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Abstract: The rejoining of bone sticks holds significant importance in studying the historical and
cultural aspects of the Han Dynasty. Currently, the rejoining work of bone inscriptions heavily relies
on manual efforts by experts, demanding a considerable amount of time and energy. This paper
introduces a multi-scale feature fusion Siamese network guided by edge contour (MFS-GC) model.
Constructing a Siamese network framework, it first uses a residual network to extract features of
bone sticks, which is followed by computing the L2 distance for similarity measurement. During the
extraction of feature vectors using the residual network, the BN layer tends to lose contour detail
information, resulting in less conspicuous feature extraction, especially along fractured edges. To
address this issue, the Spatially Adaptive DEnormalization (SPADE) model is employed to guide
the normalization of contour images of bone sticks. This ensures that the network can learn multi-
scale boundary contour features at each layer. Finally, the extracted multi-scale fused features
undergo similarity measurement for local matching of bone stick fragment images. Additionally,
a Conjugable Bone Stick Dataset (CBSD) is constructed. In the experimental validation phase, the
MFS-GC algorithm is compared with classical similarity calculation methods in terms of precision,
recall, and miss detection rate. The experiments demonstrate that the MFS-GC algorithm achieves an
average accuracy of 95.5% in the Top-15 on the CBSD. The findings of this research can contribute to
solving the rejoining issues of bone sticks.

Keywords: bone stick rejoining; Siamese network; edge contour guidance; multi-scale feature fusion;
similarity metrics

1. Introduction

A bone stick [1] refers to elongated bone pieces of approximately uniform size and fixed
shape, which are processed from animal skeletons. The bone stick discovered [2] at Weiyang
Palace in Han Dynasty’s Chang’an City provides valuable historical data for studying
Western Han history. It also preserves the written language used during that period,
making it a crucial source material for studies in paleography, linguistics, and related
fields. Excavated bone sticks often suffer damage and fractures due to prolonged burial
underground, requiring rejoining for preservation and comprehensive analysis. Bone stick
rejoining can be accomplished through two methods [3]: manual and computer-assisted
with expert participation. In the manual method, experts use contextual semantics, joinable
characters, literary materials, and knowledge of bone script morphology to speculate
on potential rejoining outcomes. However, due to human resource limitations, manual
rejoining is relatively inefficient. Experts in bone stick technology have consistently held
high expectations for the use of computer technology in achieving the rejoining of bone
sticks [4].
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The field of image rejoining has two main categories of methods: local edge match-
ing and deep learning. In the local edge-matching method, the techniques outlined in
references [5–8] impose a high requirement for edge consistency in fragmented images,
making them suitable for rejoining paper document edges. Among deep learning methods,
References [9,10] describe methods that use neural networks to predict the relative positions
of archaeological fragments, solving 3 × 3 jigsaw puzzles. However, these approaches are
limited to square-shaped, equally sized two-dimensional fragments and are not suitable
for irregular bone stick fragments. Le et al. [11] proposed the JigsawNet model, which uses
a Convolutional Neural Network to detect the compatibility between image fragments.
However, the network has limitations in detecting compatibility between defective cultural
relic fragments because it is a polygonal approximation of the boundary contours. In their
study, Ngo et al. [12] proposed a combination of residual networks and a pool of spatial
pyramidal tandem networks to match images of exhumed wood fragments. However, its
effectiveness is limited when the fragments suffer from edge erosion or fracture lines or
when there are missing fragments. In such cases, the texture and text style of the fracture
region provide more accurate high-level information. Zhang et al. [13,14] proposed a deep
rejoining model for automatically rejoining oracle bone fragment images. The edge equidis-
tant reconnection method is utilized to match and locate the edges of the two fragmented
images. It then crops the target region image and evaluates its texture similarity using a
convolutional neural network. However, this method has high network complexity and
requires accurate edge contour information.

In this paper, a Multi-scale Feature Fusion Siamese network Guided by Edge Contour
(MFS-GC) model is proposed. The limitation of previous methods using single feature
information is addressed. Two improvements have been made to the Siamese network
framework in this study: Firstly, when utilizing a residual network for feature extraction,
the Batch Normalization (BN) layer tends to lose fine contour details, leading to an indis-
tinct feature extraction effect on fractured edges. To address this issue, we incorporate
the SPADE model to guide the normalization of bone stick edge contour images. This
allows the network to learn multi-scale edge contour features at each stage. Secondly, as
the network depth increases, information loss becomes a challenge. To mitigate this, we
fused features at different scales and determined whether a match existed by comparing
the L2 distances of the fused feature vectors. The proposed network focuses on capturing
high-level semantic information in bone stick images while also considering texture and
contour details. The advantage of this method lies in its improved preservation of detailed
information, providing the network with richer data and enhancing the accuracy of rejoin-
ing bone sticks. To evaluate the effectiveness of the algorithm, we conduct a comprehensive
experimental analysis comparing our algorithm with recent deep learning-based similarity
matching algorithms. The evaluation is performed on the CBSD dataset, considering met-
rics such as accuracy, leakage rate, precision, etc. The results indicate a Top-15 accuracy
rate of 95.5%, validating the superiority of our proposed algorithm.

