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Abstract: This paper presents an indirect adaptive neural network (NN) control algorithm tailored
for flexible joint robots (FJRs), aimed at achieving desired transient and steady-state performance.
To simplify the controller design process, the original higher-order system is decomposed into two
lower-order subsystems using the singular perturbation technique (SPT). NNs are then employed
to reconstruct the aggregated uncertainties. An adaptive prescribed performance control (PPC)
strategy and a continuous terminal sliding mode control strategy are introduced for the reduced slow
subsystem and fast subsystem, respectively, to guarantee a specified convergence speed and steady-
state accuracy for the closed-loop system. Additionally, a composite-learning optimal bounded
ellipsoid algorithm (OBE)-based identification scheme is proposed to update the NN weights, where
the tracking errors of the reduced slow and fast subsystems are integrated into the learning algorithm
to enhance the identification and tracking performance. The stability of the closed-loop system is
rigorously established using the Lyapunov approach. Simulations demonstrate the effectiveness of
the proposed identification and control schemes.

Keywords: optimal bounded ellipsoid; flexible joint robots; prescribed performance control; singular
perturbation technique; neural networks; composite learning

1. Introduction

In today’s complex work environment, where human–robot interaction has become
increasingly frequent, a diverse range of robots has emerged to cater to distinct implemen-
tation scenarios. Among these robots, FJRs have garnered significant attention due to their
inherent compliance, which enhances the safety of human interactions [1]. Typically, FJRs
comprise motors with load links, connected via low-stiffness flexible couplings. This joint
elasticity allows FJRs to be modeled as a two-mass system. To effectively control these
systems, numerous control methods have been proposed in the academic literature. For
instance, Zhu et al. [2] combined command filtering with adaptive fuzzy control methods
to control FJRs with time-varying full-state constraints. Xu et al. [3] elaborated on how to
integrate event-triggered control with adaptive neural networks to design a control strategy,
aiming to achieve precise tracking control of FJRs. Jerónimo et al. [4] combined a PID-type
control strategy with motor position measurement information to achieve precise control
of FJRs.

In practical scenarios, it is crucial to confine the tracking error within a predefined
range. To this end, PPC has garnered significant attention from researchers [5–7]. Ma,
for instance, introduced an adaptive fuzzy control approach for single-link flexible-joint
robotic manipulators, leveraging PPC to ensure transient performance guarantees [8]. Fur-
thermore, FJRs can achieve desired impedance against external contact forces and superior
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position tracking in free motion, thanks to robust prescribed performance position track-
ing controllers [9]. However, it is worth noting that the aforementioned control methods
often rely on backstepping or dynamic surface control techniques, which are renowned
for their intricate and repetitive design procedures. Consequently, their application in real
high-order FJRs remains limited.

In FJRs, the position and velocity of links exhibit slower time-scale variations, whereas
the position and velocity of motors undergo faster dynamics. This characteristic allows the
overall system dynamic equations to be recast into a standard singularly perturbed form,
facilitating the utilization of SPT to simplify controller design. Kim et al. [10], for instance,
applied SPT to decompose the higher-order model of a serial elastic actuator into two
lower-order models. Subsequently, they developed a second-order sliding mode control
law for each lower-order model, ensuring semi-global exponential stability. Another study
by Sun et al. [11] introduced a nonlinear hybrid control scheme for a redundant parallel
robot system, leveraging SPT and Tikhonov’s theorem to achieve both trajectory tracking
and vibration suppression. Chen et al. proposed a prescribed performance controller for
FJRs with exogenous disturbances, incorporating SPT and a time-varying tangent barrier
Lyapunov function to expand the initial error constraint boundary [12]. However, these
methods fail to identify and compensate for unknown dynamics in FJRs, resulting in
relatively large control errors.

To address the challenges posed by unknown nonlinear dynamics in practical systems,
NNs have been extensively employed due to their remarkable universal approximation
capabilities [13–17]. In the development of NN-based adaptive control methods, the
algorithm for identifying NN weights plays a crucial role, as it profoundly affects both
the tracking performance and the robustness of the closed-loop system [18]. NN-based
adaptive control methods can be categorized into two main branches: direct adaptive
control methods [19–21] and indirect adaptive control methods [22]. Direct adaptive
control primarily relies on gradient-descent-based updating laws for online identification
of unknown controller parameters. However, these methods may not yield satisfactory
identification results [23]. Consequently, indirect adaptive control has garnered significant
attention since it offers more advanced identification algorithms. A traditional approach in
this domain is the identification algorithm based on the Kalman filter, which characterizes
uncertainty through a noise signal with a predefined probability density function [24].
However, the limited capability of this algorithm in handling nonlinear systems restricts its
utilization in specific application scenarios [25].

The set-membership identification approach ensures that the parameters belong to
specific sets, offering increased flexibility in addressing intricate problems. Among the
various set-membership identification methods, the OBE algorithm stands out as the
most prominent. The OBE algorithm has significant importance in the realms of system
identification and adaptive control, serving as an effective and precise tool for the estimation
of unknown system parameters [26]. This iterative technique incrementally shrinks the
volume of an ellipsoid to yield the optimal parameter estimate. Notably, ellipsoids are
employed in this context to demarcate predefined sets [27,28]. The learning gain matrix in
the OBE algorithm exhibits dynamic characteristics, with an upper bound that prevents
explosions in scenarios of inadequate excitation and a lower bound that guarantees robust
identification performance for time-varying parameters. The OBE algorithm has been
studied extensively in the literature. For example, Davila et al. proposed a novel dynamic
sliding mode control design scheme by combining sliding mode control with the attracting
ellipsoid method, enabling the system state to rapidly enter and maintain the sliding surface
during the dynamic process [29]. Cao et al. introduced a directional forgetting algorithm
that discards outdated data based on the informational content across various directions,
above and below the bounded information matrix [30]. Ordaz et al. developed an adaptive
state estimator and a robust output control for a class of uncertain nonlinear systems, which
enables the system to maintain stability and performance in the presence of uncertainty and
disturbances, and the feedback gains K, L can be updated online based on the attractive



Appl. Sci. 2024, 14, 4030 3 of 23

ellipsoid method [31]. Guo et al. proposed an efficient OBE identification algorithm
that ensures deterministic upper and lower bounds for the learning gain matrix [13,32].
Applications of OBE-based algorithms for the identification of singularly perturbed systems
have been detailed in [33,34]. However, it is crucial to note that these papers rely solely
on identification errors for updating NN weights. As highlighted in [22], incorporating
both identification and tracking errors in weight updating laws enhances NN training
outcomes. Therefore, it is advisable to incorporate the tracking error into a composite
learning algorithm to further bolster identification performance.

