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Abstract: Current orbit uncertainty propagation (OUP) and orbit determination (OD) methods suffer
from drawbacks related to high computational burden, limiting their applications in deep space
missions. To this end, this paper proposes a multivariate attention-based method for efficient OUP
and OD of Earth–Jupiter transfer. First, a neural network-based OD framework is utilized, in which
the orbit propagation process in a traditional unscented transform (UT) and unscented Kalman
filter (UKF) is replaced by the neural network. Then, the sample structure of training the neural
network for the Earth–Jupiter transfer is discussed and designed. In addition, a method for efficiently
generating a large number of samples for the Earth–Jupiter transfer is presented. Next, a multivariate
attention-based neural network (MANN) is designed for orbit propagation, which shows better
capacity in terms of accuracy and generalization than the deep neural network. Finally, the proposed
method is successfully applied to solve the OD problem in an Earth–Jupiter transfer. Simulations
show that the proposed method can obtain a similar estimation to the UKF while saving more than
90% of the computational cost.

Keywords: orbit uncertainty propagation; orbit determination; deep space; multivariate attention;
Earth–Jupiter transfer; UKF

1. Introduction

Orbit uncertainty propagation (OUP) and orbit determination (OD) are essential in
space missions such as near-Earth missions [1–3], asteroid exploration missions [4–6], lunar
exploration missions [7], Venus exploration missions [8], and Jupiter exploration missions [9,10].
Among these space missions, deep space exploration missions rely on extremely accurate
OUP and OD techniques. The OUP involves predicting the orbital states (and the associated
uncertainties), whereas the OD involves determining the precise position and velocity of a
space target, such as a spacecraft or an asteroid, with respect to a reference frame [11–13].

Accurate OUP and OD are crucial for many deep space missions, including spacecraft
navigation, design of trajectory correction maneuvers, planetary exploration, and more [14,15].
High accuracy helps to optimize and design robust trajectories that consider uncertainties,
which is particularly important for mission planning and execution [16,17]. Additionally, it
enables the prediction of future spacecraft positions and velocities [18,19], which is useful
for coordinating operations and avoiding collisions with other objects in deep space [20–22].

Classic OUP methods include Monte Carlo simulation [23], unscented transform
(UT) [24–26], cubature rule [27], state transition matrix [28,29], state transition tensor
(STT) [30–33], and Gaussian mixture model (GMM) [34]. Park and Scheeres investigated
the OUP problem of a spacecraft on a Sun–Earth L1 orbit [32,33]. Kim and Park derived
an STM for OUP of a fly-by spacecraft [35]. Boone and McMahon analyzed the stability of
the Europa Lander orbit using STT [36]. Qiao et al proposed a semi-analytical uncertainty
propagation method for a heliocentric constellation based on STT techniques [31].
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In general, OD can be performed for a deep space probe using optical [37], pulsar-
based [10], and doppler-Range radio [35] measurements. Qiao et al. investigated the
possibility of optical navigation during the approach of an asteroid [5]. They performed ob-
servability analysis for the optical navigation and proposed an observability improvement
method based on maneuvers. Mortari and Conway proposed a weighted least squares
method for state estimation of interplanetary orbits using multi-angle measurements [38].
Christian investigated the possibility of deep-space optical navigation using a planet’s
centroid and apparent diameter in images [39]. Compared with angle-only measurements,
the use of the apparent diameter can improve the observability of optical navigation.
Christian further investigated the pose estimation and optical navigation methods using
the features of the rotating celestial bodies (e.g., asteroids) and spheroidal planets with
banded atmospheres (e.g., Jupiter) [9]. Andreis et al. analyzed the performance of optical
navigation of a CubeSat in an Earth–Mars transfer [11]. Ma et al. reviewed deep space
navigation methods and concluded that the conventional doppler-rRange radio navigation
method can hardly satisfy the deep space mission requirement of high performance in
real-time accuracy and coverage [10]. In addition, they found that the higher frequency
of pulsars leads to a better navigation solutions compared to optical navigation. Ely et al.
compared deep-space navigation methods using optical, pulsar-based, and radiometric
measurements and concluded that significant pulsar time-of-arrival measurement noise
limits its utility for approach and entry navigation [40].

The least squares (LS) and Kalman filter are two basic methods for OD [41,42]. In
LS-based OD, a set of measurements, such as range and angle measurements, is used to
estimate the initial state vector of a spacecraft. The basic idea of LS is to minimize the
difference between the observed and predicted measurements by adjusting the initial state
vector [43]. This adjustment is done by solving a system of linear equations, where the
solution corresponds to the state vector that best fits the observations in a least-squares
sense. LS-based OD is widely used in space-related applications such as satellite navigation
and OD of space debris and asteroids. However, LS has limitations for onboard applications
as it is a batch method that requires high computational cost.

The Kalman filter and its variants belong to the category of sequential methods,
requiring a lower computational cost than LS. Commonly used Kalman filters include
(to name a few) the extended Kalman filter (EKF), unscented Kalman filter (UKF) [24,25],
cubature Kalman filter (CKF) [27], and Gaussian mixture filter (GMF) [44]. In order to
effectively filter data on onboard applications, two fundamental prerequisites must be
fulfilled, namely, achieving high accuracy while maintaining low complexity. Nevertheless,
these requirements can sometimes be in conflict with one another [45]. For instance, the UKF
is recognized for its superior accuracy compared to the EKF; however, its computational
cost is significantly higher due to the integration of over ten sigma points [30,46].

