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Abstract: Recently, transformer-based face super-resolution (FSR) approaches have achieved promis-
ing success in restoring degraded facial details due to their high capability for capturing both local
and global dependencies. However, while existing methods focus on introducing sophisticated
structures, they neglect the potential feature map information, limiting FSR performance. To cir-
cumvent this problem, we carefully design a pair of guiding blocks to dig for possible feature map
information to enhance features before feeding them to transformer blocks. Relying on the guiding
blocks, we propose a spatial-channel mutual attention-guided transformer network for FSR, for
which the backbone architecture is a multi-scale connected encoder–decoder. Specifically, we devise a
novel Spatial-Channel Mutual Attention-guided Transformer Module (SCATM), which is composed
of a Spatial-Channel Mutual Attention Guiding Block (SCAGB) and a Channel-wise Multi-head
Transformer Block (CMTB). SCATM on the top layer (SCATM-T) aims to promote both local facial
details and global facial structures, while SCATM on the bottom layer (SCATM-B) seeks to optimize
the encoded features. Considering that different scale features are complementary, we further de-
velop a Multi-scale Feature Fusion Module (MFFM), which fuses features from different scales for
better restoration performance. Quantitative and qualitative experimental results on various datasets
indicate that the proposed method outperforms other state-of-the-art FSR methods.

Keywords: face super-resolution; transformer; feature map enhancement; attention mechanism

1. Introduction

Face super-resolution (FSR), also known as face hallucination [1], is a technology
for enhancing low-resolution (LR) face images into high-resolution (HR) ones. Due to
low-cost imaging equipment and limited imaging conditions, face images often have
a lower spatial resolution, which severely degrades the performance of most practical
downstream applications such as face analysis and face recognition. Therefore, FSR has
become increasingly popular in the computer vision and image processing fields, making it
an important scientific tool [2].

Unlike general image super-resolution, FSR focuses on recovering pivotal facial struc-
tures. Although facial structures only occupy a small portion of the face, they are crucial in
distinguishing different faces. The first FSR method, proposed by Baker and Kanade [1],
triggered the upsurge of traditional FSR methods. Over time, various traditional techniques
for FSR have been developed, including the interpolation approach [3], PCA [4], convex
optimization [5], Bayesian approach [6], kernel regression [7], and manifold learning [8].
Traditional methods are limited by their shallow structure and representation abilities,
making them incompetent in producing plausible facial images.

Alongside the rise of deep learning techniques [2,9,10], deep convolution neural net-
works (CNNs) [11–15] have achieved remarkable advancements in improving face image
quality. The first CNN-based FSR method was introduced by Zhou et al. [11], greatly im-
proving FSR performance compared with traditional FSR methods. To further explore facial
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information, Cao et al. [12] utilized reinforcement learning to capture the interdependency
among facial parts. Zhang et al. [13] introduced super-identity loss to assist the network
in generating more accurately identified super-resolution face images. In contrast to the
FSR methods above, which recover face images directly, Huang et al. [14] used the wavelet
transform to project face images into wavelet spaces to capture rich contextual information,
while Wang et al. [15] applied the Fourier transform to obtain an image-size receptive field
for capturing global facial structure.

Inspired by the great success of generative adversarial networks (GANs) in the image
processing field [16–18], Yang et al. [19] introduced a collaborative suppression and replen-
ishment framework based on GANs. Gao et al. [20] proposed a conditional generative
model based on the diffusion model, which replaces the U-Net in super-resolution to
capture complex details and fine textures. Addressing the fact that GAN-based methods
require greater computational resources, PCA-SRGAN [21] uses Principal Component
Analysis decomposition, while SPGAN [22] employs supervised pixel-wise loss to ease the
GAN training process.

Due to the highly structured nature of the human faces, many FSR methods lever-
age facial priors, e.g., face landmarks and parsing maps, to enhance the reconstruction
performance. Chen et al. [23] utilized facial parsing maps to guide the end-to-end FSR
convolution network. Meanwhile, Bulat et al. [24] combined GANs with a well-designed
heatmap loss to constrain the face structure between HR and super-resolved (SR) face im-
ages. To better capture sharp facial structures in face images with large pose variations, Hu
et al. [25] introduced 3D facial priors instead of the commonly used 2D ones. Considering
the challenge of estimating priors from degraded LR face images directly, DIC [26] used an
iterative process in which FSR and prior estimation were performed repeatedly to enhance
FSR performance.

Recently, the attention mechanism has emerged as a new trend in computer vision
tasks [27–31]. Chen et al. [32] devised a face attention unit to capture facial structure infor-
mation, while Lu et al. [33] designed an external–internal split attention group to reconstruct
clear facial images. Furthermore, the performance of transformers has already been proven
and widely applied in computer vision tasks, such as image recognition [34,35] and image
restoration [28,36,37]. The core of the transformers is a self-attention mechanism that can
capture both long- and short-range correlations between words/pixels [38]. Therefore,
transformer-based methods have gained dramatic attention for their high ability to capture
both local and global dependencies.

While transformer-based methods have led to significant improvements in FSR per-
formance, they have a number of limitations that need to be addressed. First, there is a
lack of sufficient discussion regarding the inner feature maps. As shown in Figure 1b,
without guidance, the features of the inner feature maps may not always be detail-rich,
and may even be buried in gray. This restricts the transformer block to selecting only a
limited number of feature maps based on the self-attention matrix (Figure 1c), while leaving
others untouched. On the contrary, from Figure 1d it can be seen that utilizing a guiding
block to enhance essential facial components results in more correlated output feature
maps, benefiting the “one-to-many” FSR problem [39] and yielding superior outcomes
(Figure 1e). Therefore, it is crucial to have a guiding block that can identify the essential
facial component for inner feature maps in transformer-based methods. Second, most
previous transformer-based methods [28,37] have utilized the same transformer structure
for different feature layers. However, the transformer structure on high-level features
cannot be thoroughly applied to low-level features [40], and vice versa, otherwise resulting
in unsatisfactory FSR performance. Lastly, the usual spatial-wise transformers are limited
to position-specific windows, meaning that the partition strategy may potentially alter the
structure of the facial image [15].

