles have been shown to be characterized by
high chemical purity (95.9 wt%), which is comparable to the chemical purity of the
gypsum obtained from output 1 or product (95.8 wt%). Therefore, particles <10 mm
in size should be separated through screening before entering the industrial-scale
HSI classification system. Bypassing these <10 mm particles would also minimize the
presence of fines in the working environment and safeguard HSI camera performance.

2. The plasterboard and contaminants must be homogeneously distributed on the sliding
scanning table because these results strongly depend on the spatial arrangement of the
input material. A vibratory screen feeder could be used to separate plasterboard fines
and fragments less than 10 mm in size but also to achieve a homogeneous distribution
of the input material on the sliding scanning table [20,21]. The design of the vibratory
screen feeder components (hopper and vibrating table) and the vibrating table specifi-
cations (e.g., angle, vibration frequency and amplitude) should be optimized with the
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speed of the sliding scanning table to ensure that there is a homogeneous distribution
of the samples for HSI classification. Specifically, the main goal of this optimization
process is to achieve a sample monolayer with sufficient distance between different
fragments to avoid co-ejection at the end of the HSI classification system and to maxi-
mize the HSI system processing capacity. The different shapes and densities of the
materials (plasterboard, concrete, wood, ceramics, etc.) must also be considered.

3. Loose paper is not classified as a contaminant because plasterboard is constituted
by a gypsum core sandwiched between two lining papers. Lining paper constitutes
4 wt% of the plasterboard and has a density of 0.25–1.52 g/cm3, whereas the gypsum
core constitutes around the remaining 96 wt% of the plasterboard and has a density of
2.3 g/cm3 [22,23]. Therefore, the different densities of loose paper and plasterboard
fragments should allow for compressed air ejectors to separate these two materials
at the end of the HSI system. The lining paper in plasterboard fragments should be
removed at the grinding stage of the plasterboard recycling process [24].

The expected economic, health and environmental benefits of using the HSI classifi-
cation system instead of manual labour for plasterboard waste sorting at refurbishment
plasterboard waste recycling sites are listed below:

1. Higher efficiency, reliability and processing capacity;
2. Lower labour costs;
3. Lower handling and exposure to hazardous materials (e.g., sharp objects, dust).

However, there would be additional equipment and energy costs that must be assessed
prior to the industrial implementation of this sorting technology.

5. Conclusions

A laboratory-scale hyperspectral imaging classification system has been evaluated for
the first time as an automatic sorting process for refurbishment plasterboard waste. The
HSI classification system was trained with manually segregated components of a batch
of refurbishment plasterboard waste. Then, another batch of refurbishment plasterboard
waste was processed to validate the HSI classification process. The main conclusions of
this study are:

1. The chemical purity of gypsum obtained from HSI-sorted plasterboard and from
manually sorted plasterboard was similar;

2. The plasterboard recovery yield attained with the HSI-based sorting system, relative
to the plasterboard in the input material, was above 98 wt%;

3. The chemical purity of the gypsum in the refurbishment plasterboard waste particles
<10 mm in size was similar to that of the gypsum obtained from the plasterboard in
the sorted product (95.8 wt%). Therefore, the unprocessed refurbishment plasterboard
waste with particles <10 mm could be combined with the HSI-sorted product material
to be used as the feedstock of the sulfuric acid leaching purification process.

Overall, the laboratory-scale HSI-based classification system has been proved to be
an efficient sorting process for refurbishment plasterboard waste. The findings reveal the
potential industrial application of the HSI-based sorting process for the segregation of
refurbishment plasterboard waste, at a lower cost, lower exposure of workers to health
risks (e.g., fines) and higher capacity than with manual segregation. Further research
should focus on the scalability of the HSI-based sorting process for industrial applications.
In this respect, the impact of process parameters, such as conveyor speed, amount of
input material on the conveyor and particle size distribution, on plasterboard recovery
yield should be determined. Furthermore, potential technical issues that could hinder the
efficiency of the HSI-based sorting system, such as the deposition of gypsum dust on the
HSI camera over time and operating costs, should be evaluated.
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