Several research studies have been carried out recently to improve the efficiency of the
OUP and OD methods for onboard applications. Greco and Vasile developed a surrogate-
based particle filter in which a surrogate model replaces the orbit integrations in the OUP
process of a conventional particle filter [47]. Zhou et al. developed an adaptive order-
switching Kalman filter (AOSKF) for cislunar OD [45]. In AOSKF, a deep neural network
(DNN) is employed to detect highly nonlinear points and the OUP’s orders are adaptively
adjusted according to the nonlinear detection results. More recently, Zhou et al. proposed
a DNN-based orbital uncertainty propagation and estimation framework for low-Earth
orbit (LEO) spacecraft in which the computational cost is significantly reduced [46]. In this
method, the orbit propagation process in the conventional UKF is replaced by a DNN-based
prediction process. However, such an OUP and OD method can be further improved, as
the prediction capacity of the DNN is limited.

Motivated by Zhou et al.’s work [46], this paper aims to improve the computational
efficiency of the OD using a neural network. A deep space transfer case, the Earth–Jupiter
transfer, is taken as an example to show the performance of such a method. Compared
with Zhou et al.’s work, the innovations of this paper can be summarized as follows:
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• A multivariate attention-based neural network (MANN), rather than a simple DNN,
is designed and utilized to replace the orbit integration process in the UT and UKF.
It will be shown that the designed MANN has a much more advanced performance
than the DNN in the investigated problem.

• An Earth–Jupiter transfer case, rather than an LEO case, is considered in this work. The
input structure of the sample is comprehensively discussed and carefully designed.

• A method for fast generating a large number of samples for the Earth–Jupiter transfer
case is presented.

The remainder of this paper is organized as follows. Section 2 describes the neural
network-based OD framework. Section 3 discusses the construction of the samples and
introduces the structure and training process of the MANN. Numerical simulations are
provided in Section 4 and conclusions in Section 5.

2. Neural Network-Based Orbit Uncertainty Propagation Orbit Determination Framework
2.1. Orbit Uncertainty Propagation

In this work, the dynamics of a spacecraft during the transfer from Earth to Jupiter
considers the point-mass gravitational accelerations and the Solar Radiation Pressure (SRP)
perturbations; thus, the high-fidelity dynamics model can be written as

ẋ =

[
ṙ
v̇

]
=

 v

− µS

∥r∥3 r + ∑
k∈{E,M,J}

µk

(
rk−r

∥rk−r∥3 − rk
∥rk∥3

)
+ CR

A
m P⊙AU2 r

∥r∥3

, (1)

where x ∈ [r; v] ∈ R6 represents the state vector (with r ∈ R3 and v ∈ R3 being the position
and velocity vectors, respectively) of the spacecraft in the heliocentric inertial coordinate,
µS, µE, and µJ denote the gravitational constants of the Sun, Mars, Earth, and Jupiter,
respectively, rE ∈ R3, rM ∈ R3, and r J ∈ R3 are the position vectors of the Earth, Mars,
and Jupiter in the heliocentric inertial coordinate, CR is the reflection coefficient, A/m is
the area-to-mass ratio, and P⊙ = 4.56 × 10−6 N/m2 is the reference value of the SRP at a
distance of 1 AU (1 AU = 149,597,870 km, and AU2 = 149,597,870 km × 149,597,870 km)
from the Sun [8,11]. Note that in this work the ephemeris data of the Earth, Mars, and
Jupiter come from the Jet Propulsion Laboratory’s Development Ephemerides (DE432). In
this work, the J2 term of the Earth and the propulsion term are not considered in order to
simplify the problem (as in [11]). In addition, we define

c = CR
A
m

(2)

and in the remainder of this paper, given the initial epoch t0 and the corresponding initial
orbital state x0 ∈ R6, the solution flow of the ordinary differential equation in Equation (1)
can be represented as x = ϕ(t; x0, t0).

Orbit deviation propagation is the premise of orbit determination [46]. This is because
orbit deviation propagation, also called the orbit uncertainty propagation technique, can
help predict the uncertainties, which is necessary to calculate the Kalman gain in a Kalman
filter framework. In addition, it can help provide gradient information for the LSM. As
shown in Figure 1, the black solid line and the black dashed line represent the nominal
orbit and the neighboring orbit, respectively, under the high-fidelity dynamics model. Let
x̃0 = x0 + δx0 ∈ R6 be the initial orbital state of the neighboring orbit, with δx0 ∈ R6

being the initial deviation between the nominal and neighboring orbits. By propagating
the orbits under high-fidelity dynamics, the orbital states of the nominal and neighboring
orbits at any given epoch t can be obtained as x = ϕ(t; x0, t0) and x̃ = ϕ(t; x̃0, t0). The orbit
deviation between the nominal and neighboring orbits at a given epoch t is defined as

δx = x̃ − x ∈ R6 (3)
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The orbit deviation propagation is used to calculate or predict the deviation δx given
the initial state of the nominal orbit x0 and the initial deviation δx0. In general, there are
two ways to calculate the deviation δx. The first is to propagate the neighboring orbit
directly and calculate the deviation δx using Equation (3). The other is to approximate
the deviation δx using techniques such as state transition matrix (STM), state transition
tensor (STT), or polynomial chaos (PC). Both approaches require numerical integrations,
making its computational cost unacceptable for certain onboard applications, especially
CubeSat-like platforms with limited computational capacity.