To tackle the aforementioned challenges, this paper introduces a novel identifica-
tion and control algorithm tailored for the FJR. The key contributions of this work are
outlined below:

• An adaptive prescribed performance controller for the FJR is formulated, leveraging
the SPT framework and continuous terminal sliding mode control technique. This
simplifies the controller design process and ensures that the transient and steady-state
behavior meets the pre-established specifications.

• A composite-learning OBE-based identification algorithm is introduced, aiming to boost
NN training performance by incorporating both identification and tracking errors.

The subsequent sections of this paper are organized as follows: Section 2 presents pre-
liminary information and demonstrates how the original high-order FJRs can be decoupled
into two lower-order subsystems using SPT. Section 3 introduces an NN-based terminal
sliding mode PPC for the simplified subsystems. The identification algorithm is presented
in Section 4. Simulation results are presented in Section 5 to demonstrate the efficacy of the
proposed control method, and Section 6 concludes the paper with final remarks.

2. Preliminaries and Problem Formulation

An FJR can be described by the following dynamic model [35]:

M(q)q̈ + C(q, q̇)q̇ + D(q̇)+ G(q)+ τd = K(θ− q) (1a)

Jθ̈ + K(θ − q) = u, (1b)

where q(t) ∈ Rn, q̇(t) ∈ Rn are the angular position and velocity of the joints, and θ ∈ Rn

and θ̇ ∈ Rn represent the angular position and velocity of the motors. M(q) ∈ Rn×n,
C(q, q̇) ∈ Rn, D(q̇) ∈ Rn, G(q) ∈ Rn, u ∈ Rn represents the inertia matrix, the cen-
tripetal/Coriolis matrix, the friction torque vector, the gravity torque vector, and the system
input vector, respectively. τd ∈ Rn is a bounded aggregate disturbance term that encom-
passes various sources of uncertainty, including inaccuracies in the model, uncaptured
dynamics, and external perturbations. K ∈ Rn×n is a diagonal matrix representing the
stiffness of the spring between the motor and the link, and J ∈ Rn×n is a diagonal matrix
representing the inertia of the motors.

Denote Hr(q, q̇) = C(q, q̇)q̇ + Dq̇ + G(q), τ1 = K(θ(t)− q(t)). Considering the fact
that the torque τ1 generated by the spring changes much faster than the position of the
link q, then by defining K = K0/ε2, where ε is a small parameter, and K0 ∈ Rn×n is a
positive-definite diagonal matrix, we can use a singular perturbation model to describe the
FJR as

M(q)q̈ + Hr(q, q̇) + τd = τ1 (2a)

ε2 Jτ̈1 + K0τ1 = K0(u − Jq̈). (2b)

Remark 1. In control systems theory, the singular perturbation model is extensively employed to
describe dynamical systems, where certain state derivatives are scaled by a small positive parameter
ε. These states scaled by ε are known as fast states, while the remaining states are classified as slow.
A decrease in ε typically correlates with accelerated changes in the fast states. For such systems,
the singular perturbation technique serves as a valuable tool for order reduction and controller
simplification [36]. Although there is no standardized approach for selecting ε, for flexible joint
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robots, it is customary to choose ε inversely proportional to the square root of joint stiffness [37].
As joint stiffness K increases, ε decreases, resulting in faster torque τ1 changes. In particular,
as K approaches infinity, ε tends to zero, causing instantaneous torque τ1 changes, effectively
transforming the flexible joint robot into a rigid joint robot.

Substituting (2a) into (2b), one obtains

ε2 Jτ̈1 + K0τ1 = K0u − K0 JM−1(τ1 − τd − Hr). (3)

Multiplying both sides of (3) with J−1, one obtains

ε2τ̈1 = K0

(
J−1(u − τ1) + M−1(Hr + τd − τ1)

)
. (4)

Let x1 := q, x2 := q̇, τ2 := ετ̇1, then, (2) can be written as

ẋ1 = x2 (5a)

ẋ2 = M−1(τ1 − Hr − τd) (5b)

ετ̇1 = τ2 (5c)

ετ̇2 = K0

(
J−1(u − τ1) + M−1(Hr + τd − τ1)

)
. (5d)

Because τd is unknown, a three-layer neural network is adopted to approximate
−M−1τd as:

−M−1τd = W∗TΦ(Z) + ζ, (6)

where W∗ = [W∗
1 , W∗

2 , · · · , W∗
n ] ∈ RN×n is a matrix of NN weights, W∗

i = [w∗1
i , w∗2

i , · · · , w∗N
i ]T ∈

RN, N ∈ Z+ is the number of neurons used in the hidden layer, Z = [z1, · · · , zN ] = Vx,
with x = [xT

1 , xT
2 ]

T being the input of the NNs, and V ∈ RN×2n the weights between the
input and the hidden layer, Φ = [ϕ1, ϕ2, · · · , ϕN ]

T ∈ RN is a vector of regression functions,
ϕk : R 7→ R+ with k = 1, · · · , N is a sigmoid function modeled by ϕk = 1/(1 + e−zk ), and
ζ ∈ Rn is the approximation error of the NN.

Using (6), the system (5) can be written as

ẋ1 = x2 (7a)

ẋ2 = M−1(τ1 − Hr) + W∗TΦ + ζ (7b)

ετ̇1 = τ2 (7c)

ετ̇2 = K0

(
J−1(u−τ1)+M−1(Hr−τ1)−W∗TΦ− ζ

)
. (7d)

To apply the singular perturbation technique, one can first set ε=0 in (7d) and neglect
the unknown W∗TΦ and ζ; then, τ1 has a unique isolated root

τ∗
1 = h(x, t) = (M−1 + J−1)−1(J−1us + M−1Hr)

= aus + bHr, (8)

where us is the slow control component of u when ε = 0, and a = (M−1 + J−1)−1 J−1, b =
(M−1 + J−1)−1M−1.

