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Abstract: As a core technology in intelligent transportation systems, vehicle re-identification has
attracted growing attention. Most existing methods use CNNs to extract global and local features from
vehicle images and roughly integrate them for identifying vehicles, addressing intra-class similarity
and inter-class difference. However, a significant challenge arises from redundant information
between global and local features and possible misalignment among local features, resulting in
suboptimal efficiency when combined. To further improve vehicle re-identification, we propose
a stripe-assisted global transformer (SaGT) method, which leverages a dual-branch network based
on transformers to learn a discriminative whole representation for each vehicle image. Specifically,
one branch exploits a standard transformer layer to extract a global feature, while the other branch
employs a stripe feature module (SFM) to construct stripe-based features. To further facilitate
the effective incorporation of local information into the learning process of the global feature, we
introduce a novel stripe-assisted global loss (SaGL), which combines ID losses to optimize the model.
Considering redundancy, we only use the global feature for inference, as we enhance the whole
representation with stripe-specific details. Finally, we introduce a spatial-temporal probability (STPro)
to provide a complementary metric for robust vehicle re-identification. Extensive and comprehensive
evaluations on two public datasets validate the effectiveness and superiority of our proposed method.

Keywords: computer vision; vehicle re-identification; discriminative feature; spatial-temporal
probability; intelligent transportation systems

1. Introduction

With the rapid increase in number of vehicles, the establishment of intelligent trans-
portation systems (ITS) has become increasingly essential. Vehicle re-identification plays a
crucial role in ITS by aiming to retrieve all the images of a given query vehicle identity [1–7],
contributing significantly to applications such as suspicious vehicle tracking, vehicle event
detection, and vehicle counting [8]. While license plates are commonly used identifiers for
vehicles, real-world road surveillance systems often face challenges such as challenging
angles and lighting conditions, making accurate license plate recognition difficult. Ad-
ditionally, intentional obstruction, forgery, and privacy concerns associated with license
plates pose significant challenges for vehicle re-identification using them [9]. Consequently,
the visual features of vehicles are explored as an alternative to license plates for vehicle
re-identification.

With the significant progress of deep learning in computer vision, many methods [10–18]
now utilize neural networks to adaptively extract high-level features from vehicle im-
ages, making them a primary and efficient approach for vehicle re-identification. Some
methods [10–13] focus on embedding a vehicle image into a global feature using CNNs.
Nevertheless, they underperform when different vehicles share significantly similar ap-
pearance attributes (e.g., Figure 1a) or when the same vehicle exhibits diverse appearances
(e.g., Figure 1b), namely, the inter-class similarity and the intra-class difference issues. As
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shown in Figure 1a, the two different vehicles are difficult to distinguish by their overall
appearance but can be by local details. Therefore, most methods [14–16,19–23] extract
local features from regions and combine them with the global feature to enhance vehicle
representation. Still, as depicted in Figure 1b, the regions of local details in different images
of the same vehicle do not always correspond, which means that their local features are not
inherently aligned. Thus, when local features are conventionally used during the inference
stage, irrelevant information caused by misalignment may be introduced. Furthermore,
crudely combining the global feature with local features will result in redundancy, as there
is some overlap in information between them.

Figure 1. Two significant challenges in vehicle re-identification. (a) Different vehicles share a
similar appearance. (b) The same vehicle exhibits different visual patterns, and the regions of key
details are non-corresponding.

In addition to visual features, other cues are essential to provide complementary
information for vehicle re-identification. Unlike the random movement of humans, the
movement of vehicles in real-world traffic scenarios is restricted by road topology and traffic
rules. This suggests that we can filter vehicle images with the help of spatial–temporal infor-
mation to achieve more robust vehicle re-identification. Although some methods [10,24–27]
have attempted to use statistical means to model spatial–temporal relations or constraints
to refine the retrieval results of vehicles, there is still a need for a comprehensive exploration
of both spatial–temporal pattern mining and its integration with visual features.

Considering the above-mentioned issues, we proposed a stripe-assisted global trans-
former (SaGT) method that guides the global feature to focus on discriminative details
from local region representations. Concretely, we design a dual-branch architecture to learn
global and local features based on the pure vision transformer (ViT). Following the ViT, we
first split the images into patches and embed them with a transformer encoder. Then, we
design a stripe feature module (SFM) in one branch to construct stripe-based features and
employ a transformer layer to obtain a global representation in the other one. To encourage
the model to learn regional features to enrich the whole representation, we further design
a stripe-assisted global loss (SaGL). In this way, we can only use the global feature with
key parts’ details for vehicle re-identification, avoiding the redundancy and misalignment
problems of fusing local features. Furthermore, we introduce spatial–temporal probability
(STPro) based on kernel density estimation and fuse it with a visual feature distance as the
synthesized similarity of vehicles. Comprehensive evaluations demonstrate that the global
feature can learn more details when guided and that STPro can provide complements for
vehicle re-identification, effectively.