0x

0x
2BP

x

x

2BP
x

x

t

e

High-fidelity dynamics 

Two-body dynamics 

0t

t

2BP 2BP 2BP = −x x x

 = −x x x

P2BP

ref

2B = − xx x

0 0 0 = −x x x

Earth

Jupiter

Sun

Solar Radiation 

Pressure

Figure 1. An illustration of the orbit deviation propagation framework.

Recently, a novel neural network-based method was developed in [46] to significantly
improve the computational cost of the OD of an LEO spacecraft. This work extends such an
idea to solve the OD problem of an Earth–Jupiter transfer spacecraft with the framework
shown in Figure 1. In Figure 1, the orbits propagated using high-fidelity and two-body
dynamics (considering only the Sun’s gravitational force) are represented by black and blue
lines, respectively. In addition, the orbital state propagated by the two-body dynamics is
distinguished using a superscript “2BP”. For example, x2BP ∈ R6 and x̃2BP ∈ R6 represent
the orbital states of the nominal and neighboring orbits under the two-body dynamics.
Under the two-body dynamics, the orbit deviation in Equation (3) has an analytical solution
(i.e., δx2BP = x̃2BP − x2BP can be analytically computed). The detailed expressions for the
orbit deviation propagation under the two-body dynamics are well presented in [46,48].
As shown in Figure 1, we define e = δx − δx2BP, which represents the residual between
the true (under the high-fidelity dynamics) and two-body orbit deviation propagation
solutions. If the residual e can be predicted using a neural network, then the value of δx
can be obtained without additional numerical integrations, which can significantly reduce
the computational burden.

In this work, a multivariate attention-based neural network (MANN) is developed
to predict the residual e. The designed structure and the training process of the MANN
will be introduced in the next section. Let êMANN be the prediction of the MANN; then, the
orbit deviation propagation solution can be rewritten as

δx ≈ êMANN + δx2BP. (4)

In the following subsection, the solution in Equation (4) is combined with a UT method
(denoted as MANN-UT) to improve the OD efficiency of the conventional UKF method.
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2.2. Orbit Determination Method

The framework of the MANN-UT is illustrated in Figure 2. Given the mean of the
initial state x0 ∈ R6 and its associated covariance P0 ∈ R6×6, thirteen sigma points
χi(t0) ∈ R6 (i ∈ {0, 1, · · · , 12}) can be obtained under the UT framework as follows:

χi(t0) = x0 i = 0
χi(t0) = x0 + (

√
(n + λ)P0)i i = 1, · · · , n

χi(t0) = x0 − (
√
(n + λ)P0)i i = n + 1, · · · , 2n

(5)

where n = 6 is the dimension of the orbit state, λ = α2(n + κ)− n is an adjusted factor,
(
√
(n + λ)P0)i is the i-th column of the matrix

√
(n + λ)P0, P0 =

√
P0

(√
P0

)T , and
√

P0
is computed using the Cholesky decomposition. In this work, κ = 3 − n and α = 1.

Nonlinear 

transformation

Initial mean and covariance

UT mean and covariance

DNN-UT mean and covariance

Initial sigma points

Transformed sigma points

MANN-predicted sigma points

Figure 2. An illustration of the framework of MANN-UT.

In the conventional UT framework, the thirteen sigma points in Equation (5) are
propagated from the initial epoch t0 to a given future epoch t using high-fidelity dynamics;
thus, we have χi(t) = ϕ[t; χi(t0), t0] (i ∈ {0, 1, · · · , 12}). After weighing these propagated
sigma points, the mean and covariance can be computed as

x̄(t) =
2n

∑
i=0

w(m)
i χi(t)

P(t) =
2n

∑
i=0

w(c)
i [χi(t)− x̄(t)][χi(t)− x̄(t)]T

(6)

where x̄(t) ∈ R6 and P(t) ∈ R6×6 represent the mean and covariance at epoch t and w(m)
i

and w(c)
i are the weights of the mean x̄(t) and covariance P(t), with their expressions

provided by  w(m)
i = λUT

λUT+n , w(c)
i = w(m)

i + (1 − α2 + β) i = 0

w(m)
i = w(c)

i = 1
2(λUT+n) elsewise

(7)

where β = 2 is used in this work.
Using Equation (4), the propagated sigma points can be written as

χi(t) = x(t) + δχ2BP
i + êMANN,i

= ϕ(t; x0, t0) + δχ2BP
i + êMANN,i

(8)
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where δχ2BP
i denotes the two-body orbital deviation of the i-th sigma point.

Substituting Equation (8) into Equation (6), the mean can be approximated as

x̄(t) ≈
2n

∑
i=0

w(m)
i {ϕ[t; χi(t0), t0] + δχ2BP

i + êMANN,i}

= ϕ(t; χi(t0), t0) +
2n

∑
i=0

w(m)
i (δχ2BP

i + êMANN,i).

(9)

In addition, the covariance P(t) can be rewritten as

P(t) ≈
2n

∑
i=0

w(c)
i

[
δχ2BP

i + êMANN,i − ∑2n
j=0 w(m)

j (δχ2BP
j + êMANN,j)

]
×

[
δχ2BP

i + êMANN,i − ∑2n
j=0 w(m)

j (δχ2BP
j + êMANN,j)

]T
.