Based on the above analysis, we propose a spatial-channel mutual attention-guided
transformer network for face super-resolution, which explores the potential of inner feature
maps for reconstructing plausible face images. The proposed method is a multi-scale
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connected encoder–decoder network. In the encoder–decoder branches, a Spatial-Channel
Mutual Attention-guided Transformer Module (SCATM) is carefully designed to extract
more detailed features by enhancing the relationship between inner feature maps. It is
composed of a Spatial-Channel Mutual Attention Guiding Block (SCAGB) and a Channel-
wise Multi-head Transformer Block (CMTB). Among them, SCAGB aims to guide the
transformer block in identifying the essential facial component. SCAGB on the top layer
(SCAGB-T) aims to guide and promote both local facial details and global facial structures,
while SCAGB on the bottom layer (SCAGB-B) seeks to identify the crucial encoded features.
Unlike the usual spatial-wise transformersm which are limited to position-specific win-
dows, the CMTB utilizes feature map channels to achieve image-size receptive fields. The
combination of SCAGB and CMTB is complementary, and can simultaneously promote
both local facial details and global facial structures. Meanwhile, unlike pyramid super-
resolution networks [41,42], which progressively reconstruct high-resolution images, we
further develop a Multi-scale Feature Fusion Module (MFFM) which fuses features from
all layers, making for network flexibility and better restoration performance.

Figure 1. Visual analysis of the inner feature maps trained with/without guiding blocks for transformer-
based FSR methods: (a) the input face image; (b1) the inner feature maps without guiding blocks;
(b2) the inner feature maps with guiding blocks; (c1) the self-attention heatmap without guiding blocks;
(c2) the self-attention heatmap with guiding blocks; (d1) the correlation [43] between input and output
feature maps without guiding blocks (please note that for fair comparison five different images are
tested here instead of one); (d2) the correlation between input and output feature maps with guiding
blocks; (e) the output images (the top one trained without guiding blocks and bottom one trained with
guiding blocks).

In summary, the main contributions of this work are four-fold:

• We devise a spatial-channel mutual attention-guided transformer network for face
super-resolution. To the best of our knowledge, this is the first paper to explore
the potential of inner feature maps in reconstructing plausible face images in the
transformer-based FSR area.

• We carefully design a Spatial-Channel Mutual Attention-guided Transformer Module
(SCATM) to extract more detailed features by enhancing the relationship between
inner feature maps. Thanks to its powerful modeling ability, both local facial details
and global facial structures can be fully explored and utilized.



Appl. Sci. 2024, 14, 4066 4 of 18

• We propose an elaborately designed Multi-scale Feature Fusion Module (MFFM) to
fuse multi-scale features during the reconstruction process. This module is crucial in
enabling our method to acquire a wide range of features, which in turn enhances the
quality of the restoration performance.

• We conduct experiments to confirm the effectiveness of the proposed method. The
results of our experiments, conducted on two frequently used benchmark datasets
(CelebA [44] and Helen [45]) demonstrate that our method surpasses others in terms
of both visual outcomes and quantitative measurements.

2. Proposed Method

Considering the vital role of inner feature maps in identifying the essential facial
component for better FSR performance, we develop a spatial-channel mutual attention-
guided transformer network for FSR, which is the first study to explore the potential
of inner feature maps in reconstructing plausible face images in the transformer-based
FSR area.

To better elaborate the proposed method, we divide the method into four subsections.
In the first subsection, we briefly revisit the difference between feature maps and feature
spaces, which is the key foundation of the proposed method. Then, we take an overall view
of the architecture of the proposed method. Next, we focus on the main part of the proposed
method, the Spatial-Channel Mutual Attention-guided Transformer Module (SCATM),
which contains a Spatial-Channel Mutual Attention Guiding Block (SCAGB) and a Channel-
wise Multi-head Transformer Block (CMTB). The combination of SCAGB and CMTB is
complementary, and can simultaneously promote both local facial details and global facial
structures. Finally, we introduce the Multi-scale Feature Fusion Module (MFFM), which
fuses features from all layers for network flexibility and better restoration performance.

2.1. Revisiting Feature Maps and Feature Spaces

Feature maps and feature spaces are similar in several ways: CNN-based FSR methods
utilize complex convolution layers to project LR images into inner “feature maps” and then
into HR ones; on the other hand, manifold learning-based FSR methods, which belong to
the traditional FSR method, project LR images into “feature spaces” and then into HR ones,
assuming that LR and HR spaces share the same local geometry [46]. Many traditional FSR
methods have been developed based on manifold learning [47–49], focusing on further
enhancing the LR and HR space relationship. However, with the rise of CNNs, manifold
learning has gained less attention due to the complicated nature of CNN structures, which
are difficult to deliberate on. Yang et al. [50] proposed a manifold localized deep external
compensation (MALDEC) network that references online big data to provide an accurate
localization and mapping to the HR manifold for image super-resolution. Menon et al. [51]
traversed the HR manifold spaces to search for images that suit the original LR image, then
feed the downscaling loss to a generative model for image reconstruction. Chen et al. [52]
proposed a homogenization projection in LR space and HR space to formulate FSR in
a multi-stage framework. Guo et al. [39] claimed that limiting mapping spaces would
benefit image super-resolution, and introduced a closed-loop dual regression network
(DRN) containing an additional constraint. The above methods try to merge traditional
manifold learning with CNN-based methods; however, they overlook the key role of inner
feature maps (Figure 1), limiting their image super-resolution performance. Therefore,
how to effectively handle inner feature maps is vitally important for a high-quality image
reconstruction process.

2.2. Overview

The proposed method, illustrated in Figure 2, is a multi-scale connected symmetrical
hierarchical network containing three stages: encoding, bottleneck, and decoding. The
encoding stage aims to extract and promote both local facial details and global facial structures,
while the bottleneck stage is designed to optimize the encoded low-level features. Finally,
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the decoding stage is introduced for multi-scale feature fusion and image reconstruction. For
convenience of description, we denote ILR, ISR, and IHR as the low-resolution (LR) images,
super-resolved (SR) images, and ground-truth high-resolution (HR) images, respectively.
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Figure 2. The structure of the proposed spatial-channel mutual attention-guided transformer network.
It is a symmetrical hierarchical network containing three stages: encoding, bottleneck, and decoding.
The encoding stage aims to extract and promote both local facial details and global facial structures,
while the bottleneck stage is designed to optimize the encoded low-level features. Finally, the
decoding stage is introduced for multi-scale feature fusion and image reconstruction.

(1) Encoding Stage: The encoding stage aims to extract and promote both local facial
details and global facial structures. First, a 3 × 3 convolution layer is applied to extract
shallow features. Here, we suggest using 32 output channels for optimal performance. It is
essential to keep in mind that the number of output channels should exceed the number of
input channels, while an excessive number of output channels may lead to a significant
increase in computation complexity and a decrease in feature information storage effective-
ness [53]. Afterwards, the extracted shallow features are passed through three encoding
stages. Each stage contains a carefully designed Spatial-Channel Mutual Attention-guided
Transformer Module-Top (SCATM-T) and a downsampling block. The SCATM-T contains
a Spatial-Channel Mutual Attention Guiding Block-Top (SCAGB-T) and a Channel-wise
Multi-head Transformer Block (CMTB), which are discussed in the following subsection.
The downsampling block consists of three layers: a 3 × 3 convolutional layer with a stride
of 2, followed by a LeakyReLU activation function layer, then another 3 × 3 convolutional
layer with a stride of 1. Please note that the first convolutional layer doubles the feature
channels while simultaneously halving the feature map size.