2. Basic Methods
2.1. Siamese Network

In the context of comparing two images, Bromley [15] introduced the Siamese network
(SN) in 1993 to authenticate whether the signature on a check corresponds to the signature
stored by the bank. The Siamese network framework is illustrated in Figure 1. It involves
obtaining two feature vectors, h(x1_1, x1_2) and h(x2_1, x2_2), by feeding two preprocessed
images, X1 and X2, through a shared-weight feature extraction network. The L2 (Euclidean)
distance between these two vectors is then calculated to derive the similarity value. During
this process, the inputs are individually mapped by two neural networks into a new
space, resulting in a representation of the inputs in that space. The similarity between
the two inputs is assessed through the computation of the contrastive loss. In this study,
applied to bone stick images, matched bone stick images are considered to exhibit the
highest similarity, labeled as 1, representing positive samples. Conversely, non-matched
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bone stick images are regarded as having the lowest similarity, labeled as 0, indicating
negative samples. The training objective is to minimize the distance between matched bone
specimens and maximize the distance between non-matched images.
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Meanwhile, this paper proposes the use of a Siamese network equipped with a Con-
trastive Loss function. This type of loss function effectively captures the degree of matching
to the sample and is well-suited for training models in feature extraction. The definition is
shown in Equation (1).

L =
1

2N ∑N
n=1 yd2 + (1 − y)max(m − d, 0)2 (1)

d(x1, x2) = ∥x1 − x2∥2 =
√

∑P
i=1(x1i − x2i)

2 (2)

In this context, x1 and x2 represent two samples, while y denotes the label for the input
sample pairs. A value of y = 1 indicates a match between the two samples, and y = 0 signifies
a non-match. The threshold m is used to determine whether two input samples belong
to the same category. We only consider distance values of dissimilar feature Euclidean
distances within the range of 0 to m. N represents the number of samples. Equation (2)
defines the Euclidean distance between the features x1 and x2 of two samples. The Siamese
network aims to minimize the distance between sample pairs when they belong to the
same category and increase the distance between sample pairs otherwise. Therefore, the
contrastive loss function is employed to achieve the objectives of the Siamese network.

The utilization of Siamese networks primarily addresses two key challenges related to
the rejoining of bone sticks [16]. Firstly, it tackles the issue of limited training data within
the same category. The training dataset utilized in this study predominantly comprises
images of bone sticks. Specifically, each upper segment of a bone stick corresponds to a
lower image segment. Secondly, when new category data emerge, there is no necessity for
retraining; the model can perform predictions directly.
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2.2. Resnet Network Model

Theoretically, increasing the number of network layers allows the network to perform
more complex feature pattern extraction, potentially leading to better performance with
deeper models. However, practical experimentation has revealed that simply adding
convolutional layers to the network not only fails to reduce the training error but also
results in its escalation [17]. This phenomenon primarily arises due to the challenge of
vanishing or exploding gradients in deep networks, where an increase in the number
of layers exacerbates the training difficulty. Hence, the concept of skip connections was
introduced in residual networks to address the issue of vanishing or exploding gradients
caused by the stacking of numerous network layers. The formulation of the residual
structure is depicted in Equation (3).

xl+1 = xl + F(xl , Wl) (3)

Here, F(x) represents the residual term. For any arbitrarily deep cell Xl+1, its features
can be expressed as the features of a shallower cell Xl plus a residual function in the form
of F(x).