(10)

Motivated by [46], by applying such a MANN-UT method into a UKF framework, a
MANN-assisted UKF (denoted as MANN-UKF) is presented herein.

First, the OD system of the Earth–Jupiter transfer orbit can be written as{
xk+1 = ϕ(tk+1; xk, tk) + ωk+1
zk+1 = h(xk+1) + εk+1

(11)

where xk = x(tk) and xk+1 = x(tk+1) represent the orbital state at epochs tk and tk+1,
respectively, zk+1 is the measurement vector at epoch tk+1, h(�) denotes the measurement
model, ωk+1 is the process noise, and εk+1 is the measurement noise. We assume that the
process and measurement noises are zero-mean Gaussian errors, with their covariance being
Qk+1 and Rk+1, respectively, i.e., E(ωk+1ωT

k+1) = Qk+1 and E(θk+1θT
k+1) = Rk+1. Note

that Equation (11) is a discrete format of the OD system, which should be distinguished
from Equations (1)–(10).

Based on the MANN-UT presented in Equations (9) and (10), the process of the
MANN-UKF is provided as follows:
A. Time Update

• Given the estimated state x̂k and the associated covariance Pk at epoch tk, calculate
the predicted state x̂k+1|k and the associated covariance Pk+1|k:

x̂k+1|k ≈ ϕ(tk+1; x̂k, tk) +
2n

∑
i=0

w(m)
i (δχ2BP

i + êMANN,i) (12)

Pk+1|k =
2n

∑
i=0

w(c)
i

[
δχ2BP

i + êMANN,i − ∑2n
j=0 w(m)

j (δχ2BP
j + êMANN,j)

]
×

[
δχ2BP

i + êMANN,i − ∑2n
j=0 w(m)

j (δχ2BP
j + êMANN,j)

]T
+ Qk+1.

(13)

B. Measurement update

• Calculate the Cholesky decomposition of Pk+1|k and generate sigma points χi,k+1|k.
• Calculate the predicted measurement ẑk+1|k and the associated covariance Pxz,k+1|k

and Pzz,k+1|k:

z∗i,k+1|k = h(χi,k+1|k) (14)

ẑk+1|k =
2n

∑
i=0

w(m)
i z∗i,k+1|k (15)

Pxz,k+1|k =
2n

∑
i=0

w(c)
i (χ∗

i,k+1|k − x̂k+1|k)(z
∗
i,k+1|k − ẑk+1|k)

T (16)
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Pzz,k+1|k =
2n

∑
i=0

w(c)
i (z∗i,k+1|k − ẑk+1|k)(z

∗
i,k+1|k − ẑk+1|k)

T + Rk+1. (17)

• When the measurement zk+1 has been collected, calculate the estimated state x̂k+1 and
the associated covariance Pk+1 at epoch tk:

Kk+1 = Pxz,k+1|kP−1
zz,k+1|k (18)

x̂k+1 = xk+1|k + Kk+1(zk+1 − ẑk+1|k) (19)

Pk+1 = Pk+1|k − Kk+1Pzz,k+1|kKT
k+1. (20)

Compared with traditional UKF, the advantage of using the proposed MANN-UKF is
that it actually only needs to integrate one sigma sample point to calculate the prediction
state x̂k+1|k and covariance matrix Pk+1 instead of integrating all thirteen sigma sample
points, as the remaining twelve sigma sample points can be predicted by MANN. The esti-
mation accuracy of MANN-UKF may be worse than that of UKF because of the inevitable
prediction error when using MANN. This section introduces a neural network-assisted
Earth–Jupiter transfer OD system, wherein MANN construction and training are shown in
the next section.

3. Construction and Training of the Multivariate Attention Neural Network
3.1. Sample Construction

As shown in Figure 1, the goal of MANN is to predict e. The variables that are related
to e are provided as follows:

• The initial state of the nominal orbit: x0 ∈ R6.
• The initial deviation: δx0 ∈ R6.
• The orbital state of the nominal orbit at the epoch t: x ∈ R6.
• The orbit deviation propagated using the two-body dynamics: δx2BP ∈ R6.

Apart from the four variables, there are some other variables that are available and
can be potentially helpful in predicting e:

• The deviation between the nominal orbits propagated using the high-fidelity and
two-body dynamics: δx2BP

ref = x − x2BP ∈ R6. This variable is expected to carry the
information on the errors between the high-fidelity and two-body dynamics.

• The state vectors of the Earth, Mars, and Jupiter in the heliocentric inertial coordinate
at the initial epoch t0: xE,0 ∈ R6, xM,0 ∈ R6, and xJ,0 ∈ R6. These variables contain
information about the gravitational perturbation of the third body. Here, both the
position of the perturbed object and the velocity of the perturbed bodies are consid-
ered, as the positions of the perturbed bodies in [t0, t] have an effect on the orbital
propagation and adding the velocities of the perturbed bodies to the sample helps to
provide information about the position of the perturbed bodies at future times.

• The propagated interval: ∆t = t − t0 ∈ R1. This is an important variable, as a longer
propagated interval usually indicates more significant orbital deviations.

• The variable related to the SRP: c ∈ R1.

Therefore, the input structure of the sample is designed as follows:

s = [x0; x; δx0; δx2BP; δx2BP
ref ; xE,0; xM,0; xJ,0; ∆t; c] ∈ R50 (21)

and the structure of the sample is designed as

S = {s 7→ e : R50 7→ R6}. (22)

Based on the above discussion of the input and output of the sample, a method is
developed to quickly generate a large number of samples.
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Step 1 : Generate ten Earth–Jupiter transfer orbits between 1 January 2024 and 31
December 2033.