(2) Bottleneck Stage: The bottleneck stage contains a large number of encoded feature
maps, though each map is relatively small compared to those in the encoding stage. To
better utilize these feature map features in the decoding stage, we introduce the Spatial-
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Channel Mutual Attention-guided Transformer Module-Bottom (SCATM-B). Unlike the
SCATM-T in the encoding stage, the guiding blocks in SCATM-B aim to further enhance
the low-level encoded features. With the help of SCATM-Bs, the model can focus on a
greater variety of facial structures and continuously strengthen different facial features.

(3) Decoding Stage: The decoding stage aims to reconstruct high-quality face im-
ages based on the previously extracted and refined multi-layer features. In the decoding
stage, the low-level features are first fed to the upsampling block, which contains a 6 × 6
transposed convolutional layer with a stride of 2 followed by a LeakyReLU activation
function layer and a 3 × 3 convolution layer with a stride of 1. The feature channels are
halved and the feature map size is doubled in the first transposed convolutional layer,
which is the opposite of the downsampling process in the encoding stage. Afterward,
the upsampled features are combined with features from other scales by the Multi-scale
Feature Fusion Module (MFFM), extending the network flexibility and resulting in better
restoration performance. Then, the well-combined features are fed to the SCATM-T for
further image detail enhancement. Lastly, a 3 × 3 convolutional layer is utilized to convert
the learned feature maps into the output face image IOut. The final SR face image output
is ISR = IOut + ILR. Please note that the LR face images in the paper have already been
upsampled to the same size as the HR ones by bicubic interpolation.

Additionally, to optimize the FSR performance, the proposed model is supervised by
minimizing the following pixel-level loss function:

L =
1
N

N

∑
i=1

∥∥∥Ii
SR − Ii

HR

∥∥∥
1

(1)

where N denotes the number of training images and Ii
SR and Ii

HR are the i-th SR and
ground-truth HR face image in the training dataset, respectively.

2.3. Spatial-Channel Mutual Attention-Guided Transformer Module (SCATM)

The SCATM is the central part of the proposed method, which contains a Spatial-
Channel Mutual Attention Guiding Block (SCAGB) and a Channel-wise Multi-head Trans-
former Block (CMTB). Based on the need for multi-scale feature maps to apply different
suitable blocks for better feature extraction and enhancement, SCAGB is further divided into
two distinct blocks: the Spatial-Channel Mutual Attention Guiding Block-Top (SCAGB-T)
in the encoding–decoding stage, and the Spatial-Channel Mutual Attention Guiding Block-
Bottom (SCAGB-B) in the bottleneck stage. SCATM-T aims to promote both local facial
details and global facial structures, while SCATM-B seeks to optimize the encoded low-
level features. Moreover, unlike the usual spatial-wise transformers, which are limited
to position-specific windows, the CMTB utilizes feature map channels to achieve image-
size receptive fields. The combination of SCAGB and CMTB is complementary, and can
simultaneously promote both local facial details and global facial structures.

2.3.1. Spatial-Channel Mutual Attention Guiding Block-Top (SCAGB-T)

The SCAGB-T aims to locate and guide both local facial details and global facial
structures for the following CMTB, the detailed architecture of which is shown in Figure 3a.
First, the Hourglass Block [54], which has already proven its effectiveness in generating
spatial attention maps [41], is utilized to capture facial landmark features such as the eyes,
nose, and mouth. Moreover, aiming to guide the weights of different feature map channels,
the channel attention (CA) network [29] is applied to select and pay more attention to
feature map channels that are rich in features. Thanks to a carefully designed structure that
mutualizes spatial and channel attention wisely, the SCAGB can guide the following CMTB
to capture the essential part of the face images of all channels for better reconstruction
results with more details. Afterwards, a 3 × 3 convolutional layer followed by a sigmoid
function is applied to generate the spatial-channel mutual attention map. Then, the input
feature maps are multiplied element-wise by the attention map and fed to the subsequent
transformer block with better extracted spatial features and promoted channel information.
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Aiming to eliminate the gradient vanishing problem, the residual connection with a full
connection layer is applied between the input feature maps and the output of the channel
attention network.
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Figure 3. Architectures of the Spatial-Channel Mutual Attention Guiding Block (SCAGB): (a) the
Spatial-Channel Mutual Attention Guiding Block-Top (SCAGB-T) and (b) the Spatial-Channel Mutual
Attention Guiding Block-Bottom (SCAGB-B). Here, S⃝ denotes the sigmoid function.

2.3.2. Spatial-Channel Mutual Attention Guiding Block-Bottom (SCAGB-B)

Unlike the above SCAGB-T, the SCAGB-B in the bottleneck stage aims to guide the
enhancement of the low-level encoded features. The bottleneck stage contains a large
number of encoded feature maps; however, each map is relatively small compared to
the ones in the encoding stage. Therefore, it is essential to introduce a dynamic selection
mechanism that allows each neuron to adjust its receptive field size adaptively. The dynamic
selection mechanism introduced here, which is the major difference between SCAGB-T and
SCAGB-B, is the selective kernel (SK) network [55] shown in Figure 3b. Given a sequence
of feature maps, the SK network firstly conducts two convolution layers with different
respective fields, followed by a batch normalization layer and a ReLU layer. The calculated
upper and lower inner feature maps are denoted as U and V, respectively. Then, the
feature maps are integrated via an element-wise summation and sent through the global
average pool (GAP) layer to generate channel-wise statistics with different respective fields.
Afterwards, two full connection layers are applied to the inner feature maps to enable
the guidance for the adaptive selections. Finally, a soft attention layer across different
channels is applied to adaptively select the information from different respective fields.
Assuming that the upper and lower input of the Select layer in Figure 3b is F(U) and that
G(V) ∈ RC×1, where F(·) and G(·) denote the previous inner feature map process and C
denotes the number of channels of the inner feature map, the output weight is

wupper
c =

eFc(U)

eFc(U) + eGc(V)
, wlower

c =
eGc(V)

eFc(U) + eGc(V)
, (2)

where c in wupper
c denotes the c-th element of the wupper, likewise wlower

c , Fc(U), and Gc(V).
The final attention maps of the SK network are obtained through the attention weights

on the inner feature maps from various respective fields:

Ac = wupper
c × Uc + wlower

c × Vc, wupper
c + wlower

c = 1, (3)

where A = [ A1, A2, . . . , AC ] denotes the output attention maps, Ac ∈ RH×W , and
H and W denote the height and width of the feature maps, respectively.