Our main contributions are summarized as follows:
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(1) We propose a novel SaGT method for vehicle re-identification that learns a discrimina-
tive global feature with the assistance of local feature learning, while also considering
the redundancy, thereby only using the global feature for inference.

(2) We design an SFM to construct stripe-based features that effectively capture details in
stripe regions. Additionally, we introduce an SaGL to encourage the global feature to
learn discriminative information from stripe-based features.

(3) We introduce STPro to offer an additional metric to enhance vehicle re-identification
relying on only visual features. We also explore the fusion of the visual feature metric
and STPro to further improve vehicle re-identification.

The rest of this paper is structured as follows. Section 2 provides an overview of related
works. Our proposed approach is detailed in Section 3. In Section 4, the experimental
results are presented and discussed. Finally, Section 5 concludes this paper.

2. Related Work
2.1. Visual Feature-Based Vehicle Re-Identification

Vehicle re-identification methods using CNNs to extract visual features can be mainly
summarized into two categories: global feature-based and local feature-based methods. The
former extracts global representations to describe a vehicle. For example, Jiang et al. [10]
presented a multi-branch architecture that extracted color, model, and appearance features
to comprehensively characterize a vehicle. Similarly, Li et al. [11] introduced the DF-CVTC
(Deep Feature with Camera Views, Vehicle Types, and Colors) for vehicle re-identification.
To incorporate viewpoint information, Li et al. [12] introduced a method named Viewpoint-
Aware Re-Identification (VARID), which employed viewpoint clustering and deep metric
learning to acquire discriminative features.

The local feature-based methods concentrate on capturing intricate details from spe-
cific regions through either a uniform partition or a predefined key part approach to identify
similar vehicles. For example, Chen et al. [19] exploited a Partition and Reunion Network
(PRN) that uniformly divided the feature map based on height and width dimensions to
obtain local features for vehicle re-identification. Additionally, the DPGM [14] combined
the local features split from the same two directions as PRN with a global feature to repre-
sent vehicles. In particular, inspired by the PCB [28] designed for person re-identification,
the SAN [23] constructed stripe-based features for vehicle re-identification. Like PRN and
DPGM, the SAN divided the global feature map from the height dimension into several
average part-level features, called stripe-based features. In contrast to these methods
mentioned above, Zhang et al. [15] employed an SSD detector to detect 16 vehicle parts
and extracted local features from these parts. Liu et al. [16] proposed a Parsing-Guided
Cross-Part Reasoning Network (PCRNet), leveraging an image segmentation model to
identify predefined local regions and capture details from these regions. However, uniform
partitioning leads to a misalignment issue, and predefined key part methods typically rely
on an additional detection module, imposing significant annotation and computational
burdens. Furthermore, redundancy exists in information between global and local fea-
tures. Their fusion and use in the inference stage may result in inefficiency, as they incur
substantially higher storage costs but yield only marginally improved performance.

2.2. Spatial–Temporal Information-Based Vehicle Re-Identification

While local feature-based methods excel in capturing intricate details, some
methods also attempt to explore spatial–temporal information to improve vehicle
re-identification. For example, Shen et al. [24] utilized the Markov random field chain
to formulate candidate visual–spatial–temporal paths for pairs of vehicles, and then
introduced a Siamese–CNN+Path–LSTM model to generate similarity scores for vehicle
re-identification, which was the first work to introduce spatial–temporal cues for vehi-
cle re-identification. Lv et al. [25] constructed a maximum transfer time matrix between
pairs of cameras, utilizing it to filter gallery images with transfer times exceeding the
corresponding matrix values. Jiang et al. [10] observed that the same vehicle shared a
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smaller space distance and time interval, and they modeled the spatial–temporal rela-
tionship to re-rank vehicle re-identification results based on visual features. However,
the Siamese–CNN+Path–LSTM model implicitly combined spatial–temporal and visual
cues for vehicle re-identification, which lacked interpretability. Furthermore, relying on
empirical assumptions or observations, the latter two methods roughly modeled spatial–
temporal information of vehicles as constraints to filter unreasonable images, which still
faced challenges in complex scenarios. On one hand, they performed limitedly because
empirical assumptions or observations were not always accurate in complex cases. On
the other hand, they separately utilized the visual and spatial–temporal cues for vehicle
re-identification, and the improvement from introducing spatial–temporal information was
ineffective. Instead, kernel density estimation (KDE) can flexibly capture deeper charac-
teristics of spatial–temporal data distribution for vehicles by estimating the probability
density function in a non-parametric manner. Consequently, leveraging KDE, we construct
a fine-grained spatial–temporal probability and fuse it with a visual feature distance to
improve vehicle re-identification.