Step 1.1: Divide the above periods (1 January 2024–31 December 2033.) with an
interval of 1 year. For each time interval, optimize the launch window. The corresponding
steps are as presented in Step 1.2–Step 1.3;

Step 1.2: Two-impulse transfer is employed. The launch time JD0 and transfer time
ToF (Time-of-flight, unit: day) are taken as the optimization variables. At the launch epoch,
the C3 is constrained to be no more than 100 km2/s2, and at the arrival epoch the spacecraft
is required to enter an orbit with an eccentricity of 0.98 and a height of 10,000 km at the
perigee of the Jupiter. Let rp and rJ be the magnitudes of the position vectors of spacecraft
and Jupiter at the arrival epoch heliocentric inertial coordinate, respectively; then, the
velocity increment ∆v that is required for the spacecraft to enter the Jupiter orbit can be
expressed as shown below.

∆v = vin
p − vp

vin
p =

√∥∥v2 − vJ
∥∥2

+ 2µJ/rp

rp = rJ + 104 km

vp =

√
µJ

(
2
rp

− 1
aTarget

)
aTarget =

rp

1 − eTarget

(23)

Taking the magnitude of the velocity increment as the objective, the optimization
problem can be provided as follows:

min
JD0, ToF

J = ∆v

s.t. [v1, v2] = Lambert(rE,0, r J, f , ToF)
C3 = ∥v1 − vE∥ ≤ 100
rE,0 = rE(JD0), r J, f = r J(JD0 + ToF).

(24)

In this work, the Lambert transfer is solved using the Python toolkit lamberthub
(https://pypi.com.cn/project/lamberthub/, accessed on 8 May 2024).

Step 1.3: The differential evolution (DE) algorithm is used to optimize the problem
in Equation (24). The range of launch time JD0 is determined by Step 1.1 and the range
of ToF is set as [10 days, 5 years]. The population is set to 50 and the number of maximal
iterations is set to 100. In this study, the DE algorithm is realized through the Python toolkit
geatpy (https://pypi.com.cn/project/geatpy/, accessed on 8 May 2024). The ten obtained
Earth–Jupiter transfer orbits are shown in Figure 3.

https://pypi.com.cn/project/lamberthub/
https://pypi.com.cn/project/geatpy/
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Figure 3. Optimized Earth–Jupiter transfer orbits.

Step 2: For the ten Earth–Jupiter transfer orbits obtained in Step 1, high-fidelity
dynamics (i.e., Equation (1)) are used for orbit propagation. In order to avoid singularities
at the Earth’s or Jupiter’s center, we remove the 60-day orbits at the beginning and end of
the transfer orbits under two-body dynamics in Step 1. Taking the orbit state at the 60th
day as the initial value and randomly generating c (variable of the SRP) between 0 and 0.1,
orbit propagation is performed using high-fidelity dynamics.

Step 3: Each transfer orbit obtained in Step 2 under the high-precision dynamics is
divided into ten orbits according to the time. For each split orbit, 100 initial deviations are
randomly generated, where the position deviation is no more than 104 km per axis and the
velocity deviation is no more than 0.1 km/s per axis. Additionally, the propagated time is
randomly divided into ten epochs and a sample is constructed for each epoch according to
Equation (22). Through the above methods, a total of 105 samples are obtained.

Note that one of the drawbacks of such neural network-based methods is that they
cannot be employed in cases for which they are not trained. The performance of the neural
network will degrade if it is trained under the dynamics in (1) and then employed under
another dynamics. Therefore, if we want to consider additional accelerations, such as the J2
term of the Earth and the propulsion term, the samples must be regenerated and the neural
network should be retrained.

3.2. Structure of the Neural Network

In recent years, due to the rise of Chat-GPT, transformers (including improved versions
such as iTransformer, Informer, Autoformer, Crossformer, etc.) have received significant
attention in the fields of natural language processing (NLP) and computer vision (CV).
In transformer-based architectures, the most crucial portion is the multi-head attention
mechanism. The multi-head attention mechanism captures the dependencies between
different variables by applying different weights. In recent years, some scholars have
found that in NLP and CV contexts, network architectures based on a multi-head attention
mechanisms exhibit better capacity than conventional neural networks such as RNN, DNN,
and CNN. Inspired by the relevant research work, in this paper we construct a neural
network model based on a multi-head attention mechanism, which is applied to solve the
orbit deviation propagation problem in the Earth–Jupiter transfer process.

The structure of the Multivariate Attention-based Neural Network (MANN) con-
structed in this paper is shown in Figure 4.
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Figure 4. Structure of the designed MANN.

In Figure 4, the MANN developed in this paper is similar to the encoder module of
the standard Transformer. As shown on the left side of Figure 4, the MANN consists of an
embedding module, D (Depth) processing modules e (shown by gray in Figure 4) connected
sequentially, and a projection module. Each processing module contains a multivariate
attention layer, two normalization layers, and a feed-forward layer.