2.3.3. Channel-Wise Multi-Head Transformer Block (CMTB)

After preprocessing the inner feature maps with the guiding blocks, there is still a high
demand to effectively aggregate the previous feature information from various channels
for high-quality face image restoration. Moreover, the usual spatial-wise transformers
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are limited to position-specific windows, where the partition strategy may potentially
alter the structure of the facial image [15]. Therefore, we introduce the Channel-wise
Multi-head Transformer Block (CMTB). It can achieve image-size receptive fields based on
channels instead of position-specific windows and is more computation-friendly, making
it a good match for the previous guiding blocks. As depicted in Figure 4, CMTB consists
of a Channel-wise Multi-head Self-attention Network (CMSN) and a Gated-Dconv Feed-
Forward Network (GDFN). The CMSN is the primary component of the CMTB, while the
GDFN aims to encode information from spatially neighboring pixel positions to effectively
learn local image structures.
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Figure 4. Architecture of the Channel-wise Multi-head Transformer Block (CMTB). Here, S⃝, R⃝,
and P⃝ denotes the sigmoid function, reshape, and split, respectively, while PE denotes the position
embedding generator.

The CMTB can achieve image-size receptive fields based on feature map channels
instead of position-specific windows. Given feature maps Xin ∈ RH×W×C as the input of
the CMSN, which are reshaped into tokens X ∈ RHW×C based on channels (where H, W,
and C, respectively denote the height, width, and channel numbers of the feature maps),
then X is linearly projected to achieve three different matrices: query Q ∈ RHW×C , key
K ∈ RHW×C, and value V ∈ RHW×C:

Q = XWQ, K = XWK, V = XWV, (4)

where WQ, WK, and WV ∈ RC×C are learnable parameters (biases are omitted here for
simplification). Afterwards, Q, K and V are split into N heads along the channel dimension:
Q = [ Q1, . . . , QN ], K = [ K1, . . . , KN ], V = [ V1, . . . , VN ], where the
dimension of each head is d = C/N. Therefore, the self-attention matrix for headi is

Ai = so f tmax(σiKT
i Qi), headi = ViAi, (5)

where KT
i denotes the transposed matrix of Ki. By implementing this reshape strategy,

the size of the generated attention map will be d × d instead of HW × HW, which greatly
cuts down the computational complexity. Moreover, a learnable parameter σi ∈ R1 is
introduced to further extend the flexibility of the network. Subsequently, the outputs of N
heads are fed to the concatenate layer followed by a full connection layer, and the resulting
attention matrix is then added with the values from the position embedding generator:

CMSN(X) = (
N

Concat
i=1

(headi))W + fp(V) (6)



Appl. Sci. 2024, 14, 4066 9 of 18

where W ∈ RC×C are learnable parameters and fp(·) represents the position embedding
generator, which aims to encode the position information of different channel dimensions.
It contains a 3 × 3 depth-wise convolution layer with a stride of 1 followed by a GELU
layer [56] and another 3 × 3 depth-wise convolution layer with a stride of 1. Finally,
the output feature maps Xout ∈ RH×W×C can be obtained by reshaping the result of
Equation (6).

Moreover, we introduce GDFN [57] to encode information from spatially neighboring
pixel positions in order to effectively learn local image structures. Given feature maps
Xin ∈ RH×W×C as the input of the GDFN, the output Xout ∈ RH×W×C can be obtained by

X̂ = H3×3
dconv(H f c(Xin)), Xout = H f c(X̂ · σ(X̂)), (7)

where H3×3
dconv(·) and H f c(·) denote the 3 × 3 depth-wise convolution layer and the full

connection layer, respectively, while σ(·) represents the GELU nonlinearity.
The SCAGB distills and guides the key features from inner feature maps, while the

CMTB further aggregates and refines the previous feature information. These two blocks
complement each other and gradually enhance the relationship between the inner feature
maps. Benefiting from the SCAGB and CMTB, the SCATM can simultaneously promote
both local facial details and global facial structures, offering a promising solution to the
challenging face image reconstruction task.

2.4. Multi-Scale Feature Fusion Module (MFFM)

Successive pyramid super-resolution networks [41,42] have already proven the impor-
tance of multi-scale feature information in the image reconstructing process; however, the
pyramid methods mentioned above progressively reconstruct high-resolution images from
neighboring layers, ignoring the others. Aiming to further utilize the multi-scale feature
information and to provide the network with better feature representation capabilities, the
Multi-scale Feature Fusion Module (MFFM), the details of which shown on the bottom side of
Figure 1, is introduced here. First, the multi-scale feature map sizes are unified to the same
size as the target feature map layer. Considering that the magnification scale between different
layers is always 2n(n ∈ Z), a 3 × 3 convolution layer with a stride of 2 and a 6 × 6 transposed
convolution layer with a stride and padding of 2 are introduced for /2 downscaling and ×2
upscaling processes, respectively. Moreover, for a larger magnification scale such as /4 or
×4, double 3× 3 convolution or 6× 6 transposed convolution layers, etc., would be applied.
After unifying all required feature map sizes, the multi-scale feature maps are concatenated to
pass through a full connection layer, followed by the channel attention network, the details of
which can be viewed in Figure 3a. Finally, the well-handled multi-scale feature information is
added to the target feature map layer in the encoding stage.

3. Experiments
3.1. Dataset and Metrics

In our experiments, the model was trained on the CelebA [44] dataset and evalu-
ated on the CelebA and Helen [45] datasets along with the real face images. In the data
preprocessing phase, images were simply cropped to a size of 128 × 128 based on their
center point and then treated as the ground truth. Afterwards, 16 × 16 LR face images were
obtained from the ground truth images with a /8 downscaling bicubic operation. It should
be noted that the model does not require any additional facial landmarking on the dataset
for training. Then, we trained the model on 18,000 face images from the CelebA dataset
and evaluated its performance on 1000 face images from the same dataset along with
50 face images from the Helen dataset. Moreover, to prove the flexibility of the model, we
directly evaluated the model on the Helen dataset and real face images with the model
trained on CelebA. It should be noted that the proposed deep learning method cannot be
trained with a single image. Thus, sufficient face images must be provided should anyone
want to train it on their own dataset.
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To objectively evaluate the quality of the SR results, three image quality assessment
metrics are employed here: the Peak Signal-to-Noise Ratio (PSNR) [58], Structural Similarity
(SSIM) [59], and Learned Perceptual Image Patch Similarity (LPIPS) [60].

