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Abstract: A data-driven aerodynamic modeling method is proposed to address the problem that
traditional modeling methods based on physical mechanisms cannot fully represent the special
aerodynamic characteristics of tiltrotor evtol aircraft. By analyzing the uniquely complex aerodynamic
characteristics of electric vertical take-off and landing (evtol) aircraft, an MLP neural network model
has been constructed that reflects the coupling characteristics between influencing factors. Using the
XV15 wind tunnel test data, a dataset was constructed, and the neural network model was trained
and validated. Simulation results show that the selected data-driven method can accurately predict
the aerodynamic characteristics of the longitudinal transition phase of the tiltrotor evtol.

Keywords: aerodynamic modeling; data-driven; neural networks; tiltrotor; transition phase

1. Introduction

Urban traffic congestion has worsened due to increasing urbanization. This has led
to the development of electric vertical take-off and landing (evtol) aircraft concepts [1,2].
The tiltrotor evtol configuration, which combines features from traditional fixed-wing and
rotor aircraft, shows potential for sustainable transport over medium to long distances,
particularly in areas with complex routes and severe congestion [3].

Aerodynamic modeling is critical in determining the dynamic characteristics and
simulation fidelity of maneuvering stability for evtol. Furthermore, aerodynamic modeling
can offer an affordable and replicable simulation platform for designing flight control
systems, assessing maneuvering stability, modifying designs, and other relevant aspects
of evtol operations. Concurrently, aerodynamic modeling is the primary method used to
describe evtol aerodynamic effects [4]. It reflects the variation characteristics of these effects
with factors such as airspeed, configuration, tilt angle, and control surface deflection angle.

The aerodynamic characteristics of tiltrotor evtol aircraft vary significantly between
different flight modes, particularly during the transition phase caused by nacelle tilting [5,6].
Due to the influence of flight conditions and rotor tilting motions, tiltrotor evtol aircraft
exhibit high complexity, strong coupling, and nonlinearity in their aerodynamic character-
istics. These variations in rotor-induced velocities, as well as the effects of rotor downwash
and wake, make aerodynamic modeling extremely challenging.

Some aerodynamic propulsion modeling methods for lift + cruise evtol aircraft are
proposed in references [7–10]. System identification techniques and computational fluid
dynamics (CFD) simulations are used to develop flight dynamic models and validate the
predictive capabilities of aerodynamic propulsion models. However, aerodynamic model-
ing methods for tiltrotor evtol still rely on traditional physical mechanisms for aerodynamic
modeling. References [11,12] suggest that traditional methods are not effective in simulat-
ing certain aerodynamic characteristics, such as rotor wake and downwash. Concurrently,
there is a certain contradiction between the realism of models established by traditional
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methods and the real-time performance of simulations. Therefore, most aerodynamic
modeling methods used in real-time simulation environments are based on simplified
physical mechanisms, which limits their ability to perform high-fidelity simulations.

The use of algorithms and computational capabilities has led to the widespread adop-
tion of data-driven aerodynamic modeling methods based on neural networks, commonly
used neural network methods in aerodynamic prediction include MLP, RBFNNs, CNNs,
RNNs, and GANs [13–15]. These methods do not require the establishment of complex
mathematical formulae based on physical mechanisms [16,17]. Instead, they learn the
hidden dynamic characteristics of the system through sample data. Data-driven methods
can address high-dimensional, multiscale, and nonlinear problems that are difficult to solve
with traditional methods.

The aim of this study is to validate the use of data-driven modeling methods in
aerodynamic modeling during the transition phase of tiltrotor evtol aircraft. This study
analyses the complex relationship between dimensionless aerodynamic force coefficients
of tiltrotor aircraft and their influencing factors. A multilayer perceptron (MLP) neural
network is selected for multivariate nonlinear regression for data-driven aerodynamic
modeling. The data-driven model was constructed from the wind tunnel test data of
XV-15 and trained using an MLP neural network. A comparison was conducted between
the predictive performance of a data-driven model and a mathematical model based on
physical mechanisms. The results demonstrate that the data-driven model can capture
aerodynamic characteristics that are challenging to express in mathematical models.

This paper is structured as follows: Section 2 introduces the relationship between
dimensionless aerodynamic coefficients of tiltrotor evtol and their influencing factors.
Section 3 describes the advantages of data-driven methods based on MLP neural networks
and the construction of the dataset. Section 4 presents the evaluation criteria and training
methods for the neural network. The predictive performance of the data-driven method
is compared with that of mathematical models to validate the accuracy of the established
neural network model. Conclusions are drawn in Section 5.