The main role of the embedding module is to expand the sample input s50 ∈ R50 into
a dim-dimensional vector sembedding ∈ Rdim, with the expression provided as follows:

sembedding = Embedding(s) (25)

where dim is a user-defined parameter.
At the multi-head attention mechanism layer, for the i-th attention mechanism, the

calculation process is as follows:
Step 1: Calculate the three vectors Qi, Ki, and V i using linear transformation:

Qi = W i
Qsembedding (26)

Ki = W i
Ksembedding (27)

V i = W i
Vsembedding (28)

where Qi, Ki, V i ∈ Rdim and W i
Q, W i

K, W i
V ∈ Rdim×dim.

Step 2: Calculate the scores by the sum dot product of Qi and Ki:

S0
i = QiK

T
i . (29)

Step 3: Scale the scores calculated in Step 2. In this paper, the scores are divided by 8,
which allows the MANN to have a more stable gradient. Then, the result is normalized by
softmax:

S1
i = Softmax(S0

i /8) = Softmax(QiK
T
i /8). (30)

Step 4: Multiply the output from Step 3, S1
i , with the vector V i to obtain the output of

the i-th head:
zi = S1

i V i = Softmax(QiK
T
i /8)V i. (31)
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Step 5: Combine the outputs of all the heads and multiply them by the weight matrix
WO:

Z = concact(zi)WO. (32)

Step 6: Map the output of Step 5 linearly to obtain the output with the dimension same
as that of sembedding:

Z̃ = W ZZ. (33)

The above multi-head attention mechanism layer can be written as follows:

Z̃ = MultiHead(sembedding). (34)

The normalization layer is mainly used to improve training convergence, and can be
expressed as

Z1 = LayerNorm1(Z̃ + sembedding). (35)

The function of the feed-forward layer is to extract deeper features of the input data
through linear transformation:

Z2 = FeedForward(Z1). (36)

The second normalization layer can be written as

Z3 = LayerNorm2(Z1 + Z2). (37)

Finally, the projection module maps the data to required dimensions:

êMANN = Projection(Z3). (38)

The above process can be summarized as follows:

sembedding = Embedding(s)

Z̃ = MultiHead(sembedding)

Z1 = LayerNorm1(Z̃ + sembedding)

Z2 = FeedForward(Z1)

Z3 = LayerNorm2(Z1 + Z2)

êMANN = Projection(Z3)

(39)

For the MANN architecture described above, the user-defined parameters include the
depth (D) of the processing module (in gray), the output dimension (dim) of the embedding
module, the number of multivariate attention heads in the module, and the dimensions of
the heads in the embedding module.

3.3. Training of the Neural Network

For the MANN described in the previous subsection, the neural network model is
constructed in the Pytorch environment in this work. During the training process, the
generated 100,000 samples are divided into two groups: a training dataset including 80%
of the samples and a validation dataset including the remaining 20% of the samples. The
MANN is trained for 1000 iterations, and in each iteration, the training dataset is randomly
shuffled into ten batches (each batch contains 8000 samples). The mean square error
(MSE) is used as the loss function of neural network optimization, and Adaptive Moment
Estimation (Adam) is used to optimize the neural network. We set each multivariate
attention layer in the MANN to contain four heads, each with a dimension of 64. We first
considered two sizes of MANN: one with depth 2 and dim 16, and a second with depth
8 and dim 256. The training results for the two sizes of MANN are shown in Figure 5a,b.
As can be seen from Figure 5a,b, there is no apparent overfitting phenomenon when the



Appl. Sci. 2024, 14, 4263 12 of 22

MANN is used. In addition, there is no obvious deviation between the MSE loss value of
the training dataset and the validation dataset. Meanwhile, the minimum value of the MSE
loss in the validation dataset of the first small-size MANN is about 10−7, while that in the
validation dataset of large-size MANN is about 10−8, indicating that increasing the depth
and dimension of the MANN can help to improve the prediction results of neural networks.
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(a) MANN (depth: 8, dim: 256)
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(b) MANN (depth: 2, dim: 16)
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(c) DNN (depth: 10, dim: 128)
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(d) DNN (depth: 2, dim: 16)

Figure 5. Time histories of the MSE losses of the MANN and DNN.

Figure 5c,d shows the training process of a traditional DNN to show the advantages
of the MANN neural network. As shown in Figure 5c, the DNN shows obvious overfitting
in the training process, and the MSE loss in the training dataset is significantly smaller than
the MSE loss in the validation dataset. At the same time, the MSE loss values of the DNN
are at least one order of magnitude larger than those of the MANN. This shows that the
developed MANN has advantages in prediction accuracy and generalization compared
with the traditional DNNs.

The training performances of MANNs and DNNs with different sizes are provided in
Tables 1 and 2. It can be seen from Tables 1 and 2 that the MANN has significant advantages
over the DNNs when the structure size is small. For example, with depth 2 and dim 16, the
minimal MSE loss of the validation dataset of MANN is 1.0263 × 10−7 while that of DNN
is 7.7148 × 10−5. The minimal MSE loss of the validation dataset of the MANN is less than
the order of 10−7, while that of the DNN is larger than 10−6 in most cases. In the following
simulation, the MANN with the smallest MSE loss (shown in bold in Table 1) is adopted as
the neural network to predict the e.
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Table 1. Training performance of MANNs with different sizes.