3.2. Implementation Details

All experiments were conducted in PyTorch [61] with an GeForce RTX 4090 24 GB
graphic card made by NVIDIA from Santa Clara, CA, USA. The proposed model was
optimized by Adam with β1 = 0.9, β2 = 0.99, and a learning rate of 2 × 10−4.

3.3. Ablation Studies

To evaluate the effectiveness of different modules in the model, we conducted a series
of ablation studies on the CelebA test sets for ×8 SR.

(1) Study on SCATM-T: The SCATM-T, which consists of an SCAGB-T and a CMTB,
aims to extract and promote both local facial details and global facial structures. It is the
first attempt to explore the potential of inner feature maps in reconstructing plausible face
images in the transformer-based FSR area. To verify the effectiveness of SCATM-T and its
components, we designed three test models by removing different module parts. The test
results are shown in Table 1.

Table 1. Ablation study of the components in the proposed SCATM-T. Please note that the best results
are emphasized with bold in the experiment part for better visualization.

SCAGB-T CMTB PSNR↑ SSIM↑ LPIPS↓
× × 27.30 0.7833 0.2047
× ✓ 27.55 0.7897 0.1831
✓ × 27.54 0.7891 0.1839
✓ ✓ 27.63 0.7905 0.1797

From the table, it can be observed that:

(a) The performance of SCATM-T without any components (i.e., removing SCATM-T) de-
creased dramatically. This is because the proposed model structure is much shallower
without the SCATM-T, making it challenging to refine features. Moreover, without
the processed fine-detailed feature maps from the SCATM-T, the Multi-scale Feature
Fusion operation Module (MFFM) is greatly affected.

(b) The quantitative metrics of SCATM-T with one single component inside are better
than the no-component one above, demonstrating that both SCAGB-T and CMTB
can enhance the representation ability of the model. However, SCATM-T with only
SCAGB-T cannot guide anything, while SCATM-T with only CMTB cannot focus on
feature map parts that are rich in features, limiting its performance.

(c) Equipped with both of the carefully designed components SCAGB-T and CMTB,
SCATM-T achieves the best performance in terms of all evaluation matrices, which
proves that the combination of SCAGB-T and CMTB is complementary and can
simultaneously promote both local facial details and global facial structures.

(2) Study on SCATM-B: The SCATM-B, which contains an SCAGB-B and a CMTB, aims
to enhance the low-level encoded features. Due to their comparable inner structures, we
conducted similar experiments to the ones reported in the “Study on SCATM-T” part, the
results of which are shown in Table 2. Similar observations and conclusions to those made
in the previous section can be derived. However, it is worth noting that the performance
of the model without SCATM-B is better than that without SCATM-T. This is because
the SCATM-T and the MFFM are more complementary compared with the relationship
between the SCATM-B and the MFFM; with one removed, the performance of others will
also be greatly impacted.

Moreover, we evaluated the influence on model performance of the number of SCATM-
Bs, the results of which are shown in Table 3. From the table, it can be observed that the
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model performs poorly without any SCATM-Bs, which proves that the SCATM-B plays a
vital role in the model. Meanwhile, the performance of the model rises with the increase
in the number of SCATM-Bs in a particular range. However, as the number of SCATM-
Bs increases and exceeds four, the evaluation matrix change rate slows down and even
decreases slightly. Additionally, the model size increases, which leads to an upsurge in the
computational complexity of the model. Therefore, the number of SCATM-Bs is set to four
for a good balance between model size and performance.

Table 2. Ablation study of the components in the proposed SCATM-B.

SCAGB-B CMTB PSNR↑ SSIM↑ LPIPS↓
× × 27.50 0.7877 0.1897
× ✓ 27.60 0.7902 0.1811
✓ × 27.59 0.7899 0.1817
✓ ✓ 27.63 0.7905 0.1797

Table 3. Performance comparison of different SCATM-B numbers in the proposed method.

SCATM-B Numbers PSNR↑ SSIM↑ LPIPS↓
0 27.50 0.7877 0.1897
2 27.57 0.7900 0.1823
4 27.63 0.7905 0.1797
6 27.62 0.7903 0.1804

(3) Study on MFFM: MFFM is specially designed to further utilize the multi-scale
feature information for better FSR performance. In this part, we design three different test
models to demonstrate the effectiveness of the MFFM, the results of which are shown in
Table 4.

Table 4. Performance comparison of different approaches to the multi-scale feature fusion process.

Approaches PSNR↑ SSIM↑ LPIPS↓
Not Applied 27.54 0.7885 0.1873

Only Add 27.58 0.7892 0.1838
Only Concat 27.59 0.7895 0.1832
Our MFFM 27.63 0.7905 0.1797

From the table, it can be observed that: (a) The model without the MFFM performs
the worst, which proves the importance of multi-scale features in the image reconstruction
process. (b) An add operation or a concatenate layer to fuse multi-scale features does benefit
the performance of the FSR model; however, they are too simple to take responsibility
for the multi-scale feature fusion part. (c) With the carefully designed MFFM, the model
achieves the best performance in terms of PSNR, SSIM, and LPIPS, which proves that a
suitable feature fusion strategy such as MFFM can benefit the image reconstruction process.

3.4. Comparison with the State-of-the-Art

To verify the superiority of the proposed method, in this section we compare our
method with several state-of-the-art methods, including two GAN-based methods (SRRes-
Net [16] and RCAN [29]), three attention-based methods (SPARNet [32], SISN [33], and
IGAN [30]), and two pioneering transformer-based methods (SwinIR [37] and Uformer [28])
on the CelebA and Helen datasets along with real face images. Moreover, bicubic interpola-
tion is applied as the baseline. All models were trained using the same CelebA dataset for
fair comparison. Quantitative results are tabulated in Table 5.

(1) Comparison on CelebA dataset: Quantitative comparisons with other methods
on the CelebA dataset are shown in Table 5. According to the table, the proposed method
outperforms other competitive methods in terms of PSNR, SSIM, and LPIPS, which proves
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that the proposed method has the advantage of recovering accurate and realistic face details.
Moreover, we provide some test images from the CelebA dataset for visual comparisons,
shown in Figure 5. From the first two samples in Figure 5, it can be seen that our method
can better restore nose contours and eye details compared to other state-of-the-art methods,
while avoiding unpleasant artifacts. This is due to the combination of SCAGB and CMT,
which complement each other and can simultaneously enhance both local facial details and
global facial structures. Furthermore, despite all the methods mentioned above achieving
satisfactory evaluation metrics on the last sample, the visual results are not very compelling
due to the inability to reconstruct eyeglasses. Therefore, adding face identifications in
the FSR process that can help to identify lost details such as eyeglasses in the LR image
represents a good opportunity for future work.