2.3. Vision Transformers

The transformer [29] was originally introduced for machine translation. Dosovitskiy et al. [30]
extended its application to images, introducing the vision transformer (ViT) for image clas-
sification. Subsequently, various adaptations of transformers for vehicle re-identification
have been proposed. For example, Yu et al. [18] proposed a Vehicle Attribute Transformer
(VAT), which incorporated color, model, and viewpoint embeddings into a unified feature
for effective vehicle re-identification. Shen et al. [31] innovatively designed a Graph Inter-
active Transformer (GiT), leveraging a combination of a graph network and a transformer
to enhance cooperation between local and global features, thereby improving vehicle
re-identification. Li et al. [32] introduced a Multi-Scale Knowledge-Aware Transformer
(MsKAT) to eliminate state interference (e.g., camera and viewpoint) and gather attribute
information (e.g., color and type) for reliable representations of vehicle images. Different
from these methods, we employ a ViT to construct stripe-based features that enrich the
global feature for vehicle re-identification. We additionally introduce the SaGL to optimize
the model. During inference, we exclusively use the global feature, resulting in reduced
computational and storage requirements.

3. Methodology

Vehicle re-identification is a retrieval task, and its key to problem-solving is construct-
ing a judgment basis for identifying vehicles. Considering the visual and spatial–temporal
cues of vehicles, we extract their visual features and STPro for vehicle re-identification. As
illustrated in Figure 2, our approach comprises two streams: visual features and STPro.
Within the visual feature stream, we exploit an SaGT that contained a transformer encoder
for embedding basic features, an SFM for constructing stripe-based features, and a standard
transformer layer for extracting a global feature. All features are first passed through the
batch normalization layer (BN) and then used to calculate the ID loss. Meanwhile, the
SaGL is directly calculated by the original global and stripe-based features. In the STPro
stream, the pattern of spatial–temporal transfer for vehicles is based on the kernel density
estimation model. Finally, during inference, the visual (global) feature distance and STPro
corresponding to the pair of query and gallery images are fused to obtain the final similarity
of the pair.
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Figure 2. The overall framework of our proposed approach. It consists of two streams. The top is
the visual feature stream that employs an SaGT to extract global and stripe-based features for vehicle
images. The lower left is the STPro stream that utilizes the location and timestamp of vehicles to
estimate the probability when vehicles take time to move from one camera to another. The fusion
module in the lower right fuses the global feature distance and the STPro for vehicle re-identification.
(Best viewed in color.)

3.1. SaGT
3.1.1. Embedding Basic Features

Consider a vehicle image X ∈ RH×W×C, where H, W, and C denote the height, width,
and the number of channels of images, respectively. Following the ViT, we first split
the image into N patches xp ∈ RP×P×C, where N = H

P ×
W
P , (P, P) is the size of each

patch. Then, we flatten each patch and map it to 1D with a trainable linear function Fl(·).
Furthermore, we also prepend a learnable class embedding xcls as the global feature and
add a 1D learnable position embedding Epos to retain spatial information. Therefore, the
input Z0 of the transformer encoder can be expressed as follows:

Z0 = [xcls,Fl(x1
p),Fl(x2

p), · · · ,Fl(xN
p )] + Epos, (1)

where xcls ∈ R1×D and Epos ∈ R(N+1)×D.
Finally, the basic features Eb of image patches are generated by a transformer encoder

including L standard transformer layers, which is described in Equation (3). The transformer
layer consists of two layer-normalization (LN) units, a multi-head self-attention (MHSA), and
a multi-layer perceptron (MLP) with two hidden layers, detailed in Equation (2) as follows:

Z′i = MHSA(LN(Zi−1)) + Zi−1,

Zi = MLP(LN(Z′i)) + Z′i ,
(2)

Eb = ZL, (3)

where Zi ∈ R(N+1)×D is the output of the ith transformer layer.
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3.1.2. Extracting Global and Stripe-Based Features

From Figure 2, we employ a transformer layer to encode the basic features Eb, and
the resulting class embedding serves as the global feature fg of the vehicle image, which is
described in Equation (4) as follows:

E′g = MHSA(LN(Eb)) + Eb,

Eg = MLP(LN(E′g)) + E′g,

fg = e0
g,

(4)

where Eg =
[
e0

g, e1
g, . . . , eN

g

]
.