Depth Dim Minimal Training
MSE Loss

Minimal Validation
MSE Loss

2

16 1.7585 × 10−7 1.0263 × 10−7

32 2.2242 × 10−7 1.3180 × 10−7

64 1.8228 × 10−7 1.8267 × 10−7

128 1.0864 × 10−7 1.4407 × 10−7

256 7.7139 × 10−8 1.2502 × 10−7

4

16 1.1686 × 10−7 1.0519 × 10−7

32 2.5985 × 10−7 1.0549 × 10−7

64 1.2736 × 10−7 1.0895 × 10−7

128 2.0587 × 10−7 1.1150 × 10−7

256 6.4876 × 10−8 8.1694 × 10−8

6

16 1.4862 × 10−7 1.2556 × 10−7

32 3.3665 × 10−7 1.8520 × 10−7

64 1.3504 × 10−7 1.1473 × 10−7

128 6.6006 × 10−8 8.7543 × 10−8

256 4.2020 × 10−8 6.2024 × 10−8

8

16 1.6521 × 10−7 1.2702 × 10−7

32 1.5892 × 10−7 1.1527 × 10−7

64 1.0456 × 10−7 1.0343 × 10−7

128 9.5767 × 10−8 1.1350 × 10−7

256 3.4753 × 10−8 5.7216 × 10−8

Table 2. Training performance of DNNs with different sizes.

Depth Dim Minimal Training
MSE Loss

Minimal Validation
MSE Loss

2

16 7.9980 × 10−5 7.7148 × 10−5

32 1.9595 × 10−5 1.9039 × 10−5

64 3.4492 × 10−6 3.1238 × 10−6

128 7.5148 × 10−7 7.8275 × 10−7

4

16 3.1147 × 10−5 2.8625 × 10−5

32 4.4568 × 10−6 4.7672 × 10−6

64 1.1522 × 10−6 1.3511 × 10−6

128 2.9337 × 10−7 5.6742 × 10−7

6

16 1.0570 × 10−5 1.0608 × 10−5

32 4.5231 × 10−6 4.5524 × 10−6

64 7.6149 × 10−7 1.0962 × 10−6

128 2.6376 × 10−7 6.0340 × 10−7

8

16 9.0265 × 10−6 9.6495 × 10−6

32 1.1945 × 10−6 1.5034 × 10−6

64 3.8197 × 10−7 6.5156 × 10−7

128 1.9960 × 10−7 5.6136 × 10−7

10

16 1.6846 × 10−5 1.6793 × 10−5

32 1.1377 × 10−6 1.5126 × 10−6

64 3.9176 × 10−7 7.9620 × 10−7

128 2.6055 × 10−7 5.4780 × 10−7

4. Simulation Results

W take the first orbit (i.e., the orbit departing on 9 August 2024 in Figure 3a) as an
example for simulation. Note that as the initial deviations are different, the samples in this
simulation are not in the training or validation datasets to show the performance of the
MANN in a case for which it is not trained. After deleting 60 days at the beginning and
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ending epochs, the total flight time is about 911.7 days. The parameters for the simulations
are listed in Table 3. We assume that a total of ten measurements can be obtained during
the transfer process, i.e., the measurement interval is about 91 days (no measurement is
available at the initial epoch). Assume that the position vectors can be measured. In general,
the position vectors can be measured by observing planets or beacons. For example, by
observing two different planets and obtaining the corresponding line-of-sight vectors, we
can compute its own-position vector. Therefore, the measurement model is written as
follows:

zk+1 = h(xk+1) + εk+1 = rk+1 + εk+1. (40)

Table 3. Parameters for the simulations.

Parameters Values

Initial position vector (km)
x 1.61654772 × 108

y 7.73129404 × 107

z 2.00240488 × 107

Initial velocity vector (km/s)
x −2.64982864 × 100

y 3.22553899 × 101

z 1.21074585 × 101

Initial epoch 8 October 2024 10:02:47

Ending epoch 8 April 2027 02:19:21

First, a single simulation was performed, with the initial position errors set to 10,000 km
per axis and the initial velocity error set to 0.1 km/s per axis. The standard deviation of the
measurements was set as 1000 km per axis. The initial covariance was set as

P0 =

[
108 I3 km2 03×3

03×3 10−4 I3 km2/s2

]
. (41)

The single simulation results are shown in Figures 6 and 7. In Figures 6 and 7, the blue
curve is the OD error of the single simulation and the red curve is the standard deviation
forecast by the MANN-UKF and UKF. As can be seen from Figures 6 and 7, the OD errors of
both methods are within the ±3σ boundaries. In Figures 6 and 7, the symbol σ denotes the
STD of estimated errors, which is calculated analytically using Equation (20). The values of
the estimated STDs converge in the first 100 days. The position and velocity STDs at the
initial epoch are 10,000 km and 0.01 km/s, respectively. The STDs of the position estimated
errors converge to approximately 300 km at the ending epoch.

Figure 8 shows the Mahalanobis distance (MD) results of the two methods in the single
simulation, with the MD defined as follows:

MD =

√
(x̂ − x)P−1(x̂ − x)T

√
6

(42)

where x and x̂ represent the true orbit and the estimated orbit, respectively, and P is the
estimated covariance matrix. The Mahalanobis distance is a statistical measure used to
compare a set of observations or variables. It takes into account the covariance between
variables, unlike other distance measures such as Euclidean distance. Essentially, it mea-
sures the distance between a point and a distribution or a set of points, taking into account
the correlation between the variables. In Equation (42), a value of MD closer to 1 indicates
better uncertainty estimation performance [46]. As can be seen from Figure 8, at the ending
epoch, the estimation performance of MANN-UKF is slightly worse than that of UKF.
This is because the MANN method has lower prediction accuracy when the deviation is
slight [46].
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Figure 6. Orbit determination errors of the single simulation of MANN-UKF.
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Figure 7. Orbit determination errors of the single simulation of UKF.
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Figure 8. MD results of the single simulation.