Table 5. Quantitative comparisons for ×8 SR on the CelebA and Helen test sets.

Methods CelebA Helen
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Bicubic 23.44 0.6180 0.5900 23.79 0.6739 0.5254
SRResNet [16] 26.08 0.7502 0.2131 25.47 0.7828 0.2308

IGAN [30] 26.99 0.7801 0.2201 26.37 0.7996 0.2245
RCAN [29] 26.99 0.7796 0.2249 26.39 0.7965 0.2359
SISN [33] 26.85 0.7738 0.2337 26.33 0.7974 0.2322

SPARNet [32] 26.95 0.7794 0.2211 26.38 0.7953 0.2314
SwinIR [37] 27.15 0.7850 0.2162 26.48 0.7917 0.2413

Uformer [28] 27.33 0.7884 0.2040 26.67 0.8009 0.2063

Ours 27.63 0.7905 0.1797 26.97 0.8069 0.1945

Figure 5. Visual comparisons for ×8 SR on the CelebA test set. Please zoom in for better comparison.

(2) Comparison on Helen dataset: In this part, we directly evaluate the model on
Helen datasets with the model trained on CelebA to prove the flexibility of the model.
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Quantitative and visual comparisons with other methods on the Helen dataset are shown
in Table 5 and Figure 6, respectively. According to the results, our proposed method has
the advantage of recovering facial images both quantitatively and qualitatively, which
demonstrates the robustness and stability of our method. However, it is worth noting
that the methods mentioned above showed varying degrees of performance decrease on
the Helen test set as compared to the CelebA test set. Therefore, digging into the inner
differences among various datasets is a good choice for enhancing the generality of FSR
methods, especially for real face image restoration.

Figure 6. Visual comparisons for ×8 SR on the Helen test set. Please zoom in for better comparison.

(3) Comparison on real face images: Due to the fact that real face images are captured
from a variety of complex environments that the aforementioned CelebA dataset cannot
simulate, restoring face images from the real world is always a considerable challenge.
Aiming to validate the effectiveness of our proposed method in real-world face images, we
conducted experiments on low-quality real-world face images collected from the classic “I
Love My Family” TV series. This is a popular sitcom made in the 1990s that suffers severe
issues with low resolution due to the use of outdated imaging equipment, making it perfect
for testing. Experiments were conducted with the aim of reconstruct more detailed facial
images with appealing facial structures, the reconstructed results of which are shown in
Figure 7. Benefiting from the guiding blocks and transformers in the proposed method,
which complement each other and can simultaneously enhance both local facial details
and global facial structures, our method achieves appealing performance with reasonable
results compared to other state-of-the-art methods.
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Figure 7. Visual comparison for ×8 SR on real face images. Please zoom in for better comparison.

3.5. JPEG Artifacts Analysis

To further prove the robustness of the proposed method on FSR tasks, we introduced
JPEG artifacts to blur face images and tested these images without training another network
based on JPEG artifacts. The images with JPEG artifacts were generated using the “JPEG
Artifact Generator v1.0” [62] with the “Base JPEG compression” set to 0.2. We also selected
two representative methods, Uformer and IGAN, as the comparative methods and the
bicubic method as the baseline. The results are shown in Figure 8.

As the figure illustrates, all models, including ours, suffer performance degradation
due to the lack of training with JPEG artifacts. However, our proposed method leveraging
guiding blocks to preserve face features still manages to outperform the others. This is
particularly evident in the fourth-row images.
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Figure 8. Visual comparison for ×8 SR on face images with JPEG artifacts; “JPEG HR” represents the
original HR images with JPEG artifacts. Please zoom in for better comparison.

3.6. Model Complexity Analysis

The proposed method has proven its superior ability in quantitative and qualitative
FSR performance based on the previous experiments. In this section, we compare the model
performance, size, and execution time of our approach with other state-of-the-art methods.
The results are shown in Figure 9. From the figure, it can be observed that our method
achieves the best quantitative results while maintaining comparable execution time and
model size, which makes it a possible choice for FSR tasks.
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Figure 9. Model complexity scattergram for ×8 SR on the CelebA test set.
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4. Conclusions

In contrast to existing transformer-based approaches that focus on introducing so-
phisticated structures, we propose a spatial-channel mutual attention-guided transformer
network for face super-resolution. This is the first study to explore the potential of inner
feature maps for reconstructing plausible face images in the transformer-based FSR area.
The proposed method is a multi-scale connected encoder–decoder network. The primary
component of the network is a Spatial-Channel Mutual Attention-guided Transformer
Module (SCATM), which is composed of a Spatial-Channel Mutual Attention Guiding
Block (SCAGB) and a Channel-wise Multi-head Transformer Block (CMTB). The SCATM
on the top layer (SCATM-T) aims to promote both local facial details and global facial
structures, while the SCATM on the bottom layer (SCATM-B) seeks to optimize the en-
coded low-level features. Unlike the usual spatial-wise transformers, which are limited to
position-specific windows, the CMTB utilizes feature map channels to achieve image-size
receptive fields. Moreover, we develop a Multi-scale Feature Fusion Module (MFFM),
which fuses features from different scales for better restoration performance. Extensive
experiments on both simulated and real-world datasets demonstrate that the proposed
method can achieve state-of-the-art performance.

Author Contributions: Conceptualization, Z.Z.; data curation, Z.Z.; methodology, Z.Z.; software,
Z.Z.; supervision, C.Q.; validation, Z.Z.; visualization, Z.Z.; writing—original draft preparation,
Z.Z.; writing—review and editing, Z.Z. and C.Q. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No.
61572395 and 61675161).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Both the CelebA [44] and Helen [45] datasets are available online.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Baker, S.; Kanade, T. Hallucinating faces. In Proceedings of the IEEE International Conference on Automatic Face and Gesture

Recognition, Grenoble, France, 28–30 March 2000; pp. 83–88.
2. Jiang, J.J.; Wang, C.Y.; Liu, X.M.; Ma, J.Y. Deep learning-based face super-resolution: A survey. ACM Comput. Surv. 2023, 55, 1–36.

[CrossRef]
3. Zhang, L.; Wu, X. An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image

Process. 2006, 15, 2226–2238. [CrossRef]
4. Chakrabarti, A.; Rajagopalan, A.N.; Chellappa, R. Super-resolution of face images using kernel pca-based prior. IEEE Trans.