Meanwhile, we also designed an SFM to construct stripe-based features, capturing
local details from specific stripe regions. As depicted in Figure 2, the SFM utilizes a
transformer layer to encode patch embeddings from the identical stripe region, along
with an additional class embedding x̃cls to represent the stripe-based feature. The class
embedding is initialized by the basic class embedding e0

b, as expressed in Equation (7). As
described in Section 3.1.1, the vehicle image is divided uniformly into N patches. Assume
that K stripe-based features are constructed along the vertical direction, resulting in M = N

K
patches in each horizontal stripe region. Note that proper K must ensure that M is an integer.
The embeddings of the jth horizontal stripe X j

s can be formed according to Equation (5)
as follows:

X j
s =

[
e(j−1)∗M+1

b , e(j−1)∗M+2
b , · · · , ej∗M

b

]
, (5)

where j ∈ {1, . . . , K}. Then, the input Z̃j
0 for the jth stripe fed to the SFM can be described

in Equation (6):
Z̃i

0 =
[

x̃cls, xj,1
s , · · · , xj,M

s

]
, (6)

x̃cls = e0
b, (7)

where x̃cls ∈ R1×D and X j
s = [xj,1

s , · · · , xj,M
s ]. Then, the jth stripe-based feature f j

l is
produced by the SFM according to Equation (8).

E′l,j = MHSA(LN(Z̃i
0)) + Z̃i

0,

El,j = MLP(LN(E′l,j)) + E′l,j,

f j
l = e0

l,j,

(8)

where El,j =
[
e0

l,j, e1
l,j, . . . , eM

l,j

]
.

Finally, we can obtain K horizontal stripe-based features Fl for one vehicle image, i.e.,
Fl =

[
f 1
l , f 2

l , . . . , f K
l
]
.

3.1.3. Model Optimization

To optimize the model, we combined the ID loss and SaGL for global and stripe-
based feature learning. The global ID loss Lg

ID based on cross-entropy loss with label
smoothing [33] is defined as follows:

Lg
ID = − 1

N

N

∑
i=1

M

∑
m=1

log(ŷi[m])q(yi, m),

ŷi = softmax
(

FC
(

BN
(

f i
g

)))
,

q(yi, m) = (1− ε)(1|yi = m) +
ε

M
,

(9)
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where N and M denote the number of training samples and the number of training identity
labels, respectively. ŷi represents the predictive probability distribution over identities of
the ith sample, obtained using the softmax function. FC refers to the fully connected layer.
f i
g is the global feature of the ith sample; yi represents the ground-truth label of the ith

sample; q(yi, m) is the modified probability of yi; (1|yi = m) equals 1 for yi = m and 0 for
otherwise; and ε, set to 0.1 in this work, is the weight coefficient of label smoothing.

Similar to the global ID loss, the local ID loss Ll
ID is described as follows:

Ll
ID = − 1

N × K

N

∑
i=1

K

∑
k=1

M

∑
m=1

log(ŷi,k[m])q(yi, m),

ŷi,k = softmax
(

FC
(

BN
(

f k,i
l

)))
,

(10)

where K denotes the number of stripe-based features for each vehicle image. ŷi,k is the
predictive probability distribution over identities corresponding to the kth stripe-based
feature of the ith sample, and f k,i

l is the kth stripe-based feature of the ith sample; q(yi, m)

still represents the modified probability of yi and is defined in the same manner as Lg
ID.

In particular, to encourage the global feature to learn more discriminative details from
stripe-based features, we designed an SaGL inspired by the triplet loss. Given a training
batch containing M× N vehicle images, with M vehicles identities and N images for each
identity, the SaGL LSaGL is defined as follows:

LSaGL =
M

∑
i=1

N

∑
a=1

[m + d( f a,i
g , f p,i

g ) +
1
K

K

∑
k=1

d( f a,i,k
l , f p,i,k

l )

− d( f a,i
g , f n,j

g )− 1
K

K

∑
k=1

d( f a,i,k
l , f n,j,k

l )]+,

p = arg maxp∈(1,··· ,N)d( f a,i
g , f p,i

g ),

n, j = arg min j∈(1,··· ,M)
n∈(1,··· ,N)

d( f a,i
g , f n,j

g ),

(11)

where K denotes the number of stripe-based features for each vehicle image. f x,y
g denotes

the global feature corresponding to the xth image of the yth vehicle in the above-mentioned
batch. Similarly, f x,y,k

l denotes the kth stripe-based feature corresponding to the xth image
of the yth vehicle in the same batch. The function d(·) represents the Euclidean distance.
The margin m is a hyperparameter set to 0.6 in this work. The notation [x]+ denotes the
maximum value between 0 and x. Note that all features are normalized.