Replace τ1 with τ∗
1 in (7), the reduced slow subsystem can be obtained as

ẋ1 = x2 (9a)

ẋ2 = M−1
(

aus + (b − I)Hr

)
+ W∗TΦ + ζ. (9b)
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Define a new state variable Λ = τ1 − h(x, t); the fast dynamics in (7) can be written as

εΛ̇ = τ2 − εḣ(x, t) (10a)

ετ̇2 = K0

(
J−1(u−τ1)+M−1(Hr−τ1)−W∗TΦ−ζ

)
. (10b)

Define a “stretched” time variable tε := t
ε . Setting ε=0 freezes the variables x and t at

x0 and 0, respectively, so that h(x, t) is constant at the fast time scale tε. Then, substituting
τ1 = Λ + h(x, t) with ḣ = 0 into (10) and changing the consequent expression into the fast
time scale tε, one obtains

dΛ
dtε

=τ2 (11a)

dτ2

dtε
=K0 J−1u + K0M−1Hr − K0(W∗TΦ + ζ)

− K0(M−1 + J−1)(Λ + h(x, t)). (11b)

Applying (8) into the above equations and setting ε = 0, the reduced fast subsystem can
be obtained as

dΛ
dtε

= τ2 (12a)

dτ2

dtε
= K0

(
J−1u f −(M−1+ J−1)Λ−(W∗TΦ+ζ)

)
, (12b)

where u f := u − us.

3. Continuous Terminal Sliding Mode Control of the Flexible Joint Robotic Manipulator

This paper aims to ensure the angular position of joints, q, accurately tracking a
designated reference, qd, while meeting pre-specified transient and steady-state perfor-
mance criteria. Leveraging the singular perturbation technique (SPT), the high-order singu-
lar perturbation model (7) is successfully decomposed into two lower-order subsystems:
(9) and (12). According to Tikhonov’s theory [36], controlling these reduced-order sub-
systems suffices to solve the trajectory tracking problem for the original system, thereby
simplifying the controller design process. In the following subsections, we delve into the
controller design for both the reduced slow subsystem and the reduced fast subsystem.

3.1. Controller Design of the Reduced Slow Subsystem

Firstly, the position tracking error, denoted as e1(t) is defined as the difference between
the actual position q(t) and the desired position qd(t), that is, e1(t) = q(t)− qd(t). Based
on the given Equation (9), the error dynamics can be obtained as

ė1 =e2 (13a)

ė2 =M−1
(

aus + (b − I)Hr

)
+ W∗TΦ + ζ − q̈d. (13b)

To attain exceptional transient and steady-state tracking capabilities in robotic systems,
it is imperative for the tracking error to remain confined within predefined boundaries, as
emphasized in [8,38]

−σρ(t) < ei1 < σ̄ρ(t), i = 1, · · · , n, (14)

where the prescribed performance function ρ(t) can be expressed as follows:

ρ(t) =(ρ0 − ρ∞)e−ht + ρ∞ (15)
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with ρ0 ∈ R+ and ρ∞ ∈ R+ being designed constants satisfying the condition 0 < ρ∞ < ρ0,
while h ∈ R+ is another designed constant. Additionally, σ ∈ R+, σ̄ ∈ R+ represent
designed parameters.

To guarantee that the tracking error ei1 is bounded by the predefined boundaries, the
following error transformation is first introduced [39]:

ei1(t) = ρSi(ϵi), (16)

where ϵi(t) represents the transformed tracking error, and the function Si(·) is given by

Si(ϵi) =
σ̄eϵi(t) − σe−ϵi(t)

eϵi(t) + e−ϵi(t)
. (17)

Utilizing the inverse transformation of Si(·), ϵi(t) can be derived from (16) as:

ϵi(t) = S−1
i
( ei1(t)

ρ(t)
) =

1
2

ln
Ψi(t) + σ

σ̄ − Ψi(t)
, (18)

where S−1
i (•) is the inverse function of Si(ϵi), and Ψi(t) = ei1(t)/ρ(t) represents the

intermediate variable. Let ϵ = [ϵ1, ϵ2, · · · , ϵn]T , Ψ = [Ψ1, Ψ2, · · · , Ψn]T . The derivative of
ϵi can be derived as

ϵ̇i =
1
2

ziΨ̇i, (19)

where

zi =
1

Ψi + σ
− 1

Ψi − σ̄
, Ψ̇i =

ei2
ρ

− ei1ρ̇

ρ2 , ρ̇ = −h(ρ0 − ρ∞)e−ht.

Subsequently, the derivative of ϵ̇i can be computed as:

ϵ̈i =
1
2

żiΨ̇i +
1
2

ziΨ̈i (20)

=
1
2

żiΨ̇i +
1
2

zi(
ėi2
ρ

+
2ei1ρ̇2

ρ3 − 2ei2ρ̇

ρ2 − ei1ρ̈

ρ2 ) (21)

=
1
2

żiΨ̇i +
1
2

zi(
ėi2
ρ

+ νi), (22)

where

żi =
( 1
(Ψi − σ̄)2 − 1

(Ψi + σ)2

)
Ψ̇i, νi =

2ei1ρ̇2

ρ3 − 2ei2ρ̇

ρ2 − ei1ρ̈

ρ2 , ρ̈ = h2(ρ0 − ρ∞)e−ht.

Denote Ξ = diag{z1, z2, · · · , zn}, ν = [ν1, ν2, · · · , νn]T . Then, we can respectively
rewrite (19) and (21) as

ϵ̇ =
1
2

ΞΨ̇ (23a)

ϵ̈ =
1
2

Ξ̇Ψ̇ +
1
2

Ξ(
ė2

ρ
+ ν). (23b)

Define a sliding manifold ss as

ss(t) = ϵ̇(t)− ϵ̇(0) +
∫ t

0
(λs

1sig(ϵ)α1 + λs
2sig(ϵ̇)α2)dτ, (24)

where λs
1 = diag{λs

11, λs
12, · · · , λs

1n}, λs
2 = diag{λs

21, λs
22, · · · , λs

2n} are positive definite
diagonal matrices selected by the designer with λs

ij ∈ R+, i = 1, 2, j = 1, · · · , n such that
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the polynomial π2 + λs
2jπ + λs

1j is Hurwitz, α1 = 1−α0
1+α0

, α2 = 1 − α0, with 0 < α0 < 1 being

a positive real number, sig(z)αi := [sign(z1)|z1|αi , · · · , sign(zn)|zn|αi ]T for a vector z ∈ Rn,
i = 1, 2. Using (13) and (23), one has

ṡs =λs
1sig(ϵ)α1 + λs

2sig(ϵ̇)α2 + ϵ̈

=
Ξ
2ρ

(
M−1(aus+(b − I)Hr

)
+W∗TΦ+ζ−q̈d+∇

)
, (25)

where

∇ =2ρΞ−1
(

λs
1sig(ϵ)α1 + λs

2sig(ϵ̇)α2 +
1
2

Ξ̇Ψ̇ +
Ξ
2

ν
)

.