Multimed. 2007, 9, 888–892. [CrossRef]
5. Jung, C.K.; Jiao, L.C.; Liu, B.; Gong, M.G. Position-patch based face hallucination using convex optimization. IEEE Signal Process.

Lett. 2011, 18, 367–370. [CrossRef]
6. Tappen, M.F.; Liu, C. A bayesian approach to alignment-based image hallucination. In Proceedings of the European Conference

on Computer Vision, Florence, Italy, 7–13 October 2012; pp. 236–249.
7. Zhang, K.B.; Gao, X.B.; Tao, D.C.; Li, X.L. Single Image Super-Resolution with Non-Local Means and Steering Kernel Regression.

IEEE Trans. Image Process. 2012, 21, 4544–4556. [CrossRef]
8. Jiang, J.J.; Hu, R.M.; Wang, Z.Y.; Han Z. Face Super-Resolution via Multilayer Locality-Constrained Iterative Neighbor Embedding

and Intermediate Dictionary Learning. IEEE Trans. Image Process. 2014, 23, 4220–4231. [CrossRef]
9. Wang, Z.; Chen, J.; Hoi, S.C. Deep learning for image super-resolution: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43,

3365–3387. [CrossRef] [PubMed]
10. Li, J.; Pei, Z.; Zeng, T. From beginner to master: A survey for deep learning-based single-image super-resolution. arXiv 2021,

arXiv:2109.14335.
11. Zhou, E.J.; Fan, H.Q.; Cao, Z.M.; Jiang, Y.N.; Yin, Q. Learning face hallucination in the wild. In Proceedings of the Association for

the Advancement of Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 3871–3877.
12. Cao, Q.X.; Lin, L.; Shi, Y.K.; Liang, X.D.; Li, G.B. Attention-aware face hallucination via deep reinforcement learning. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017; pp. 690–698.

http://doi.org/10.1145/3485132
http://dx.doi.org/10.1109/TIP.2006.877407
http://dx.doi.org/10.1109/TMM.2007.893346
http://dx.doi.org/10.1109/LSP.2011.2140370
http://dx.doi.org/10.1109/TIP.2012.2208977
http://dx.doi.org/10.1109/TIP.2014.2347201
http://dx.doi.org/10.1109/TPAMI.2020.2982166
http://www.ncbi.nlm.nih.gov/pubmed/32217470


Appl. Sci. 2024, 14, 4066 17 of 18

13. Zhang, K.; Zhang, Z.; Cheng, C.W.; Hsu, W.H.; Qiao, Y.; Liu, W.; Zhang, T. Super-identity convolutional neural network for
face hallucination. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018;
pp. 183–198.

14. Huang, H.B.; He, R.; Sun, Z.N.; Tan, T.N. Wavelet domain generative adversarial network for multiscale face hallucination. Int. J.
Comput. Vis. 2019, 127, 763–784. [CrossRef]

15. Wang, C.; Jiang, J.; Zhong, Z.; Liu, X. Spatial-Frequency Mutual Learning for Face Super-Resolution. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–24 June 2023; pp. 22356–22366.

16. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.H.; et al.
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017; pp. 105–114.

17. Yang, T.; Ren, P.; Xie, X.; Zhang, L. Gan prior embedded network for blind face restoration in the wild. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 672–681.

18. Zhang, Y.; Yu, X.; Lu, X.; Liu, P. Pro-uigan: Progressive face hallucination from occluded thumbnails. IEEE Trans. Image Process.
2022, 31, 3236–3250. [CrossRef]

19. Yang, L.B.; Liu, C.; Wang, P.; Wang, S.S.; Ren, P.R.; Ma, S.W.; Gao, W. Hifacegan: Face renovation via collaborative suppression
and replenishment. In Proceedings of the ACM International Conference on Multimedia, Dublin, Ireland, 8–11 June 2020;
pp. 1551–1560.

20. Gao, J.; Tang, N.; Zhang, D. A Multi-Scale Deep Back-Projection Backbone for Face Super-Resolution with Diffusion Models. Appl.
Sci. 2023, 13, 8110. [CrossRef]

21. Dou, H.; Chen, C.; Hu, X.Y.; Xuan, Z.X.; Hu, Z.S.; Peng, S.L. Pca-srgan: Incremental orthogonal projection discrimination for
face super-resolution. In Proceedings of the ACM International Conference on Multimedia, Dublin, Ireland, 8–11 June 2020;
pp. 1891–1899.

22. Zhang, M.L.; Ling, Q. Supervised pixel-wise GAN for face super-resolution. IEEE Trans. Multimed. 2021, 23, 1938–1950. [CrossRef]
23. Chen, Y.; Tai, Y.; Liu, X.; Shen, C.; Yang, J. Fsrnet: End-to-end learning face super-resolution with facial priors. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2492–2501.
24. Bulat, A.; Tzimiropoulos, G. Super-fan: Integrated facial landmark localization and super-resolution of real-world low-resolution

faces in arbitrary poses with GANs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt
Lake City, UT, USA, 18–23 June 2018; pp. 109–117.

25. Hu, X.; Ren, W.; LaMaster, J.; Cao, X.; Li, X.; Li, Z.; Menze, B.; Liu, W. Face super-resolution guided by 3d facial priors. In
Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 763–780.

26. Ma, C.; Jiang, Z.; Rao, Y.; Lu, J.; Zhou, J. Deep face super-resolution with iterative collaboration between attentive recovery and
landmark estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
14–19 June 2020; pp. 5569–5578.

27. Wang, Z.; Zhang, J.; Chen, R.; Wang, W.; Luo, P. Restoreformer: High-quality blind face restoration from undegraded key-value
pairs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June
2022; pp. 512–521.

28. Wang, Z.D.; Cun, X.D.; Bao, J.M.; Zhou, W.G.; Liu, J.Z.; Li, H.Q. Uformer: A General U-Shaped Transformer for Image Restoration.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 17683–17693.

29. Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks.
In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 286–301.

30. Li, Z.Z.; Li, G.; Li, T.; Liu, S.; Gao, W. Information-Growth Attention Network for Image Super-Resolution. In Proceedings of the
ACM International Conference on Multimedia, Virtual, 20–24 October 2021; pp. 544–552.

31. Li, C.; Xiao, N. A Face Structure Attention Network for Face Super-Resolution. In Proceedings of the International Conference on
Pattern Recognition (ICPR), Montreal, QC, Canada, 21–25 August 2022; pp. 75–81.