2. Analysis of Aerodynamic Characteristics of Tiltrotor evtol

Tiltrotor evtol aircraft have unique aerodynamic characteristics, including interactions
between numerous control surfaces, rotor–fuselage interactions, rotor–rotor interactions,
and rapid changes in aerodynamics during the transition phase as the rotor pitch angle
varies. Therefore, a suitable aerodynamic modeling strategy for tiltrotor evtol must combine
aspects of traditional aircraft modeling strategies. Figure 1 shows the tiltrotor evtol Vahana
that Airbus conducted research and testing on several years ago.
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Aerodynamic modeling for fixed-wing aircraft usually entails generating aerodynamic
interpolation tables or representing dimensionless aerodynamic force and moment coeffi-
cients as functions of aircraft states and controls [8]. The aerodynamic force and moment
coefficients, which are dimensionless, are commonly expressed as functions of various
parameters, including angle of attack (α), sideslip angle (β), angular rate (p, q, r), and con-
trol surface deflections (elevator deflection angle δe, aileron deflection angle δa, rudder
deflection angle δr). These coefficients are known as response variables, while explanatory
variables include factors such as airflow angle. The dimensionless aerodynamic forces and
moment coefficients of a fixed-wing aircraft, such as lift coefficient CL, drag coefficient CD,
and pitch moment coefficient CM, can be expressed as follows:

CL, CD, CM = f (αF, βF, U, V, W, p, q, r, δe, δa, δr . . .)

Rotorcraft aerodynamic modeling relies heavily on computational or flight test data
due to the difficulty in scaling rotorcraft proportionally and equipment limitations for
wind tunnel testing [8]. It is important to note that unlike fixed-wing aircraft, rotorcraft
aerodynamic modeling requires a different approach due to their unique characteristics [18].
Since stability axes and wind axes become undefined in hover, modeling is generally only
performed in the body axes for rotorcraft. The formulation in terms of body-axis velocity
components, as opposed to airflow angles α and β, allows the state variables to be defined
in hover and reflects the fact that fuselage angle of attack and angle of sideslip are less
physically meaningful for describing rotorcraft aerodynamics [8]. Explanatory variables for
rotorcraft modeling often include body-axis velocity components (U, V, W), angular rates
(p, q, r), pilot control inputs, and rotor states such as flapping and inflow.

Tiltrotor evtols currently have smaller rotor diameters and do not use cyclic pitch
control, which makes rotor section modeling less critical, except for specific rotor states [19].
Therefore, the aerodynamic modeling of tiltrotor evtol includes most of the characteristics
of fixed-wing aircraft. However, the aerodynamic characteristics of the rotor section are
more evident in the fuselage–rotor interaction. Figure 2 shows the relationship between the
dimensionless aerodynamic coefficients and moments of tiltrotor evtol and the control and
state variables.
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Variations in the state and control variables of tiltrotor evtol can cause changes in
airflow speed and direction, as well as induced velocity characteristics, across different
parts of the fuselage. These changes can result in complex aerodynamic features, such as
rotor wake and rotor–fuselage interactions, which ultimately affect the aerodynamic forces
of different components. It is important to note that these aerodynamic characteristics are
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interdependent, which means characteristics located in the second layer of Figure 1 can
impact each other.

However, most aerodynamic modeling work for evtol to date has used analytical or
semiempirical models for research or application purposes. These traditional methods
cannot fully express certain special aerodynamic characteristics, such as the impact of
rotor wakes on different parts of the fuselage, which greatly simplifies highly complex
aerodynamics. The discrepancy between mathematical models and wind tunnel data is
evident in the limitation of accuracy. Figure 3 shows this for the gravity-to-lift ratio of
the XV15 tiltrotor aircraft versus airspeed [20], highlighting the inability of mathematical
models to fully capture the effects of rotor wakes.
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3. Data-Driven Modeling Methods

The analysis of the mechanism and influencing factors of the transition phase of the
tiltrotor evtol in the Section 2 reveals that its complex aerodynamic characteristics result
from the interaction of multidimensional factors. This interaction determines a nonlinear
relationship between the input and output of the aerodynamic characteristic model that
needs to be established. This type of relationship is reflected not only between factors
but also between layers. Therefore, we selected an MLP neural network for aerodynamic
modeling. This type of network is capable of solving complex nonlinear relationships.