Therefore, the total loss Ltotal is formulated as follows:

Ltotal = L
g
ID + Ll

ID + LSaGL. (12)

3.2. STPro

To improve vehicle re-identification, we modeled and incorporate spatial–temporal
patterns based on KDE. Specifically, we estimated the distribution of vehicle movement
times between camera pairs based on the training data. The process is detailed in the
following two steps:

3.2.1. Histogram Statistic

We first define image pairs with the same ID as positive pairs. Then, we build the
training set T (ci, cj) for the camera pair (ci, cj) from those positive pairs, which is described
as follows:

T (ci, cj) =
{
(ti, tj)|IDi = IDj

}
, (13)
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where ci, ti, and IDi denote the camera number, timestamp, and identity of the ith training
image, respectively. We further count the time interval histogram p̂(k|ci, cj) for camera
pair (ci, cj):

p̂(k|ci, cj) =
nk

∑m nm
, (14)

where k =
|ti−tj |

∆t′ , (ti, tj) ∈ T (ci, cj), and nk represents the amount in the kth bin. ∆t′ is the
width of the bin.

3.2.2. Kernel Density Estimation

After obtaining the histogram for the camera pair (ci, cj), we smooth it using a Gaus-
sian kernel N (x|0, σ2) with a zero mean and variance σ2 and estimate its probability. The
final STPro model for (ci, cj) can be formulated according to Equation (15).

p(k|ci, cj) =
1
ω ∑

l
p̂(l|ci, cj)N (l − k|0, σ2),

ω = ∑
m

p(m|ci, cj).
(15)

3.3. Fusion Module

Given two images A and B with timestamp and camera ID, as described in Section 3.1
for the visual feature stream and Section 3.2 for the STPro stream, we can obtain their
global features f A

g , f B
g , and spatial–temporal probability (STPro) p. We then calculate the

Euclidean distance d = || f A
g − f B

g ||2 between f A
g and f B

g , which is used for inference when
only considering visual features.

Visual feature distance d and STPro p show opposite trends in measuring vehicle
similarity. A smaller d means vehicle images are more similar, while a smaller p indicates
they are less similar. Furthermore, d and p have different ranges: d ∈ (0, ∞) and p ∈ (0, 1).
Therefore, we adopted two nonlinear transforms based on the exponential function to scale
d and p from 0 to 1 before fusing them, respectively. Concretely, the visual feature distance
d and STPro p are scaled according to Equation (16) and Equation (17), respectively.

d′ = 2− 2
e−d + 1

, (16)

where d′ ∈ (0, 1) represents the scaled visual feature distance, and e is the Euler number.

p′ = ep−1, (17)

where p′ ∈ (0, 1) represents the scaled STPro.
Finally, according to Equation (18), the result of d′ multiplied by p′ represents the final

similarity S between A and B for vehicle re-identification. The multiplication operation
is inspired by the union of independent probabilities, under the assumption that visual
features of vehicle images and their spatial–temporal cues are quite independent.

S = d′ × p′. (18)

4. Experiment

We evaluated our proposed method on two large-scale datasets, i.e., VeRi-776 [34] and
VehicleID [35]. Similar to previous works [34,35], we employed the mean average precision
(mAP) and Rank-1 accuracy as our evaluation metrics.
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4.1. Dataset
4.1.1. VeRi-776

The VeRi-776 [34] dataset collected around 50,000 images of 776 vehicles captured
by 20 surveillance cameras in real-world traffic scenes. These images were labeled with
vehicle ID, color, and model information. Among them, 576 vehicles with a total of
37,746 images were selected for training, and the remaining 11,579 images of 200 vehicles
were for testing. Concretely in the testing set, 1678 images of 200 vehicles were selected as
query images. Note that during evaluation, for each query image, gallery images captured
by the same camera were discarded. Additionally, it provided timestamp and camera
location information, crucial for evaluating our STPro method.