Figure 2 illustrates the structure of residual blocks. The application of residual blocks
enables the deeper units to easily acquire results from shallower units. This method of
endowing results from shallower networks to deeper networks is referred to as identity
mapping. As depicted in Figure 2a, it can ameliorate the issue of feature loss during
the learning process. Within convolutional neural networks, when the output Xl of the
preceding layer does not align in dimensionality with the input feature map Xl+1 of the
subsequent layer, a 1 × 1 convolution is necessary to perform dimensionality augmentation
or reduction. This scenario is exemplified by the residual block depicted in Figure 2b.
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3. Multi-Scale Feature Fusion Siamese Network Guided by Edge Contour Model Design
3.1. Overall Model Design

Figure 3 illustrates the overall design of the multi-scale feature fusion guided by edge
contour model (MFS-GC). The local regions of conjugable bone stick images exhibit a
symmetrical structure in terms of color, texture, contours, and other information, thereby
possessing similar core features. The approach presented in this paper utilizes a similarity
measurement to assess the matching degree of bone sticks. A Siamese network framework
is used for feature extraction, which is followed by a subsequent measurement of the
extracted features’ similarity.

In the image preprocessing stage, we normalize the dimensions of the input original
bone stick images, x1 and x2, to 224 × 224 pixels, resulting in x1_1 and x2_1. Subsequently,
the images undergo grayscale conversion, binarization, and edge detection algorithms,
yielding the corresponding edge contour images, x1_2 and x2_2. As the size of the input
contour images differs from the feature maps, x, at each stage, it becomes necessary to
resize the contour images to match the size of the feature maps. This process generates
multi-scale contour images.
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and X2.

During the training phase, preprocessed bone stick images are input into a feature
fusion residual network with two shared parameters for training. The contrastive loss
function for the two bone stick images is computed, and network parameters are iteratively
updated through backpropagation. The objective is to minimize the L2 distance between
feature vectors of positively pairable samples and maximize the L2 distance between feature
vectors of non-pairable bone stick samples, thereby achieving discrimination between
the two.

During the inference phase, the bone stick image to be appended is input, along with
each bone stick image from the dataset, into the trained network to extract feature vectors,
and L2 distances are calculated. Similarity scores for each pair are sorted, and the top-T
ranked bone stick fragment images are selected to form the candidate set for conjugable
bone sticks.

3.2. SPADE Model

Unlike panoramic image stitching, adjacent bone stick fragments only possess match-
ing geometric shapes and textures along the fractured boundaries. Addressing the issue of
losing lower-level details in the backbone feature extraction network caused by the use of
BN normalization layers, this paper introduces the SPADE module to incorporate feature
information from contour maps. The feature information from contour maps is utilized to
guide the normalization of feature maps at various hierarchical levels.

The Spatially Adaptive DEnormalization (SPADE) model [18] is a model designed to
prevent BN from truncating semantic information of input images, and its basic framework
is illustrated in Figure 4.

The implementation process of the SPADE model [19] can be summarized as modifying
the computation of γ and β based on Batch Normalization. Specifically, convolution is
utilized to learn the γ and β of feature maps, which are then used as the normalization
coefficients and biases, respectively, acting on the previous-level feature maps after the
normalization layer following convolution. As illustrated in Figure 2a, assuming the input
to the SPADE module comprises the previous-level feature map represented as xin, the
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input contour map as l_s, and the output feature map as xout, the formulation can be
expressed as shown below:

l_s′ = RELU(conv(Resize(l_s))) (4)

xout = bn(xin)·convγ

(
l_s′

)
+ convβ

(
l_s′

)
(5)

Due to the discrepancy in size between the input contour map l_s and the feature
map x, l_s is resized to match the size of x. Subsequently, it undergoes a convolutional
layer followed by ReLU activation, resulting in an intermediate layer denoted as l_s′.
Following this, two distinct convolutional layers are applied to obtain the corresponding γ

and β parameters. These derived parameters are then, respectively, used as normalization
coefficients and biases, influencing bn(xin).
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In the SPADE model, γ and β are three-dimensional matrices that have width and
height dimensions in addition to the channel dimensions. Therefore, in Equation (6), the
subscripts for γ and β include symbols for c, y, and x. This embodies the concept of
“spatial adaptation,” indicating differences and adaptability in spatial dimensions. This
is distinct from the BN layer [20,21], where the parameter vectors γ and β only have the
subscript c (representing channels). Clearly, the computation method of BN, which does
not distinguish spatial dimensions, is prone to losing information from the input image.
The calculation of the mean µ and standard deviation σ in Equation (6) is illustrated in
Equations (7) and (8).

γi
c,y,x(m)

hi
n,c,y,x − µi

c

σi
c

+ βi
c,y,x(m) (6)

Among them:

µi
c =

1
NHiWi ∑n,y,x hi

n,c,y,x (7)

σi
c =

√
1

NHiWi ∑n,y,x

(
hi

n,c,y,x

)2
−

(
µi

c
)2 (8)

The advantage of the SPADE model is that it better preserves semantic information
against public normalization layers. The semantic map focuses differently on different
regions of the input image; in this paper, for the edge contour binary image, the contour
region is 1 and the other regions are 0. Therefore, the SPADE module is added to allow the
network to focus on the contour region features. This is accomplished in such a way that
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the positional information (x, y) of the mask can be taken into account. So, SPADE can be
seen as a general definition of other condition normalization.