A Monte Carlo (MC) simulation was further carried out, with the results shown below.
For each method, 100 MC simulations were performed; for each MC simulation, the initial
guess was obtained by the following equation:

x̂ = N (x; x0, P0). (43)

The MC simulation results are shown in Figures 9 and 10. In Figures 9 and 10, the 3σ
boundaries were statistically obtained based on the results of 100 MC simulations. The
curve of one standard deviation for both methods is provided in Figure 11. As shown in
Figure 11, the convergence tendency of estimation accuracy of MANN-UKF and UKF is
very close. For example, during the epochs from 200 days to 600 days, the MANN-UKF
is slightly more accurate than the UKF in terms of the estimated errors along the x-axis.
Slight differences exist as initial estimations are randomly generated in the MC simulation.
However, around the ending epoch the performance of MANN-UKF is slightly worse than
that of UKF. This is because around the ending epoch the estimation error is smaller than
that in the early stage, and the prediction accuracy of MANN decreases, resulting in the
decline of the prediction accuracy. As a result, the performance of MANN-UKF decreases.
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ė
y
 (m

/s
)

0 200 400 600 800
Time (day)

e z
 (k

m
)

0 200 400 600 800
Time (day)

200

0

200

ė
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Figure 9. MC results of MANN-UKF.
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Figure 10. MC results of UKF.
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Figure 11. MC results comparing MANN-UKF and UKF.

Figures 12 and 13 are Box and Whisker Plots. The line splitting the box in two
represents the median value. The upper edge and lower edge of the box represent the
upper quartile and lower quartile respectively. The values at which the vertical lines stop at
are the values of the upper and lower values of the data. The single points on the diagram
show the outliers.

As shown in Figure 12, the MDs of UKF are around 1, while the MC of MANN-UKF
are between 1 and 5. This is again due to the decline in the prediction accuracy of the
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MANN when the deviation is small, resulting in inaccurate prediction of the covariance
matrix.
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Figure 12. Comparison of MD between MANN-UKF and UKF in the MC simulations.

The primary purpose of the proposed MANN-UKF method is to reduce the computa-
tional cost in OD. Figure 13 and Table 4 compare the CPU times of the two methods. The
CPU time of the UKF method is about 6.6 s, while the proposed MANN-UKF method only
needs about 0.54 s. The proposed method saves on CPU time by more than 90%.
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Figure 13. Comparison of CPU times between MANN-UKF and UKF.

Table 4. CPU times of MANN-UKF and UKF.

Mean (s) Maximum (s) Minimum (s)

MANN-UKF 0.5423 0.5925 0.5248
UKF 6.6188 6.7804 6.4218

Apart from the above case, a second case is presented to investigate the performance
of the proposed method. The parameters of the second case are shown in Table 5. In this
case, line-of-sight (LOS) measurements are employed instead of the measurement model in
Equation (40). We assume that the spacecraft can obtain the LOS measurements (from the
spacecraft to the Jupiter) using optical sensors. The LOS measurement model is represented
as follows [42,49,50]:

zk+1 = h(xk+1) + εk+1 =
r J − rk+1∥∥r J − rk+1

∥∥ + εk+1. (44)
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Table 5. Parameters for the simulations (second case).

Parameters Values

Initial position vector (km)
x 9.45604828 × 107

y 1.43195513 × 108

z 4.76187910 × 107

Initial velocity vector (km/s)
x −2.05939633 × 101

y 2.64682048 × 101

z 9.49888317 × 100

Initial epoch 9 November 2025 03:39:46

Ending epoch 15 June 2028 06:27:40

In this simulation, the STDs of the LOS measurements are set as 10−4 per axis (similar
to [42]). One hundred MC runs were performed using two algorithms, with the estimated
STDs shown in Figure 14. It can be seen from Figure 14 that the proposed MANN-UKF can
output OD solutions with accuracy and convergence similar to those of the UKF.
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Figure 14. MC results comparisons between MANN-UKF and UKF (second case).

5. Conclusions

This paper proposes a multivariate attention neural network (MANN)-based orbit
uncertainty propagation (OUP) and orbit determination (OD) method for Earth–Jupiter
transfer. The proposed method relies on a carefully designed MANN for orbit deviation
propagation, which is further employed to predict uncertainties for Earth–Jupiter transfer
OD. Training results show that the MANN outperforms conventional deep neural networks
(DNNs) regarding accuracy and generalization. The minimal loss of the MANN is lower
than 10−7, which is at least two orders of magnitude smaller than that of a conventional
DNN. Using the proposed MANN-based method, the orbit estimation errors quickly
converge. Orbit estimation results reveal that the MANN-based method has accuracy
close to that of an unscented Kalman filter (UKF) while saving more than 90% of the
computational time of UKF. Moreover, the Mahalanobis distance results show that the
proposed method has worse uncertainty estimation performance than the UKF method.
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In the future, more complex dynamics should be considered to test the robustness of the
proposed method. In addition, combining the MANN with other estimation methods, such
as a cubature Kalman filter or Gaussian sum filter, is suggested.
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