To guarantee the convergence of the sliding manifold ss, we can design the control
command us for the reduced slow subsystem as

us = a−1M
(
− ŴTΦ + q̈d −∇− M−1(b − I)Hr − Ks

1ss − Ks
2sig(ss)

ϱs − Ks
3 tanh(

ss

ϵs
)
)
, (26)

where Ks
j = diag{ks

j1, ks
j2, · · · , ks

jn} ∈ Rn×n, j = 1, 2, 3 are the designed positive definite
feedback gain matrix, ϱs ∈ R+, ϵs ∈ R+ are two designed parameters satisfying 0 < ϱs < 1,
0 < ϵs < 1, and Ŵ ∈ RN×n is the estimation of W∗. Substituting (26) into (25), one has

ṡs = gs

(
− Ks

1ss−Ks
2sig(ss)

ϱs − Ks
3 tanh(

ss

ϵs
) + W̃TΦ + ζ

)
, (27)

where gs =
Ξ
2ρ , W̃ = W∗ − Ŵ.

3.2. Controller Design of the Reduced Fast Subsystem

Define a sliding manifold s f for the reduced fast subsystem as

s f (tε) = τ2(tε)− τ2(0) +
∫ tε

0
(λ

f
1sig(Λ)β1 + λ

f
2sig(τ2)

β2)dτε, (28)

where λ
f
1 = diag{λ

f
11, λ

f
12, · · · , λ

f
1n} ∈ Rn×n, λ

f
2 = diag{λ

f
21, λ

f
22, · · · , λ

f
2n} ∈ Rn×n are

positive definite diagonal matrices selected by the designer with λ
f
ij ∈ R+, i = 1, 2,

j = 1, · · · , n such that the polynomial π2 + λ
f
2jπ + λ

f
1j is Hurwitz, β1 = 1−β0

1+β0
, β2 = 1 − β0,

with 0 < β0 < 1 being a positive real number. The derivative of s f with respect to tε is

ds f

dtε
=λ

f
1sig(Λ)β1 + λ

f
2sig(τ2)

β2 + K0 J−1u f − K0(M−1 + J−1)Λ − K0(W∗TΦ + ζ). (29)

To guarantee the convergence of the sliding manifold s f , the control command u f can
be designed as

u f =JK−1
0

(
− λ

f
1sig(Λ)β1 − λ

f
2sig(τ2)

β2 + K0(M−1 + J−1)Λ

+K0ŴTΦ−K f
1 s f −K f

2 sig(s f )
ϱ f −K f

3 tanh(
s f

ϵ f
)
)

, (30)

where K f
j = diag{k f

j1, k f
j2, · · · , k f

jn}, j = 1, 2, 3 ∈ Rn×n are the designed positive definite
feedback gain matrix, and ϱ f ∈ R+, ϵ f ∈ R+ are positive real numbers satisfying 0 < ϱ f < 1,
0 < ϵ f < 1. Substituting (30) into (29), one has

ds f

dtε
= −K f

1 s f − K f
2 s

ϱ f
f − K f

3 tanh(
s f

ϵ f
)− K0(W̃TΦ + ζ). (31)
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Using the controllers (26) and (30) designed for the reduced slow and fast subsystems,
respectively, the overall control signal for the original high-order nonlinear FJR system (5)
can be obtained as

u = us + u f . (32)

4. Training of NN Weights

As the true nominal NN weights W∗ remain unknown, in this section, we devise a
composite-learning OBE-based identification algorithm to estimate Ŵ in real time. To lay
the groundwork, we present the following definition of an ellipsoid:

Definition 1. An N-dimensional real ellipsoid set Ω, centered at point z∗, is mathematically
represented as:

Ω(z∗,𭟋) := {z ∈ RN : (z − z∗)T𭟋(z − z∗) ≤ 1}, (33)

where 𭟋 ∈ RN×N denotes a positive-definite symmetric matrix.

To guarantee the boundedness of the control signal and the stability of the closed-loop
system, the estimation result Ŵ is expected to be bounded by preset compact sets Ωcwi as

Ωcwi := {Ŵi | ∥Ŵi∥ < cwi}. (34)

To facilitate the learning law design, a set of filtered variables, x2 f , H̄ f , Φ f , τ̄1 f and ζ f

are first defined by using a first-order filter Ff (s) = 1
ks+1 (k > 0) as

kẋ2 f + x2 f = x2 (35a)

k ˙̄H f + H̄ f = −M−1Hr (35b)

kΦ̇ f + Φ f = Φ (35c)

k ˙̄τ1 f + τ̄1 f = M−1τ1 (35d)

kζ̇ f + ζ f = ζ (35e)

Applying the filter Ff (s) to both sides of (7b) and subsequently rearranging, we obtain

ψ f (t) = ẋ2 f − H̄ f − τ̄1 f = W∗TΦ f + ζ f . (36)

Since ζ is bounded, then the filtered optimal NN approximation error ζ f is also
bounded; that is, |ζ f i| ≤ ζ̄ f i, where ζ f i is the ith element of ζ f , ζ̄ f i ∈ R+ is a constant [40].