3.1. Data-Driven Network Model Design

The multilayer perceptron (MLP) is a type of feedforward neural network with a
simple connectivity pattern. It comprises an input layer, one or more hidden layers, and
an output layer. Each hidden layer contains multiple neurons [21]. The MLP operates
by connecting each neuron in a layer to every neuron in the next layer with appropriate
weights and biases. Input data propagate from the input layer to the output layer through
forward propagation.
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The input data are received by the network through the input layer neurons. Each
neuron in a hidden layer receives a weighted sum of signals from all neurons in the
previous layer. This weighted sum is then passed through an activation function, such as
sigmoid or ReLU, which introduces nonlinearity and enables the network to learn complex
patterns. The output of the activation function becomes the output of that neuron and the
input for neurons in the next layer. MLP calculates its error by comparing its predictions
with the expected outputs using a loss function at the output layer. The error is then
propagated backward through the network using backpropagation, which employs the
chain rule to calculate the contribution of each weight to the error. The weights in each
layer are then adjusted based on the error signal and a learning rate to minimize the overall
error. The iterative process of forward pass, error calculation, and backpropagation with
weight updates continues during training until the network achieves an acceptable level of
performance [22].

MLP networks can be used for multifunctional learning, including classification and
regression tasks. MLP demonstrates proficient performance in handling multivariable
nonlinear regression problems with its classic architecture [21]. The relationship between
the dimensionless aerodynamic coefficients introduced in Section 2 is similar in struc-
ture to the MLP neural network and essentially belongs to multiple nonlinear regression.
Therefore, this article introduces an MLP neural network based on the input–output and
influence factors described in the Section 2. The hidden layer neurons represent the unique
aerodynamic characteristics and state variables of the tiltrotor evtol. However, in these
complex coupling relationships, some factors do not influence each other. Therefore, these
unrelated neurons should not be connected. The MLP topology diagram for the unique
aerodynamic characteristics of the tiltrotor evtol is obtained as Figure 4.
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During network training, the structural parameters of the MLP are determined based
on the coupling characteristics of aerodynamic features and their training effect. To achieve
non-interconnected neurons, the weight of the corresponding connections in the weight
matrix can be set to zero. This reflects the unique aerodynamic characteristics of the
tiltrotor evtol.

This article employs a network comprising multiple layers of neurons, each comprising
a LeakyReLU activation function. The network is trained using the Adam optimizer to
calculate the weights of the MLP neural network model. All of these components are
implemented in Python code based on the PyTorch framework.

3.2. Sample Data Requirements and Generation

The aerodynamic characteristics and rotor layout of the XV15 tiltrotor aircraft are
similar to some tiltrotor evtols, resulting in largely consistent aerodynamic characteristics.
This article conducts data-driven aerodynamic modeling on the tilting rotor evtol, based
on wind tunnel test data of the transition maneuver of XV15. Due to space limitations,
this article focuses on data-driven model construction for longitudinal aerodynamics, the
generation of sample data, model training, and validation.

According to reference [20,23], for the longitudinal transition maneuver of the XV15
tiltrotor aircraft, aerodynamic forces and moments (CL CD CM) are defined as functions of
a set of flight state values (MN αF βM FX δe). Among them, MN is the Mach number, αF is
the angle of attack of the fuselage, βM is the tilt angle of the nacelle, FX is the flap/aileron
angle mode selection, and δe is the elevator deflection angle. During the transition phase,
the value ranges of variables mentioned above for XV15 are as Table 1.

Table 1. Range of explanatory variables for the transition phase of XV15 tiltrotor aircraft.

Input Variables Minimum Maximum

MN 0 m/s 120 m/s
δe −20◦ 20◦

FX F1 (0◦/0◦) F2 (40◦/25◦)
βM 0◦ 90◦

αF −15◦ 15◦

By considering the range constraints of explanatory variables during the transition
phase of the tiltrotor evtol and the inclined transition corridor determined in reference [20,23],
a multidimensional sample space can be established. This sample space allows for a one-to-
one correspondence between the aerodynamic coefficients and the explanatory variables.
Additionally, there are constraints between variables, in addition to the range constraints
of the variables themselves. Figure 5 shows the transition corridor resulting from the
constraint between the tilt angle βM and the horizontal velocity VX. When the nacelle
inclination angle is 0◦, XV15 is in helicopter mode, and when the nacelle inclination angle
is 90◦, it is in aircraft mode. The dataset needed for the neural network is constructed
by selecting points from a vector space consisting of flight envelopes and constraints in
multiple dimensions. It is important to note that the aerodynamic coefficient profile has
both linear and nonlinear regions that correspond to a single explanatory variable. The
nonlinear region has a higher density of points compared with the sparser points in the
linear region. The constructed sample dataset comprises 2000 sample points, with each
point represented in the form of CL, CD, CM = f (MN αF βM FX δe).
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4. Results and Discussion

This section trains and validates the aerodynamic model using an MLP neural network
based on the sample dataset obtained from the XV15 transition maneuvers in Section 3.
As the data in this article are only a small-scale sample dataset, they were divided into
training, validation, and testing sets using the commonly used 7:2:1 ratio. The training set
is used as input for model training, while the validation set is used to select appropriate
model hyperparameters. The test set is utilized to validate the predictive performance of
the trained model without being involved in model construction [24].