3.3. Edge Contour-Guided Feature Fusion Residual Network

The MFS-GC model designed in this paper introduces the SPADE module into the
backbone feature extraction network at the feature extraction stage, and then the output
feature maps of the four stages are used as inputs to the SPADE model, which uses the edge
contour binary image information of the bone stick image to guide the feature maps of the
Resnet50 neural network to be normalized, and it intervenes by continually adding edge
contour binary images so that each stage of the Resnet50 network is able to learn the edge
contour features. Finally, the fused features Ri output from the four stages are obtained.

The MFS-GC model proposed in this study includes the SPADE module in the core
feature extraction network during the feature extraction phase. The output feature maps
generated from the four stages are then used as inputs to the SPADE module. This module
uses information from the edge contour of the bone stick image to guide the normalization
of the feature maps within the Resnet50 neural network. Each stage of the Resnet50 network
is able to learn the edge contour features This results in the fused features, denoted as Ri,
being outputted from the four stages.

Inspired by the Feature Pyramid Networks (FPNs) [22–24], this study introduces a
multi-scale approach by reusing feature maps during the feature extraction phase. This
method effectively integrates deep-level features with shallow-level features. The channel
concatenation method, as illustrated in Figure 5, involves adding two feature vectors along
the channel dimension. Deep neural networks often neglect low-level information while
extracting high-level semantic features. However, in the domain of bone stick rejoining,
both the low-level and high-level information of two-dimensional damaged bone stick
images are equally significant. Hence, outputs from four convolutional layers of different
scales collectively contribute to the representation of the feature vectors. This approach
overcomes the limitations of conventional convolutional neural networks in extracting
texture and contour feature information, thereby enhancing the model’s capability to extract
detailed features.
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This paper proposes the construction of two contour-guided feature fusion residual
networks with shared weights. The feature extraction network of a single branch is illus-
trated in Figure 6 with Resnet50 serving as the backbone of the network. The network
consists of 49 convolutional layers and 1 fully connected layer. The overall structure of
Resnet50 is divided into five stages: Stage 0, Stage 1, Stage 2, Stage 3, and Stage 4. Among
them, the Stage 0 structure is simple and is considered as the preprocessing stage for input
images. The subsequent four stages all include residual network units, where each residual
unit is composed of three convolutional layers. The unit first employs a 1 × 1 convolution
to achieve dimension reduction; then, it utilizes a 3 × 3 convolution to extract features
channel-wise and finally employs a 1 × 1 convolution to achieve dimension expansion.
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The entire network begins with Stage 0, where the input image has a shape of (224, 224,
3). It undergoes convolutional layers, Batch Normalization (BN) layers, Rectified Linear
Unit (RELU) activation functions, and a max-pooling layer, resulting in an output shape of
(56, 56, 64). In Stage 1, the output from the previous stage, (56, 56, 64), serves as input to
obtain the output scale 1 with dimensions (56, 56, 256). Subsequently, the SPADE model
takes scale 1 as input 1 and the contour map of the bone marker as input 2. It learns detailed
contour features of the bone marker. The contour map is first resized and passed through a
convolutional layer, which is followed by two 3 × 3 convolutions. The outputs of these
two convolutional layers are then subjected to element-wise multiplication and addition
with scale 1, yielding the fused output result R1 with a feature size of (56, 56, 256). In Stage
2, the backbone network consists of four bottleneck residual blocks, resulting in an output
feature map scale 2 of dimensions (28, 28, 512). The feature map of the bone marker is then
combined with scale 2 to produce the fused feature R2 with dimensions (28, 28, 512). Stage
3 comprises six bottleneck residual blocks, generating the feature map scale 3, which, after
SPADE model processing, yields the fused feature R3 with dimensions (14, 14, 1024). In
Stage 4, with three bottleneck residual blocks, outputs scale 4 with dimensions (7, 7, 2048)
and the fused feature R4 has the same dimensions (7, 7, 2048).
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On the basis of edge contour guided Resnet50, a multi-scale fusion strategy is intro-
duced to enhance the shallow detail features of bone marker images. While preserving
the deep feature R4, additional fusion features of different scales are incorporated with
dimensions being (56, 56, 256), (28, 28, 512), (14, 14, 1024), and (7, 7, 2048), respectively.
The aforementioned four feature maps undergo adaptive average pooling layers to obtain
features with dimensions (1, 1, 256), (1, 1, 512), (1, 1, 1024), and (1, 1, 2048). Subsequently,
these five layers of feature vectors are concatenated along the channel dimension, yielding
a fused feature with dimensions (1, 1, 3840). This fused feature is then processed through a
fully connected layer (fc) for output with the incorporation of a Dropout layer in the fully
connected layer to prevent overfitting.