Employing the ith column of the matrix W∗, denoted W∗
i , from (35), we derive

ψ f i(t) = W∗T
i Φ f + ζ f i, (37)

where ψ f i is the ith elements of ψ f , i=1 to n. Define the identification error as

ψ̃ f i = ψ f i − ψ̂ f i, (38)

where ψ̂ f i(t) = ŴT
i Φ f is the output of the NN. Then, we propose the following composite-

learning OBE algorithm to update the NN weights estimation Ŵi online:

˙̂Wi = ℵ
( Ψi

ζ
2
f i

bi𭟋iΦ f ψ̃ f i
)
+ γsgis𭟋iΦsis − γ f K0𭟋iΦsi f (39a)

𭟋̇i = Li𭟋̃i − ji(𭟋iΦ f ΦT
f 𭟋i −𭟋ilΦ f ΦT

f 𭟋il) (39b)
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with

ςi =
λiζ

2
f i

1 + ΦT
f 𭟋iΦ f

(40a)

ji =
ςiLi

(1 − ςi)ζ
2
f i + ςiΦT

f 𭟋iΦ f

(40b)

Li =Li0bibp(1 −𭟋−1
iu ||𭟋i||) (40c)

𭟋̃i =𭟋i −𭟋il (40d)

bi =

1, if |ψ̃ f i| > ζ f i & ΦT
f 𭟋iΦ f > ζ

2
f i

0, if |ψ̃ f i| ≤ ζ f i or ΦT
f 𭟋iΦ f ≤ ζ

2
f i

(40e)

for i = 1 · · · n, let gis be the ith element of gs, λi ∈ R+ be a design parameter satisfying
λi < 1/ζ

2
f i, and oio ∈ R+ be a forgetting factor satisfying 0 < oio < 1. 𭟋il ∈ RN×N

is a positive definite diagonal matrix, and 𭟋iu ∈ R+ is a positive constant that satisfies
𭟋il < 𭟋iu I, where I ∈ RN×N is the identity matrix.

The projection operator, denoted by ℵ(•), is defined as follows:

ℵ(•) =
{
•, if ||Ŵi|| < cwi or ||Ŵi|| = cwi & ŴT

i • ≤ 0
• − ŴiŴT

i • /||Ŵi||2, otherwise
(41)

and bp(•) is given by

bp(•) =
{

1, if ||Ŵi|| < cwi or ||Ŵi|| = cwi & ŴT
i • ≤ 0

0, otherwise
(42)

Define an ellipsoid set ΩEi centered at W∗
i as

ΩEi(W∗
i ,𭟋i) = {Ŵi|W̃T

i 𭟋
−1
i W̃i ≤ 1}. (43)

Now, we propose the following theorem.

Theorem 1. Consider the singularly perturbed model of an FJR (5), by using the weights updating
law (39) and the NN-based adaptive controller u = us + u f with us given in (26) and u f given
in (30), it can be guaranteed that: (1) The NN weights Ŵi(t) remain inside the ellipsoid set
defined in (43); that is, Ŵi(t) ∈ ΩEi , ∀t ≥ 0. (2) The identification error ψ̃ f i is bounded. (3) The
sliding manifolds ss and s f are bounded, and the tracking error e1 is bounded by the predefined
performance boundaries.

A detailed proof of Theorem 1 is presented in Appendix A.

Remark 2. In this study, we propose an adaptive PPC tailored for FJRs. Departing from conven-
tional approaches that employ back-stepping or dynamic surface control methodologies [6–9], our
design leverages the SPT to reduce system complexity and simplify the controller synthesis process,
thereby significantly enhancing its practical applicability to actual FJR systems. Furthermore, unlike
other research efforts [10,11] that solely rely on SMC or PPC to counteract disturbances, this work
introduces an online-trained NN to approximate and mitigate unknown perturbations, significantly
enhancing control precision. This innovative utilization of SPT, PPC and NNs constitutes the first
key contribution of our paper.

Remark 3. This paper presents a novel composite-learning OBE algorithm for online updating of
NN weights. Diverging from conventional OBE methods in the literature [13,32–34], which solely
utilize identification error, our approach uniquely integrates tracking errors from both the slow
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and fast subsystems into the weight updating process. This innovative strategy yields substantial
enhancements in identification and tracking precision, constituting the second major contribution of
this study.

5. Simulation Study

In this section, Matlab simulations of a two-degrees-of-freedom FJR are reported to
verify the effectiveness of the identification and control algorithm proposed in this study.
The schematic diagram of the ith link of the FJR is depicted in Figure 1. The matrices M(q),
C(q, q̇), G(q) of the FJR model (1) are given by

M(q) =
[

M11 M12
M21 M22

]
, C(q, q̇) =

[
C1
C2

]
, G(q) =

[
G1
G2

]
,

M11 =m1l2
c1 + I1 + I2 + m2(l2

1 + l2
c2 + 2l1lc2 cos q2),

M12 =m2l2
c2 + I2 + m2l2lc2 cos q2

M21 =m2l2
c2 + I2 + m2l2lc2 cos q2, M22 = m2l2

c2 + I2

C1 =− m2l1lc2 sin q2q̇2 − m2l1lc2 sin q2(q̇1 + q̇2), C2 = m2l1lc2 sin q2q̇1

G1 =m2gl1 cos(q1+q2)+(m1+m2)gl1 cos q1, G2 = m2gl2 cos(q1 + q2)

and the nominal system parameters used in the simulation are listed in Table 1. For
simplicity, no friction is considered in the simulation; thus, D = [0, 0]T . To verify the
effectiveness of the proposed methods for systems with model uncertainties, the real
system parameters m∗

1 , m∗
2 , I∗1 , I∗2 , l∗1 , l∗2 , l∗c1, l∗c2 are set to be 1.2 times of their nominal

values. The reference signal is qd = [sin(1.6πt), sin(1.6πt + π/3)]T . The initial values for
x1 and x2 are x1(0) = 0.8 and x2(0) = 0. To transform the original system model (1) into a
singular perturbation model (2), K0 = diag{0.01, 0.01} is used. The prescribed performance
continuous terminal sliding mode controller based on the singular perturbation technique
and the composite-learning optimal bounded ellipsoid algorithm (SOBE) is used to control
this system, and the following parameters are chosen for the controller: Ks

1 = 5, Ks
2 = 1,

Ks
3 = 1, ϵs = 0.1, ϱs = 0.9, K f

1 = 250, K f
2 = 1, K f

3 = 1, ϵ f = 0.1, ϱ f = 0.9. To compensate
the uncertainties, an NN with 30 neurons is employed, and the identification algorithm
parameters are chosen as: γs = 0.02, γ f = 0.02, Li0 = 0.2, 𭟋il = 20I, 𭟋iu = 200, λi = 5,
ζ f i = 0.001.