4.1.2. VehicleID

The VehicleID [35] dataset captured 221,763 images of 26,267 vehicles from multiple
non-overlapping surveillance cameras in real-world scenarios. Each image was also anno-
tated with vehicle ID, color, and model information. Unlike VeRi with multiple different
viewpoints, images in VehicleID were taken exclusively from the front or back, with fewer
but more drastic changes in viewing angle. Similarly, the dataset was divided into training
and testing sets. The training set contained 110,178 images of 13,134 vehicles, while the
testing set retained 111,585 images associated with 13,133 vehicles. Three subsets were
further extracted from the testing set, i.e., a small subset with 7332 images of 800 vehicles, a
medium subset with 12,995 images of 1600 vehicles, and a large subset with 20,038 images
of 2400 vehicles. More specifically, for each subset, the gallery set was formed by randomly
extracting one image for each vehicle, and the remaining images were used for query
set construction. It is important to note that we iteratively constructed each subset and
evaluate it 10 times, taking the average result as the final performance. Unfortunately, it
provided no timestamp and camera location information to evaluate our STPro method.

4.2. Implementation Details

All our experiments were conducted on eight Nvidia Tesla T4 GPUs with the PyTorch
Toolbox. Both training images and testing images were resized to 256× 256. The training
images were augmented with horizontal flipping and random erasing. Four images for
each identity were sampled in a training mini-batch. We employed the stochastic gradient
descent (SGD) to optimize our model with 300 epochs, where the momentum and the
weight decay were set at 0.9 and 0.0001, respectively. The learning rate was initialized to
0.045 with a linear warmup and cosine learning rate decay.

For our model, we initialized the 13 transformer layers with the pre-trained weight of
the ViT on ImageNet, where 11 transformer layers were utilized to embed the basic features,
1 layer was applied to extract a global feature, and 1 shared layer was employed to construct
the stripe-based features. Each transformer layer consisted of an eight-head self-attention
module. We split the original image into 256 non-overlapping patches with size 16× 16 as
the input of the model and constructed K = 8 horizontal stripe-based features. The feature
dimension was 768. The width of bin ∆t′ was set to 4 s, and variance σ2 was set to 100 in
the STPro stream.

4.3. Comparisons with State-of-the-Art Methods

We compared our method with some state-of-the-art (SOTA) approaches from the
last three years, categorized into three groups: (1) Global feature-based (GF) methods,
such as SN [13], VARID [12], VAT [18], and MsKAT [32], mainly concentrate on extracting
whole representation for vehicle images. (2) Local feature-based (LF) methods, includ-
ing DPGM [14], LG-CoT [36], HPGN [37], DFR [38], DSN [39], SFMNet [40], GiT [31],
SOFCT [22], MART [41] integrate local features with the global feature to learn reliable
vehicle representations. (3) Spatial–temporal (ST) methods, such as DPGM-ST [14] and
DFR-ST [38], exploit extra timestamp and camera location information to enhance vehicle
re-identification using visual features. The Baseline refers to our model using only a branch
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for global feature learning without the SFM. Since our method only takes the global feature
for inference, we classified it as a GF-based method.

4.3.1. Comparisons on VeRi-776

Table 1 compares the performance of the SOTA methods on VeRi-776. First, our
SaGT-ST method demonstrated superior performance by incorporating spatial–temporal
information, achieving the highest mAP of 86.59% and Rank-1 accuracy of 98.75%. Further-
more, among methods relying solely on visual features, our SaGT method outperformed
most GF- and LF-based approaches, securing the fourth place. Specifically, SaGT combined
local features to complement global feature learning compared to GF-based methods, while
avoiding local feature misalignment issues associated with LF-based methods. However,
it is important to note that without considering background interference, SaGT exhibited
a relatively lower performance than MART on VeRi-776. Moreover, SaGT exhibited com-
paratively lower performance than DFR and MsKAT. This difference can be attributed to
the integration of attention mechanisms that effectively combine multiple features in DFR
and MsKAT. Obviously, the incorporation of spatial–temporal cues significantly enhanced
the performance of vehicle re-identification. For example, both DFR-ST and DPGM-ST
achieved superior performance compared to their counterparts DFR and DPGM which
only adopt visual features. It is noteworthy that, since only the VeRi-776 dataset contained
timestamp and camera position information, similar to DGPM-ST and DFR-ST, we also
only evaluated our SaGT-ST method on VeRi-776.

Table 1. The performance (%) comparison on VeRi-776. The best performance is marked in bold.