4. Experimental Analysis

In order to verify the effectiveness and reliability of this paper’s algorithm in the
field of bone stick rejoining, this paper carries out comparative experiments of different
algorithms on the constructed bone stick dataset.

4.1. Dataset Production

The data used in this paper comes from the bone stick images excavated from Weiyang
Palace in Chang’an City of the Han Dynasty, provided by the Institute of Archaeology,
Chinese Academy of Social Sciences. A total of 935 pairs (1870 images) of bone stick images
recognized by the experts as rejoining and 800 images of bone stick images that are not
verified by the experts are selected as the experimental data. In the experimental training
phase, the dataset CBSD is divided into three parts: the training set, validation set, and
test set. The data are divided as shown in Table 1 below. The test set is named CBSD_T.
Simultaneously, to test the reliability of the model, 800 original bone stick images not
verified by experts are added to the test set, which are named CBSD_I.

Table 1. Dataset segmentation.

CBSD Training Set Validation Set
Test Set

CBSD_T CBSD_I

1870 1496 174 200 200 + 800

Due to the non-uniform size of bone stick images in the dataset, it is necessary to
standardize the images to the same dimensions to improve the matching accuracy of the
algorithm. The image size is normalized to 224 × 224 pixels using the bilinear interpolation
algorithm. Simultaneously, to increase the training samples, enhance the model’s general-
ization ability, and prevent neural network overfitting for better matching results, this paper
employs image flipping and rotation data augmentation methods on bone stick images
before model training. The number of images is expanded to twice the original quantity.

Each pair of rejoined bone stick images is divided into upper and lower slices. The
naming convention is illustrated in Figure 7. For instance, for a bone stick image num-
bered 27356, it is divided into upper slice 27356_01 and lower slice 27356_02. The fractured
local area of the rejoined bone stick image exhibits a symmetrical structure in terms of
color, texture, contour, and other information, thereby possessing similar core features.
Therefore, images of the local areas of the bone stick are selected as the dataset, and they
are named 27356_01_01 and 27356_02_01; subsequently, the local area images undergo
grayscale transformation, binarization, and boundary tracking algorithms to obtain their
corresponding edge contour images, named 27356_01_02 and 27356_02_02.
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4.2. Experimental Configuration and Evaluation Metrics

The experiment was conducted using the Windows 10 operating system with hardware
comprising a GeForce RTX 3090 GPU and an AMD Ryzen 9 5900X 12-Core Processor.
Programming was performed using the Python language and the PyTorch deep learning
framework. The model training employed the Adam optimization algorithm, setting
the initial learning rate (lr) to 0.001. The model’s loss function adopted the contrastive
loss function with the RELU function serving as the activation function for the hidden
layers. The batch size was set to 20, and the model underwent a total of 30 epochs during
training. To ensure the optimal bone stick rejoining model, the training retained the training
weights of the model at each iteration, subjected the test set to evaluation, and selected the
experiment’s best-performing iteration for comparative analysis.

In order to maximize the feature extraction capability of the backbone feature extrac-
tion network, under the selection of Resnet50 as the base network, we use the idea of
transfer learning to use the initial weights pre-trained in the Image Net dataset and then
further train them in the bone stick dataset for fine-tuning.

Bone stick rejoining is defined as follows: given a broken bone stick image as input,
the algorithm returns the top-T bone stick images with the highest match to this image as a
candidate rejoining set. This set should include bone stick images that can genuinely be
rejoined with the input image among the T images. The rejoining is considered satisfactory
if this condition is met. In the constructed CBSD dataset, the true rejoined objects for each
image are known, allowing the algorithm to automatically calculate its Top-T accuracy
without the involvement of experts.

However, in real-world scenarios of bone fragment rejoining, since the true rejoining
objects of a given bone stick image are not known in advance, bone stick experts are
required to use their professional knowledge to filter and confirm the candidate rejoining
results. If the value of T is large, there will be too many candidate results, and reviewing the
matching results of each bone stick fragment image will consume a significant amount of
time for the bone stick experts. Additionally, due to the large number of bone stick images,
it becomes challenging for bone stick scholars to complete the filtering and confirmation
of candidate rejoining results for all bone stick fragment images. In order to effectively
alleviate the workload of bone stick experts in real-world bone fragment adhesion scenarios,
and based on the recommendations of bone stick experts, the value of T is set to 15.