4.1. Network Training Method and Results

The process of constructing a data-driven model involves a crucial step in the selection
of appropriate hyperparameters, which necessitates the adoption of appropriate criteria for
evaluating the predictive efficacy of different hyperparameter combinations. In this study,
relative error and coefficient of determination are used as performance metrics to evaluate
the network. The relative error is defined as

error =

∣∣∣∣ypre − yt
∣∣|F

||yt||F
∗ 100%

where ypre is the predicted output of the network, and yt is the true value, yielding an
aggregate relative error over the entire performance of the network. Specifically, for the
lift coefficient (CL), the individual errors for each aerodynamic coefficient are described
as follows:

errorL =

∣∣∣∣∣∣CLpre − CLt

∣∣∣|2
||CLt ||2

∗ 100%

Meanwhile, the coefficient of determination is defined as

R2 = 1 − SST
SSR

SST =
k

∑
t=1

(
CLt − CLpre)

2



Appl. Sci. 2024, 14, 4055 8 of 12

SSR =
k

∑
t=1

(
CLt − CLt)

2

where CLt is the true lift coefficient, and CLpre is the network predicted lift coefficient. The
relative error can indicate how well a trained neural network behaves on new data that
were not used in training. It can be thought of as a curve fitting, where the relative error
represents the average deviation from the fitted curve to the wind tunnel test data. The
coefficient of determination is used to assess how well a regression model explains the
relationship between a dependent variable and an independent variable. It reflects how
well the model fits the data it was trained on. An acceptable relative error of 5% [11] or less
is based on established evtol aerodynamic models. A coefficient of determination closer to
1 indicates a stronger relationship between the variables, meaning the model explains most
of the variation in the dependent variable.

For an MLP neural network, key hyperparameters that influence prediction perfor-
mance include the number of hidden layers, neurons per layer, activation functions, loss
function types, training epochs, and batch size. This article utilizes the random search
method in Python to randomly sample hyperparameter values from a defined range and
compare the above evaluation criteria to select the optimal hyperparameter. Note that this
article uses the average of the errors and determination coefficients for each aerodynamic
coefficient as the evaluation criterion, due to their varying relative errors and determination
coefficients under different hyperparameters. The results of training the MLP neural net-
work with varying hyperparameter values for predicting lift coefficient errors are tabulated
below as Table 2.

Table 2. Different combinations of MLP training parameters.

Hyperparameters MLP

Number of Epochs 100 100 100 50 150 100 100 100 100

Batch Size 10 20 30 20 20 20 20 20 20

Number of
Neurons/hidden Layers 64/2 64/2 64/2 64/2 64/2 32/2 96/2 64/1 64/3

Relative error 1.625% 1.361% 1.455% 1.413% 1.327% 1.314% 1.391% 1.861% 1.937%

Coefficient of
Determination 0.9921 0.9967 0.9925 0.9981 0.9986 0.9972 0.9975 0.9907 0.9943

In summary, by iteratively simulating the neural network and evaluating the relative
error and coefficient of determination across different network hyperparameter settings,
selecting the hyperparameter combination with the minimum relative error and the maxi-
mum coefficient of determination, the optimal values for the number of layers, neurons,
and other hyperparameters for the MLP neural network are derived, as shown in the
accompanying Table 3.

Table 3. Optimal network parameter combination.

Parameters MLP

Number of inputs/outputs 5/3

Number of Epochs 100

Batch Size 20

Number of Layers/Neurons 32/2

Sequence Length -

Activation Functions Leakyrelu

Loss Function L1Loss
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Table 3. Cont.

Parameters MLP

Relative error 1.314%

Coefficient of Determination 0.9972

Total training time 395.43 s

4.2. Network Effect Verification

Based on the analysis of dimensionless aerodynamic coefficients and their influencing
factors in Section 2, it can be concluded that the rotor wake is the most significant aerody-
namic characteristic affecting the transition phase of the XV15. This, in turn, affects the
aerodynamic forces on other parts of the fuselage. The mathematical model report and
wind tunnel test data of the XV15 tiltrotor aircraft support this conclusion. The tilt angle is
the explanatory variable that has the greatest impact on the rotor wake. Therefore, wind
tunnel test data under different tilt angle conditions were selected as the validation set to
verify the network’s predictive effect. The validation results compare wind tunnel data,
results from the mathematical model established in the literature [9], and predictions from
neural network models. The purpose is to illustrate the difference between data-driven
modeling methods and models established using traditional physical formulas.