32. Chen, C.; Gong, D.; Wang, H.; Li, Z.; Wong, K.-Y.K. Learning spatial attention for face super-resolution. IEEE Trans. Image Process
2020, 30, 1219–1231. [CrossRef]

33. Lu, T.; Wang, Y.; Zhang, Y.; Wang, Y.; Wei, L.; Wang, Z.; Jiang, J. Face hallucination via split-attention in split-attention network. In
Proceedings of the ACM International Conference on Multimedia, Chengdu, China, 20–24 October 2021; pp. 5501–5509.

34. Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jegou, H. Training data-efficient image transformers & distillation
through attention. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 347–357.

35. Xiong, L.; Zhang, J.; Zheng, X.; Wang, Y. Context Transformer and Adaptive Method with Visual Transformer for Robust Facial
Expression Recognition. Appl. Sci. 2024, 14, 1535. [CrossRef]

36. Shi, A.; Ding, H. Underwater Image Super-Resolution via Dual-aware Integrated Network. Appl. Sci. 2023, 13, 12985. [CrossRef]
37. Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. SwinIR: Image Restoration Using Swin Transformer. In Proceedings

of the IEEE International Conference on Computer Vision Workshops, Montreal, BC, Canada, 19–25 June 2021; pp. 1833–1844.
38. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you

need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

http://dx.doi.org/10.1007/s11263-019-01154-8
http://dx.doi.org/10.1109/TIP.2022.3167280
http://dx.doi.org/10.3390/app13148110
http://dx.doi.org/10.1109/TMM.2020.3006414
http://dx.doi.org/10.1109/TIP.2020.3043093
http://dx.doi.org/10.3390/app14041535
http://dx.doi.org/10.3390/app132412985


Appl. Sci. 2024, 14, 4066 18 of 18

39. Guo, Y.; Chen, J.; Wang, J.; Chen, Q.; Cao, J.; Deng, Z.; Xu, Y.; Tan, M. Closed-loop matters: Dual regression networks for single
image superresolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Virtual, 14–19 June
2020; pp. 5407–5416.

40. Gao, G.; Xu, Z.; Li, J.; Yang, J.; Zeng, T.; Qi, G.J. CTCNet: A CNN-Transformer Cooperation Network for Face Image Super-
Resolution. IEEE Trans. Image Process 2023, 32, 1978–1991. [CrossRef]

41. Yang, D.; Wei, Y.; Hu, C.; Yu, X.; Sun, C.; Wu, S.; Zhang, J. Multi-Scale Feature Fusion and Structure-Preserving Network for Face
Super-Resolution. Appl. Sci. 2023, 13, 8928. [CrossRef]

42. Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017;
pp. 5835–5843.

43. Leland, M.; John, H.; James, M. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2020,
arXiv:1802.03426.

44. Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference
on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3730–3738.

45. Le, V.; Brandt, J.; Lin, Z.; Bourdev, L.; Huang, T.S. Interactive facial feature localization. In Proceedings of the European Conference
on Computer Vision, Florence, Italy, 7–13 October 2012; pp. 679–692.

46. Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [CrossRef]
47. Zhang, Z.; Qi, C.; Asif, M.R. Investigation on Projection Space Pairs in Neighbor Embedding Algorithms. In Proceedings of the

IEEE International Conference on Signal Processing, Beijing, China, 12–16 August 2018; pp. 125–128.
48. Hao, Y.H.; Qi, C. Face Hallucination Based on Modified Neighbor Embedding and Global Smoothness Constraint. IEEE Signal

Process. Lett. 2014, 21, 1187–1191. [CrossRef]
49. Tu, Q.; Li, J.W.; Javaria, I. Locality constraint neighbor embedding via KPCA and optimized reference patch for face hallucination.

In Proceedings of the IEEE International Conference on Image Processing, Phoenix, AZ, USA, 25–28 September 2016; pp. 424–428.
50. Yang, W.; Xia, S.; Liu, J.; Guo, Z. Reference-Guided Deep Super-Resolution via Manifold Localized External Compensation. IEEE

Trans. Circuits Syst. Video Technol. 2019, 29, 1270–1283. [CrossRef]
51. Menon, S.; Damian, A.; Hu, S.; Ravi, N.; Rudin, C. PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of

Generative Models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
14–19 June 2020; pp. 2434–2442.

52. Chen, L.; Pan, J.; Jiang, J.; Zhang, J.; Han, Z.; Bao, L. Multi-Stage Degradation Homogenization for Super-Resolution of Face
Images With Extreme Degradations. IEEE Trans. Image Process. 2021, 30, 5600–5612. [CrossRef]

53. Howard, J.; Gugger, S. Deep Learning from Scratch. In Deep Learning for Coders with Fastai and PyTorch; Faucher, C., Hassell, J.,
Potter, M., Eds.; O’Reilly Media: Sebastopol, CA, USA, 2020; pp. 493–515.

54. Newell, A.; Yang, K.; Deng, J. Stacked hourglass networks for human pose estimation. In Proceedings of the European Conference
on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 483–499.

55. Li, X.; Wang, W.; Hu, X.; Yang, J. Selective Kernel Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 510–519.

56. Hendrycks D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415.
57. Zamir, S. W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M. Restormer: Efficient Transformer for High-Resolution Image

Restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24
June 2022; pp. 5718–5729.

58. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

59. Sheikh, H.R.; Bovik, A.C. Image information and visual quality. IEEE Trans. Image Process. 2006, 15, 430–444. [CrossRef] [PubMed]
60. Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 586–595.

61. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.M.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic
differentiation in pytorch. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017; pp. 4–9.

62. JPEG Artifact Generator. Available online: https://impliedchaos.github.io/artifactor.html (accessed on 1 May 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIP.2023.3261747
http://dx.doi.org/10.3390/app13158928
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1109/LSP.2014.2329473
http://dx.doi.org/10.1109/TCSVT.2018.2838453
http://dx.doi.org/10.1109/TIP.2021.3086595
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://dx.doi.org/10.1109/TIP.2005.859378
http://www.ncbi.nlm.nih.gov/pubmed/16479813
https://impliedchaos.github.io/artifactor.html

	Introduction
	Proposed Method
	Revisiting Feature Maps and Feature Spaces
	Overview
	Spatial-Channel Mutual Attention-Guided Transformer Module (SCATM)
	Spatial-Channel Mutual Attention Guiding Block-Top (SCAGB-T)
	Spatial-Channel Mutual Attention Guiding Block-Bottom (SCAGB-B)
	Channel-Wise Multi-Head Transformer Block (CMTB)

	Multi-Scale Feature Fusion Module (MFFM)

	Experiments 
	Dataset and Metrics
	Implementation Details
	Ablation Studies
	Comparison with the State-of-the-Art
	JPEG Artifacts Analysis
	Model Complexity Analysis

	Conclusions
	References