Method Type Reference mAP Rank-1

SN [13] GF TNNLS’22 75.70 95.10
VARID [12] GF TITS’22 79.30 96.00
VAT [18] GF IPM’22 80.40 97.50
MsKAT [32] GF TITS’22 82.00 97.10

PGAN [15] LF TITS’22 79.30 96.50
DGPM [14] LF TITS’21 79.39 96.19
LG-CoT [36] LF ICTAI’22 79.70 97.00
HPGN [37] LF TITS’22 80.18 96.72
DFR [38] LF PR’22 84.47 93.02
DSN [39] LF PR’23 76.30 94.80
SFMNet [40] LF IJCNN’23 80.00 97.00
GiT [31] LF TIP’23 80.34 96.86
SOFCT [22] LF TITS’23 80.70 96.60
MART [41] LF TITS’23 82.70 97.60

DPGM-ST [14] LF and ST TITS’21 82.17 98.45
DFR-ST [38] LF and ST PR’22 86.00 95.67

Baseline GF Ours 78.38 95.71
SaGT GF Ours 80.67 96.96
SaGT-ST GF and ST Ours 86.59 98.75

4.3.2. Comparisons on VehicleID

Table 2 compares the performance of the SOTA methods on VehicleID. Our SaGT
method continued to achieve competitive performance on three subsets of VehicleID. In
particular, our SaGT method achieved the highest mAP and Rank-1 on the small subset,
the highest mAP and second highest Rank-1 on the medium subset, and the third highest
mAP and Rank-1 on the large subset. Compared with other methods that performed
well on VeRi, our method was superior on VehicleID. This can be attributed to the fact
that VehicleID provides more training data, promoting our model to learn more patterns.
Additionally, when vehicle images encounter drastic viewpoint changes in VehicleID, we
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employed local features to assist SaGT in learning a reliable whole representation, which
brought better overall performance than MsKAT and DFR.

Table 2. The performance (%) comparison on VehicleID. The best performance is marked in bold.

Method Type Reference Small Medium Large
mAP Rank-1 mAP Rank-1 mAP Rank-1

SN [13] GF TNNLS’22 78.80 76.70 76.80 74.80 76.30 73.90
VARID [12] GF TITS’22 88.50 85.80 84.70 81.20 82.40 79.50
VAT [18] GF IPM’22 89.90 84.50 87.10 80.50 85.00 78.20
MsKAT [32] GF TITS’22 - 86.30 - 81.80 - 79.40

DFR [38] LF PR’22 87.55 82.15 84.94 79.33 83.18 77.93
HPGN [37] LF TITS’22 89.60 83.91 86.16 79.97 83.60 77.32
PGAN [15] LF TITS’22 - - - - 83.90 77.80
LG-CoT [36] LF ICTAI’22 90.50 85.20 86.60 80.50 84.40 78.00
DSN [39] LF PR’23 81.70 80.60 79.10 78.20 75.50 75.00
SOFCT [22] LF TITS’23 89.80 84.50 86.40 80.90 84.30 78.70
GiT [31] LF TIP’23 90.12 84.65 86.77 80.52 84.26 77.94
SFMNet [40] LF IJCNN’23 - 85.10 - 80.50 - 77.60

Baseline GF Ours 85.06 77.38 81.63 74.13 78.04 69.75
SaGT GF Ours 91.36 86.33 87.30 81.44 84.38 78.13

4.4. Ablation Study and Analysis

To further analyze the effectiveness of our proposed method, we conducted extensive
ablation experiments on VeRi-776 and VehicleID.

4.4.1. Effectiveness of STPro

ST refers to the method employing STPro, while Baseline still indicates that our
model solely activates a branch for global feature learning without the SFM. Add and
Multiply represent different ways of fusing scaled visual feature distance and scaled STPro.
According to Table 3, methods integrated with STPro significantly outperformed those only
using visual features, which demonstrates the effectiveness of mining spatial–temporal
patterns. When visual appearance features alone prove insufficient for determining a
vehicle’s identity, its spatial–temporal cues provide complementary information, thus
enhancing vehicle re-identification. Additionally, it is evident that the fusion of visual
feature similarity and STPro performed better in a multiplicative manner compared to an
additive way. This supports our intuition that the visual features of vehicle images and
their spatial–temporal cues are highly independent, hence treating their fusion as a joint
probabilistic processing of independent events is justified.

Table 3. The ablation study (%) of STPro on VeRi-776.

Method Fusion mAP Rank-1

Baseline - 78.38 95.71
Baseline-ST Add 82.94 (+4.56 ) 98.27 (+2.56)
Baseline-ST Multiply 84.93 (+6.55) 98.75 (+3.04)

SaGT - 80.67 96.96
SaGT-ST Add 84.61 (+3.94) 98.33 (+1.37)
SaGT-ST Multiply 86.59 (+5.92) 98.75 (+1.79)

4.4.2. Effectiveness of SFM and SaGL

Table 4 displays the results of the ablation study involving SFM and SaGL on VeRi-776
and VehicleID datasets. SaGT-SFM integrated an SFM into the Baseline, which trained
global and local features using the triplet loss, respectively. Compared to SaGT-SFM, the
final method SaGT was optimized by an SaGL instead of the triplet loss. As illustrated in
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Table 4, SaGT-SFM and SaGT significantly outperformed the Baseline method on VeRi-776
and VehicleID, indicating the substantial contribution of effective local feature learning to
overall representation enhancement. Furthermore, SaGT exhibited superior performance
compared to SaGT-SFM. The advantage can be credited to SaGL, which enables more
focused attention on acquiring a discriminative global representation when the model
simultaneously learns global and local features, compared to the original triplet loss.