Table 1. Nominal parameters of the manipulator.

Parameter Value Unit

m1, m2 0.1 kg
l1, l2 0.4 m
I1, I2 0.02 kg·m2

lc1, lc2 0.2 m
J1, J2 0.01 kg·m2

K 9 N·m/rad

For the purpose of comparison, a modified OBE algorithm (MOBE)-based adaptive
controller [13] is also tested in the simulation. The choice of this particular control scheme
is motivated by the fact that our identification methodology builds upon the MOBE frame-
work. While MOBE exclusively utilizes the identification error for updating NN weights,
our proposed method incorporates both identification and tracking errors in the NN train-
ing process, thereby extending the MOBE approach. Additionally, whereas [13] employs
a conventional sliding mode controller, our study develops a terminal sliding mode PPC.
Consequently, [13] constitutes an apt and informative reference point against which to
assess the performance of our novel controller. For the MOBE method, all the shared
parameters are the same as those used for SOBE. It should be pointed out that the control
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method proposed in [13] is only used to control the reduced slow subsystem. The controller
for the reduced fast subsystem is the same as the one used in SOBE.

cil

il

,i im I

iq

i

iK

iJ

iu

Figure 1. Schematic diagram of link i of the FJR. In the diagram, mi, Ii are the mass and moment of
inertia of the link i, li is the length of the link i, and lci denotes the position of the center of mass of
link i, i = 1, 2.

The simulation outcomes are presented in Figures 2–17. As is evident from Figures 2 and 3,
both the SOBE and MOBE methods enable the system state x1 to track the designated
reference xr. However, the angular position of the robot converges faster to the reference
when employing the SOBE controller, resulting in smaller disparities between the system
state and the reference signal.

Additionally, Figures 4 and 5 clearly illustrate that the SOBE method yields smaller
position tracking errors, which converge to 0 more rapidly. Notably, the predefined per-
formance boundaries are consistently upheld throughout the entire identification and
control process. Conversely, the MOBE method exhibits a larger tracking error and a slower
convergence rate.

Furthermore, Figures 6 and 7 demonstrate that when using the SOBE method, the
angular velocity rapidly approaches its reference signal ẋr and maintains close alignment
thereafter. In contrast, the MOBE method leads to slower convergence and larger disparities.
Similarly, Figures 8 and 9 show that the SOBE method achieves reduced velocity tracking
errors, which converge to a small residual set centered around 0 more quickly.

It is worth mentioning that since both the SOBE and MOBE methods employ the same
controller for the reduced fast controller, τ1 tracks h(x) well regardless of the method used,
as depicted in Figures 10 and 11.

The identification results are presented in Figures 12 and 13, while the identification
errors are depicted in Figures 14 and 15. Both figures reveal that the integration of tracking
error into the learning law enhances the performance of the composite-learning OBE
algorithm. Specifically, the estimation results ψ̂ f i converge to ψ f i more rapidly. Conversely,
when the MOBE algorithm is employed, the estimation results take longer to converge to
the true values.

It is noteworthy that in Figures 14 and 15, the steady-state NN identification errors
associated with the MOBE exhibit smaller magnitudes. This observation can be attributed
to the fact that, in the MOBE framework, only the identification error ψ̃ f i serves as the basis
for updating NN weights, with the aim of having ψ̂ f i = ŴT

i Φ f closely approximate ψ f i. By
contrast, the SOBE approach introduces tracking errors from the reduced subsystems into
the weight updating mechanism. Consequently, the NN not only strives to approximate
ψ f i but also compensates for model discrepancies arising from the SPT-induced order
reduction, ultimately minimizing tracking errors. Thus, while the discrepancy between
ŴT

i Φ f and ψ f i may be larger when employing the SOBE method, the associated tracking
errors are concurrently smaller.
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Figure 2. Angular position for joint 1.
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Figure 3. Angular position for joint 2.

Figure 4. Angular position error for joint 1.
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Figure 5. Angular position error for joint 2.
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Figure 6. Angular velocity for joint 1.
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Figure 7. Angular velocity for joint 2.
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Figure 8. Velocity tracking error for joint 1.
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Figure 9. Velocity tracking error for joint 2.
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Figure 10. Tracking results of τ1 for joint 1.
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Figure 11. Tracking results of τ1 for joint 2.
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Figure 12. NN estimation results for joint 1.
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Figure 13. NN estimation results for joint 2.
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Figure 14. NN estimation errors for joint 1.
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Figure 15. NN estimation errors for joint 2.
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Figure 16. Control signal for joint 1.
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Figure 17. Control signal for joint 2.

The control signals generated by both the SOBE and MOBE methodologies are illus-
trated in Figures 16 and 17. Evidently, during the transient phase, the amplitude of u f is
substantial, facilitating the swift convergence of the fast state τ1 to its equilibrium value
h(x, t). Subsequently, u f diminishes to near-zero levels at steady state. This characteristic
response exemplifies the inherent behavior of a singularly perturbed system.

The figures presented in this study demonstrate that the SOBE method, which incor-
porates tracking errors into the NN weight updating law and utilizes the PPC to constrain
error boundaries, significantly outperforms the MOBE method. Specifically, the SOBE
method exhibits superior identification and control performance, as compared to the
MOBE method, which relies solely on a regular sliding mode control approach and updates
NN weights based solely on identification errors.

6. Conclusions

This paper introduces a novel identification and adaptive control algorithm tailored
for FJRs, aimed at enhancing NN training efficiency and trajectory tracking accuracy. We
begin by applying the SPT method to decompose the intricate high-order system into
two easily-managed low-order subsystems. This simplifies controller design by focusing
on these reduced-order components instead of the full high-order system. To ensure
desired transient and steady-state characteristics, we integrate the PPC technique into the
slow subsystem’s controller design. For faster convergence, continuous terminal sliding
mode controllers are developed for both slow and fast subsystems. Additionally, we
boost identification performance by merging the tracking error with the conventional OBE
algorithm, creating a novel composite-learning OBE-based learning rule.

Simulations reveal that using the proposed identification and control algorithm leads
to closer tracking of reference states, quicker convergence of tracking errors to zero, and
smaller steady-state tracking errors. This improved performance is attributed to the capture
of model uncertainties resulting from system order reduction, as tracking errors are also
utilized to train NN weights. Furthermore, NN training speed is accelerated.