Therefore, the evaluation metrics are defined as follows:
Top-T rejoining accuracy (ACC) is the ratio of the number of images that can correctly

find the concatenation result to the number of all images that actually have rejoining objects
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in the case of returning the Top-T candidate images with the highest rejoining match for
each image. Then, the rejoining accuracy ACC can be expressed as Equation (9).

ACC =
TP
M

(9)

where TP denotes the number of correctly predicted images, and M represents the total
number of images.

Missed detection rate = 1 − Accuracyrate;

Precision refers to the number of correct positive identifications divided by the sum
of the rankings of the true positive identifications among the Top-T candidate results.
If two algorithms find the same number of correct positive identifications, their Top-T
accuracy and missed detection rate are also the same. In such cases, if a method’s correct
positive identifications are consistently ranked higher among the Top-T results, its precision
value is higher. If a method’s correct positive identifications are consistently ranked first
(Top-1) among the Top-T results, its precision metric is 100%. Precision can be expressed as
Equation (10).

PRE =
TP

∑N
i=1 Ranki

(i = 1, 2, . . . N) (10)

Ranki refers to the position of the true positive identification of the correct rejoining im-
age among T candidate results, and N represents the number of correctly predicted images.

In conclusion, high Top-T accuracy and high precision index values are the desired
effects of the bone stick rejoining algorithm.

4.3. Experimental Results and Analysis
4.3.1. Comparative Experiments with Classical Feature Extraction Networks

In the backbone feature extraction stage, Table 2 illustrates the performance evaluation
of classical network models, including Vgg16, Resnet34, Resnet18, and DenseNet121, on
the CBSD training image dataset. The MFS-GC model achieves an accuracy of 95.5% in the
Top-15, surpassing the performance of other models. Furthermore, the training loss of our
proposed model is 0.024, which is lower compared to other models. Among the six models
considered, our model demonstrates state-of-the-art performance.

Table 2. Comparison of the performance of different backbone networks.

Model Accuracy Precision Missed Detection Loss

Vgg16 0.750 0.192 0.25 1.456
Resnet34 0.890 0.301 0.11 0.369
Resnet18 0.83 0.225 0.17 0.384

DenseNet121 0.735 0.175 0.264 0.91
MFS-GC 0.955 0.356 0.045 0.24

The experiments indicate that the MFS-GC model introduced in this paper enhances
the underlying fine-grained features of bone stick images, yielding overall results superior
to alternative methods on the dataset employed in this study. Figures 8 and 9 illustrate the
training loss and accuracy curves for each algorithm. From the graphs, it is evident that
all models tend to converge with the network model in this paper achieving the highest
accuracy of 95.5% after 30 training epochs, which is accompanied by a training loss of
0.24. This performance is, in general, superior to that of other networks. DenseNet121
exhibits the slowest convergence speed with an accuracy as low as 73.5%, while the Vgg16
model converges rapidly but achieves a relatively lower accuracy of only 75%. Resnet18
and Resnet34 demonstrate accuracies of 83% and 89%, respectively, indicating that for the
bone stick image dataset in this study, the performance of residual networks surpasses that
of other networks. Additionally, a comparison among different residual networks reveals
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that the performance of the MFS-GC model, utilizing the Resnet50 backbone network,
outperforms Resnet18 and Resnet34.
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4.3.2. Complexity Analysis

To objectively measure the complexity of the proposed model, the parameters (Params)
and floating-point operations (FLOPs) were computed in this study [25–27]. Additionally,
a comparative analysis was conducted with other CNN network models for reference. The
GFLOPs were calculated based on a 224 × 224 input scale, and the experimental results are
presented in Table 3.

Table 3. Comparison of different model.

Model Number of Parameters Floating-Point Operations (FLOPs)

VGG16 138 M 32.2
Densenet121 8.1 M 5.9

MFS-GC 27.6 M 4.2

Generally, a model’s computational complexity is directly proportional to its parame-
ter count and FLOPs. Larger models typically entail more parameters and computational
requirements. Choosing an appropriate model depends on the specific application require-
ments and the availability of computational resources.