Table 4. The ablation study (%) of SFM and SaGL on VeRi-776 and VehicleID. The best performance
is marked in bold.

Method
VeRi-776 VehicleID

Small Medium Large
mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Baseline 78.38 95.71 85.06 77.38 81.63 74.13 78.04 69.75
SaGT-SFM 80.30 96.96 89.66 84.00 86.01 80.09 83.84 77.67
SaGT 80.67 96.96 91.36 86.33 87.30 81.44 84.38 78.13

Table 5 shows the performance of different features for inference on VeRi-776. Time
represents the average time required to extract features for one image, measured on a Tesla
T4 GPU. Storage denotes the storage cost of image features on a 64-bit system. GF and LF
refers to combining the global feature distance and the local feature distance for inference
by taking their sum. From Table 5, compared to using either GF or LF for inference, fusing
them only brought a slight improvement in mAP. This indicated a significant overlap of
information between global and local features, namely, redundancy. Moreover, although the
fusion or utilization of only LF for inference outperformed GF, their feature dimension also
increased by almost eight times, which implied that applications associated with vehicle
re-identification would demand eight times more storage space and more computing
consumption. This consideration motivated us to choose only a global feature for inference,
and SaGT, employing only a global feature, achieved performance similar to the fusion
method in SaGT-SFM.

Table 5. The performance of different features for inference on VeRi-776.

Method Feature mAP ↑ Parameter ↓ Time ↓ Storage ↓
(%) (M) (ms/Image) (KB/Image)

SaGT-SFM
GF 80.30 85.6 8.13 6
LF 80.33 85.7 13.45 48
GF and LF 80.34 92.7 15.17 54

SaGT GF 80.67 85.6 8.13 6

4.4.3. Visualization Analysis

In addition to the ablation study of our proposed method, we visualized the results
of vehicle re-identification and Grad-CAM of attention maps to further analyze its effec-
tiveness. Figure 3 presents the top-10 retrieval results of three query images from VeRi-776,
where green and red borders denote correct and incorrect retrieval results, respectively. It
is clear that both Baseline and SaGT achieved promising performance in scenarios with
slight viewpoint variations (e.g., Figure 3b,c). When vehicle images shared similar ap-
pearances, SaGT, capturing crucial local details for accurate identification, yielded a larger
number of correct retrieval results than Baseline (e.g., Figure 3b). Nevertheless, in cases
involving occlusions and extremely similar appearances (e.g., Figure 3a,c), both Baseline
and SaGT, relying solely on visual features, generated great error matches. The introduc-
tion of spatial–temporal cues in SaGT-ST significantly improved performance for these
challenging scenarios.
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Figure 3. Re-identification visualization examples on VeRi-776. For each query, the three rows from
top to bottom show the top-10 retrieval results produced by Baseline, SaGT, and SaGT-ST, respectively.

Figure 4 shows the Grad-CAM [42] visualization of attention maps. Compared to the
Baseline, SaGT paid more attention to local regions with key details, which can provide
more discriminative information for the global representation of vehicles. However, both
baseline and SaGT were interfered with by irrelevant information, especially the road sign,
in the background.

Figure 4. The Grad-CAM visualization of attention maps. The first, second, and third rows show
the original image, Baseline, and SaGT, respectively.
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5. Conclusions

In this paper, we proposed an SaGT method to extract a global feature for robust vehicle
re-identification. In particular, we designed an SFM to construct stripe-based features and
to capture local details. We also implemented an SaGL to ensure that the SFM provided
the identity-relevant information in the stripe regions for the global feature, making it
more discriminative. Therefore, in the inference stage, we only used the global feature
for effective identity matching, while reducing the computing and storage consumption
of the method and improving its efficiency in practical applications. Additionally, we
enhanced the performance of vehicle re-identification by mining spatial–temporal patterns
through kernel density estimation. While extensive experimental evaluations confirmed
the effectiveness of our method and demonstrated its superior performance compared to
SOTA methods, it is still necessary to further address the significant interference from the
background of vehicle images.
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