The immediate next step involves implementing the proposed algorithm on a real
multi-link FJR to further validate its practical efficacy. Given that many practical FJR
systems experience input saturation nonlinearity due to limited motor drive capacity,
investigating SPT-based PPC under input saturation constraints is warranted. Lastly,
while this paper establishes the closed-loop system’s boundedness, proving its finite-time
convergence would be a valuable future extension.
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Notations
The following notations are used in this manuscript:

q, q̇ angular position and velocity of the joint
θ, θ̇ angular position and velocity of the motor
M(q) the inertia matrix
C(q, q̇) the centripetal/Coriolis matrix
D(q̇) the friction torque vector
G(q) the gravity torque vector
τd the aggregate disturbance
u, us, u f the system input vector, control command of the reduced slow subsystem

and control command of the reduced fast subsystem
K the stiffness matrix of the spring between the motor and the link
J the inertia matrix of the motors
x1, x2 q and q̇
τ1, τ2 the elastic torque and its derivative with respect to tε

h(x, t) the equilibrium of τ1
Λ the difference between τ1 and h(x, t)
W∗, Φ the NN weight matrix and regression functions vector
N the number of neurons used in the hidden layer
ζ the NN approximation error
tε the fast time scale
e1, e2 the position tracking error and the velocity tracking error
ρ(t) the prescribed performance function
ϵi(t) the transformed tracking error of e1i
ss, s f the slow sliding manifold and the fast sliding manifold
Ks

1, Ks
2, Ks

3 the feedback gain matrices of us

K f
1 , K f

2 , K f
3 the feedback gain matrices of u f

Ωcwi preset compact sets for Ŵi
ΩEi the ellipsoid set of W̃i
x2 f , H̄ f , Φ f , τ̄1 f and ζ f filtered results of x2, −M−1Hr, Φ, M−1τ1 and ζ

𭟋i the learning gain matrix of the NN weight’s updating law
ψ̂ f i the filtered output of the NN

Appendix A. Proof of Theorem 1

Proof. To facilitate the stability analysis, several basic lemmas and definitions are given first.



Appl. Sci. 2024, 14, 4030 19 of 23

Lemma A1. [13] By using the updating law (39b), it can be guaranteed that the learning gain
𭟋i(t) has deterministic and predeterminable bounds, that is, 𭟋il < 𭟋i(t) ≤ 𭟋iu I, ∀t ≥ 0.

Lemma A2. [41] The following inequality holds for any ϵ0 > 0 and x0 ∈ R:

0 ≤ |x0| − x0 tanh(
x0

ϵ0
) ≤ κ0ϵ0, (A1)

where κ0 is a constant satisfying κ0 = e−(κ0+1), i.e., κ0 = 0.2785.

The proof of Theorem 1 comprises the following steps:
Step 1, the boundedness of the NN weights Ŵi are proved.
Choose a Lyapunov function candidate

Voi = γss2
is + W̃T

i 𭟋
−1
i W̃i + εγ f s2

i f , (A2)

where sis and si f are the ith elements of ss and s f , respectively. The time derivative of Voi is
given as

V̇oi =2γssis ṡis−2W̃T
i 𭟋

−1
i

˙̂Wi+W̃T
i 𭟋̇

−1
i W̃i+

2γ f si f dsi f

dtε
. (A3)

Noting the result of the projection operation, if Ŵi(0) ∈ Ωcwi , then the parameter
learning law ensures Ŵi(t) ∈ Ωcwi and

W̃T
i 𭟋

−1
i

˙̂Wi ≥W̃T
i 𭟋

−1
i

(
ςi

ζ
2
f i

bi𭟋iΦ f ψ̃ f i+γsgis𭟋iΦsis−γ f K0𭟋iΦsi f

)
. (A4)

Applying the foregoing inequality to (A3), one obtains

V̇oi ≤ −2
ςi

ζ
2
f i

biW̃T
i Φ f ψ̃ f i−2γsgis𭟋iW̃T

i 𭟋
−1
i Φsis + 2γ f K0𭟋iW̃T

i 𭟋̇
−1
i Φsi f

+2γssis ṡis+W̃T
i 𭟋̇

−1
i W̃i+

2γ f si f dsi f

dtε
. (A5)

Case 1a: When |ψ̃ f i| > ζ f i & ΦT
f 𭟋iΦ f > ζ

2
f i hold, and ||Ŵi|| < cwi or ||Ŵi|| =

cwi & ŴT
i • ≤ 0 hold, that is, bi = 1 and bp = 1 in this case. Combining (A5) and (39a),

one obtains
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V̇oi ≤− ςi

ζ
2
f i

W̃T
i Φ f (W̃T

i Φ f + ζ f i)−
ςi

ζ
2
f i

(ψ̃ f i − ζ f i)ψ̃ f i

− 2γsgis𭟋iW̃T
i 𭟋

−1
i Φsis+2γ f K0𭟋iW̃T

i 𭟋
−1
i Φsi f − LiW̃T

i 𭟋
−1
i 𭟋̃i𭟋−1

i W̃i

+ jiW̃T
i 𭟋

−1
i (𭟋iΦ f ΦT

f 𭟋i−𭟋ilΦ f ΦT
f 𭟋il)𭟋−1

i W̃i

+ 2γssisgis

(
−ks

1isis−ks
2isig(sis)

ϱs−ks
3i tanh(

sis
ϵs

)+W̃T
i Φ+ζi

)

+ 2γ f si f

(
−k f

1isi f −k f
2isig(si f )

ϱ f −k f
3i tanh(

si f

ϵ f
)−K0(W̃T

i Φ+ζi)

)
≤− (

ςi

ζ
2
f i

− ji)W̃T
i Φ f ΦT

f W̃i −
ςi

ζ
2
f i

(ψ̃2
f i − ζ2

f i)

+ 2γssisgis

(
−ks

1isis−ks
2isig(sis)

ϱs−ks
3i tanh(

sis
ϵs

)+ζi

)

+ 2γ f si f

(
−k f

1isi f −k f
2isig(si f )

ϱ f −k f
3i tanh(

si f

ϵ f
)−K0ζi

)
. (A6)