The data from Table 3 reveal that the proposed methodology in this study has a
parameter count of 27.6 million and a computation workload, measured in FLOPs (Floating
Point Operations), of 4.2 G. In comparison, the VGG16 network possesses a parameter count
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of 138 million and a FLOP value of 32.2 G. Hence, it is asserted that the model presented
in this paper demonstrates superior performance. Subsequently, a comparative analysis
between the MFS-GC model and the DenseNet121 network reveals that while DenseNet121
has a relatively lower parameter count, it exhibits higher FLOPs. Consequently, after
carefully weighing computational resources against model performance, the MFS-GC
model was selected due to its provision of enhanced feature representation. Notably, this
model achieves a significant reduction in parameter count and computational workload
while concurrently improving performance.

4.3.3. Different Test Subsets

Considering that the authentic application scenario of bone stick rejoining involves
unearthed damaged fragments of bone stick, the rejoining relationships are thus unknown.
To assess the model’s high feasibility in addressing the task of bone stick rejoining, we
conducted experiments and constructed the dataset CBSD_I, comprising 800 authentic
interfered bone inscription fragments and 200 pairs of bone stick fragments with known
concatenation relationships. The evaluation metric used is rejoining accuracy. Figure 10
shows the rejoining capability of the MFS-GC model on the COBD_T and COBD_I test
datasets. The vertical axis represents accuracy, ranging from 0 to 1, while the horizontal
axis indicates the judgment requirement Top-T for rejoining accuracy. The figure illustrates
rejoining accuracy from Top-1 to Top-20. It can be observed from the graph that the accuracy
of bone stick fragments with an added authentic interference has experienced a certain
decrease compared to CBSD_T. However, overall, the model proposed in this paper exhibits
good rejoining capability on both test sets.
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4.3.4. Comparison with Other Literature Methods

To assess the reliability of the model proposed in this paper, comparative experiments
were conducted with the models presented in references [12,28,29]. As indicated in Table 4,
reference [28] employs a fundamental Siamese network framework, utilizing Resnet34 as
the backbone feature extraction network to address the issue of predicting radiance in sky
images. However, it lacks the incorporation of multi-scale contour guidance, resulting in a
simplistic network model and consequently lower accuracy. Reference [29] utilizes an en-
hanced Siamese depth feature fusion method, leading to improved rejoining effects on bone
stick images. Nevertheless, this method merely overlays convolutional features of different
scales without specifically focusing on edge information, leaving room for enhancement in
the context of bone stick images. In contrast, reference [12] combines residual networks
with spatial pyramid pooling, employing a two-dimensional Siamese neural network for
matching excavated wooden pieces and obtaining a matching probability. While achieving
a high accuracy rate of 89.8%, it predominantly emphasizes texture features, leading to
decreased performance when dealing with complex bone stick images. Through compari-
son, the MFS-GC model proposed in this paper achieves an accuracy of 95.5%. This model
demonstrates superior applicability in the domain of bone stick rejoining.
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Table 4. Comparison of different literature algorithms.

Accuracy (%) Precision Time (s)

Literature [28] 76.4 0.16 44.86
Literature [29] 83.6 0.224 23.7
Literature [12] 89.8 0.289 42.62

MFS-GC 95.5 0.356 34.6

Table 5 presents the comparative performance of the MFSGC algorithm designed in
this study and algorithms from references [12,28,29] on the CBSD dataset, which are evalu-
ated based on the Top-T accuracy metric. From the table, it can be observed that the MFS-GC
algorithm achieves a significant improvement of nearly 11% in the Top-1 accuracy metric
compared to the algorithm in reference [12]. In terms of Top-5, 10, and 15 accuracy metrics,
the MFS-GC algorithm demonstrates noticeable performance enhancements. Overall, the
MFS-GC model devised in this study achieves the best composite performance, particularly
with a Top-15 recall rate reaching 95.5%, highlighting the superiority of this algorithm.

Table 5. Comparison of accuracy at different Top-T (%).

Top-T Literature [28] Literature [29] Literature [12] MFS-GC

Top-1 31.5 38.0 53.5 64.0
Top-5 48.5 55.5 69.0 75.5
Top-10 69.0 72.5 80.5 89.0
Top-15 76.4 83.6 89.8 95.5

4.3.5. Ablation Experiments

1. Comparison of accuracy under different layer feature fusion structures

To illustrate the role of multi-scale feature fusion, experiments were conducted on
networks with different feature fusion structures. Table 6 presents the accuracy of the
networks without feature fusion scales R1, R2, R3, and R4, respectively. During test-
ing, the connections of the corresponding scales in the concat layer in Figure 6 were
selectively disconnected.

Table 6. Comparison under different feature fusion structures.