Figures 6–8 present the predicted results for the selected transition conditions. Compar-
isons are made between traditional models and neural networks under different flap/aileron
angle mode selection, Mach numbers, and elevator deflection angles. Figure 6 shows that
the flap/aileron angle mode selection has a significant impact on the aerodynamic coef-
ficient during the transition phase under low Mach number conditions. Increasing the
angle of the flaps/ailerons to 40/25◦ results in a nearly 50% increase in the aerodynamic
coefficient compared with the original. Figure 7 demonstrates that the impact of the Mach
number on the aerodynamic coefficient is relatively small when it is low. The available wind
tunnel test data only include the relationship between Mach number and aerodynamic co-
efficient. Furthermore, the tiltrotor evtol typically operates at low speeds or Mach numbers.
Therefore, this article compares the aforementioned relationships. Figure 8 illustrates the
impact of the elevator deflection angle on the lift coefficient and aircraft stall angle of attack.
The results indicate that a 20◦ increase in elevator deflection angle leads to a 40% decrease
in lift coefficient and a corresponding increase in the aircraft stall angle of attack.
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It is evident that there is a significant discrepancy between the predicted data from the
mathematical model and the wind tunnel data. The data-driven approach more accurately
reflects the nonlinear aerodynamic characteristics during the transition phase, as indicated
in the literature [19], which states that the mathematical model does not provide an accurate
description of these rotor wake and stall phenomena.

Table 4 displays the coefficient of determination R2 and the relative error of the
predicted data from the MLP neural network. The results indicate that the aerodynamic
coefficient predicted by the network closely matches the wind tunnel data, with an error
of approximately 2%. Meanwhile, the coefficient of determination for network prediction
is close to 1, indicating that the model explains most of the variation in the dependent
variable. In contrast, the prediction of aerodynamic coefficients based on mathematical
models has an error of about 10%, and the accuracy of determining coefficients is relatively
low. This level of accuracy meets the requirements for aerodynamic models reported in
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the literature [11]. The results demonstrate that, in general, data-driven methods based on
fully connected neural networks provide better prediction results than models built using
traditional methods.

Table 4. Comparison of MLP and Mathematical Model Errors.

Test Set
Coefficient of

Determination
(MLP) CL CD CM

Relative Error
(MLP) CL CD CM

Coefficient of Determination
(Mathematical Model) CL CD CM

Relative Error
(Mathematical Model) CL CD CM

1 0.9971/0.9962/0.9987 1.474%/1.032%/0.861% 0.9258/0.9463/0.9731 8.326%/7.034%/15.338%

2 0.9916/0.9965/0.9984 1.177%/0.946%/1.052% 0.9341/0.9480/0.9712 4.584%/4.872%/9.635%

3 0.9959/0.9963/0.9989 0.986%/0.912%/0.883% 0.9246/0.9384/0.9658 4.669%/8.453%/11.763%

5. Conclusions

A neural network structure that conforms to the aerodynamic characteristics and
mechanism of the tiltrotor evtol was constructed using an MLP neural network. To create a
dataset for neural network training and validation, wind tunnel test data from the XV15
tiltrotor with similar aerodynamic characteristics and structure were selected. The dataset
was constructed by analyzing the sample data structure and constructing a sample vector
space with constraints. Finally, the optimal hyperparameter combination for the neural
network was selected by designing evaluation indicators. Predictions were then made
based on the test set under different tilt angle conditions. The simulation results show
the following:

1. Neural-network-based data-driven methods can accurately predict the aerodynamic
characteristics of tiltrotor evtol aircraft during the transition phase, with an error rate
of less than 2% compared with wind tunnel test data.

2. Traditional physical modeling methods exhibit larger errors in representing the com-
plex aerodynamic characteristics of tiltrotor aircraft due to the limitations of mathe-
matical formulae, typically up to nearly 10%.

3. The MLP neural network structure constructed based on the aerodynamic characteris-
tic mechanism of the tiltrotor evtol is effective.

In summary, this study shows that data-driven methods using neural networks can
predict the aerodynamic characteristics of tiltrotor evtol aircraft during the transition phase.
Due to the high fidelity fitting and relatively simple modeling process of MLP for nonlinear
and strongly coupled aerodynamic characteristics, this method can be extended and applied
to the full degree of freedom and full flight envelope aerodynamic modeling of tiltrotor
evtol aircraft.
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