Using Lemma A2, the above equation can be further rewritten as:

≤− ||Φ f ||2
(

ςi

ζ
2
f i

− ji

)
||W̃i||2 −

ςi

ζ
2
f i

(ψ̃2
f i − ζ2

f i)− 2γsgisks
1i|sis|2 − 2γsgisk2i|sis|1+ϱs

− 2γ f k f
1i|si f |2 − 2γ f k f

2i|si f |1+ϱ f − (−2γsgis|ζi|+ 2γsgisk3i)|sis|

− (2γ f k f
3i+2K0γ f |ζi|)|si f |+2γsgisks

3iκ0ϵs+2γ f k f
3iκ0ϵ f

≤− ||Φ f ||2
(

ςi

ζ
2
f i

− ji

)
||W̃i||2 − 2γsgisks

1i|sis|2 − 2γ f k f
1i|si f |2 + 2γsgisks

3iκ0ϵs+2γ f k f
3iκ0ϵ f

≤− αv1iVoi + βv1i, (A7)

where αv1i = min{||Φ f ||2( ςi

ζ
2
f i
− ji), 2γsgisks

1i, 2γ f k f
1i}, βv1i = 2γsgisks

3iκ0ϵs + 2γ f k f
3iκ0ϵ f .

From 0 < ςi < 1 and ϕT
f 𭟋iϕ f > ζ

2
f i, one obtains (1 − ςi)ζ

2
f i + ςiϕ

T
f 𭟋iϕ f > ζ

2
f i. Noting

0 < Li0 < 1, it can be obtained (ςi/ζ
2
f i)− ji > 0. It is clear that V̇oi < 0 is true as long as

V > βv1i
αv1i

.

Case 1b: When |ψ̃ f i| > ζ f i & ΦT
f 𭟋iΦ f > ζ

2
f i hold, and ||Ŵi|| > cwi or ||Ŵi|| =

cwi & ŴT
i • > 0 hold, that is, bi = 1 and bp = 0 in this case, which implies 𭟋̇i = 0.

Combining (A5) and (39a), it yields:
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V̇oi ≤− ςi

ζ
2
f i

W̃T
i Φ f (W̃T

i Φ f + ζ f i)−
ςi

ζ
2
f i

(ψ̃ f i − ζ f i)ψ̃ f i

−2γsgis𭟋iW̃T
i 𭟋

−1
i Φsis+2γ f K0𭟋iW̃T

i 𭟋
−1
i Φsi f

+2γssisgis

(
−ks

1isis−ks
2isig(sis)

ϱs−ks
3i tanh(

sis
ϵs

)+W̃T
i Φ+ζi

)

+2γ f si f

(
−k f

1isi f −k f
2isig(si f )

ϱ f −k f
3i tanh(

si f

ϵ f
)−K0(W̃T

i Φ+ζi)

)
≤− ||Φ f ||2

ςi

ζ
2
f i

||W̃i||2 −
ςi

ζ
2
f i

(ψ̃2
f i − ζ2

f i)− 2γsgisks
1i|sis|2

−2γ f k f
1i|si f |2 + 2γsgisks

3iκ0ϵs+2γ f k f
3iκ0ϵ f

≤− αv2iVoi + βv2i, (A8)

where αv2i = min{||Φ f ||2 ςi

ζ
2
f i

, 2γsgisks
1i, 2γ f k f

1i}, βv2i = 2γsgisks
3iκ0ϵs + 2γ f k f

3iκ0ϵ f . Noting

|ψ̃ f i| > ζ f i, ζ f i ≥ |ζ f i|. It is clear that V̇oi < 0 is true as long as V > βv2i
αv2i

.

Case 1c: When |ψ̃ f i| ≤ ζ f i & ΦT
f 𭟋iΦ f ≤ ζ

2
f i hold, that is, bi = 0 in this case, which

implies 𭟋̇i = 0. Combining (A5) and (39a), one obtains:

V̇oi ≤− 2γsgis𭟋iW̃T
i 𭟋

−1
i Φsis+2γ f K0𭟋iW̃T

i 𭟋
−1
i Φsi f

+2γssisgis

(
−ks

1isis−ks
2isig(sis)

ϱs−ks
3i tanh(

sis
ϵs

)+W̃T
i Φ+ζi

)

+2γ f si f

(
−k f

1isi f −k f
2isig(si f )

ϱ f −k f
3i tanh(

si f

ϵ f
)−K0(W̃T

i Φ+ζi)

)
≤− 2γsgisks

1i|sis|2 − 2γ f k f
1i|si f |2 + 2γsgisks

3iκ0ϵs+2γ f k f
3iκ0ϵ f

≤− αv3iVoi + βv3i, (A9)

where αv3i = min{2γsgisks
1i, 2γ f k f

1i}, βv3i = 2γsgisks
3iκ0ϵs + 2γ f k f

3iκ0ϵ f . It is clear that

V̇oi < 0 is true as long as V > βv3i
αv3i

.
Combining the above analysis in cases 1a-1c, it can be concluded that Ŵi(t) ∈ ΩEi ,∀t ≥ 0

if Ŵi(0) ∈ ΩEi .
Step 2, the boundedness of the identification error ψ̃ f i is proved.
Since Ŵi(t) ∈ ΩEi holds, it can be obtained that W̃i(t) remain in the ellipsoid set

defined (43), that is

W̃T
i 𭟋iuW̃i ≤ W̃T

i 𭟋
T
i W̃i ≤ 1. (A10)

Therefore, one obtains

||W̃i|| ≤
√
𭟋iu. (A11)

Moreover, Φ is bounded ∀e ∈ Ωce , that is, ||Φ f || ≤ ϕ̄, where ϕ̄ ∈ R+ is a constant.
Therefore, it can be obtained that ||ψ̃ f i|| = ||W̃TΦ f || ≤

√
𭟋iuϕ̄.

Step 3, the boundedness of the tracking errors is proved.
Since the Lyapunov function candidate Voi is bounded, it can be further inferred that

ss, s f also converges to a small residual set around 0, which also means the tracking error
e1 of the reduced slow subsystem is bounded by the predefined performance boundaries
and converges to a small residual set around 0. Since the stability of both subsystems is
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guaranteed, then, according to Tikhonov’s theorem, the stability of the original high-order
system is also guaranteed.
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