Feature Fusion Architecture Accuracy Missed Detection Time

Without R1 91.63 8.37 32.91
Without R2 87.46 12.54 27.31
Without R3 81.33 18.67 22.68
Without R4 74.02 25.98 19.34
Only scale4 69.96 30.04 10.66

MFS-GC 95.50 4.50 35.63

From Table 6, it can be observed that compared to models with full-scale feature fusion,
the absence of any feature fusion structure leads to a certain degree of reduction in rejoining
accuracy. This indicates that each intermediate feature layer contributes to the conjunction
accuracy. Therefore, the superiority of the multi-scale fusion approach proposed in this
paper has been validated.

2. Validation of SPADE to guide edge contours

To validate the effectiveness of SPADE guidance, we compared networks utilizing the
SPADE model for contour guidance with the original backbone feature extraction network
without the SPADE model. As shown in Table 7, compared to the network without the
SPADE model, the proposed MFS-GC model in this study preserves the contour features of
the bone stick fragment images, resulting in an improvement of 6.0% in rejoining accuracy.
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Table 7. Comparative experiments with and without SPADE guidance.

SPADE Resnet50 (Backbone) Accuracy

×
√

Top-15: 0.895
Top-10: 0.745
Top-5: 0.615
Top-1: 0.38

√ √
Top-15: 0.955
Top-10: 0.89
Top-5: 0.755
Top-1: 0.64

4.3.6. Distance Metric Performance

In practical analysis, understanding the magnitude of differences between individuals
is crucial for evaluating their similarities and categories. Similarity measurement is a
method for assessing how data samples are interrelated or close to each other. Typically,
this involves calculating the distance between the features of entities. Similarity measures
are usually represented as numerical values, with higher values indicating greater similarity
between data samples. These values are often transformed to a scale between 0 and 1,
where 0 signifies low similarity (data objects are dissimilar), and 1 indicates high similarity
(data objects are very similar). In other words, as the correlation between data objects
strengthens, the distance decreases, and the similarity score increases. In this context,
Euclidean distance is considered optimal and valuable for distance computation.

To clarify this issue, we take the example of four pairs of conjugate bone stick images
from the test set, where the upper image A_01 corresponds to the lower image A_02,
and their similarity scores are presented in Table 8. The closer the distance measurement,
the higher the similarity score for bone stick images. In Table 8, the average similarity
score among the four pairs of bone stick images is above 0.8, indicating a high correlation
between the matching results of the bone stick images and the distance measurements.

Table 8. Distance and similarity scores of pairs of bone stick images.

Bone Stick Pair Similarity Score Distance

No. 02750_01
No. 02750_02 0.91 0.6697

No. 02816_01
No. 02816_02 0.81 0.9265

No. 03136_01
No. 03136_02 0.86 0.8246

No. 119_01
No. 119_02 0.88 0.80331

5. Bone Stick Rejoining Results

After obtaining a candidate set of bone stick images for rejoining, two bone stick
images were identified by experts for rejoining through coordinate transformations. Based
on the outcomes in the IMS-GC model, Figure 11 illustrates partial successful examples
of rejoining results. As the corresponding damaged bone stick exhibits severe fractures
and increasingly indistinct fracture features, the difficulty of conjunction progressively
intensifies. Figure 12 presents a failed case of bone stick rejoining, which is attributed to
wear and discoloration in the fractured regions of the bone stick fragments. Wear creates
gaps between fragments, complicating the alignment of adjacent pieces, while discoloration
generates false edges, broadening the scope of potential matches. Consequently, the Top-T
rejoining results fail to encompass bone stick images that could genuinely rejoin, resulting
in rejoining failure.
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6. Conclusions

This paper proposes a multi-scale feature fusion Siamese network guided by edge
contour (MFS-GC) model to address the problem of rejoining damaged bone stick fragments.
To tackle the issue of the Batch Normalization (BN) layer losing low-level detailed features,
the SPADE model intervenes in the residual network by incorporating bone stick edge
contour images. This ensures that the network captures multi-scale edge contour features
at each layer. The features extracted are then combined across various scales, and similarity
measurement is performed using L2 distance to match bone stick fragment images locally.
The experimental results demonstrate that the model achieves a rejoining accuracy of 95.5%
on the test dataset. The algorithm described in this paper converts the task of reassembling
damaged bone stick fragments into a similarity matching problem. This provides a useful
reference for the reassembly of damaged bone sticks that were unearthed from the Wei-yang
Palace in Chang’an City during the Han Dynasty, and it assists experts. However, if the
features of bone stick fragments in the fractured region are not distinct, the algorithm may
fail to identify matching fragments, leading to potential errors in judgment. Future work
involves enhancing the robustness of the IMS-GC model.
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