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Abstract: This paper addresses the performance degradation of deep neural networks caused by
learning with noisy labels. Recent research on this topic has exploited the memorization effect:
networks fit data with clean labels during the early stages of learning and eventually memorize
data with noisy labels. This property allows for the separation of clean and noisy samples from
a loss distribution. In recent years, semi-supervised learning, which divides training data into a
set of labeled clean samples and a set of unlabeled noisy samples, has achieved impressive results.
However, this strategy has two significant problems: (1) the accuracy of dividing the data into clean
and noisy samples depends strongly on the network’s performance, and (2) if the divided data are
biased towards the unlabeled samples, there are few labeled samples, causing the network to overfit
to the labels and leading to a poor generalization performance. To solve these problems, we propose
the curriculum regularization and adaptive semi-supervised learning (CRAS) method. Its key ideas
are (1) to train the network with robust regularization techniques as a warm-up before dividing the
data, and (2) to control the strength of the regularization using loss weights that adaptively respond
to data bias, which varies with each split at each training epoch. We evaluated the performance of
CRAS on benchmark image classification datasets, CIFAR-10 and CIFAR-100, and real-world datasets,
mini-WebVision and Clothing1M. The findings demonstrate that CRAS excels in handling noisy
labels, resulting in a superior generalization and robustness to a range of noise rates, compared with
the existing method.

Keywords: deep learning; learning with noisy labels; image classification; semi-supervised learning;
sample selection

1. Introduction

Deep neural networks (DNNs) have achieved remarkable results on various tasks, such
as image classification [1], object detection [2], visual tracking [3], and text matching [4].
These results have been obtained using large labeled datasets that are meticulously collected
and manually annotated. However, acquiring a vast amount of high-quality annotated data
is expensive and time consuming. Alternative cost-effective methods for mining large-scale
labeled data include querying commercial search engines [5], collecting tagged social media
images [6], using machine-generated labels [7], labeling by a single annotator [8], and
crowdsourcing [9]. The labels obtained by these alternative methods inevitably include
unreliable labels, known as noisy labels. Real-world datasets have been reported to contain
noisy labels at rates ranging from 8.0% to 35.8% [2,10,11]. DNNs tend to overfit to noisy
labels, and such overfitting degrades their generalization performance [12]. Therefore,
learning with data containing noisy labels poses a significant challenge in the field of
machine learning.

A recent study [13] found that DNNs tend to learn simple patterns of samples with
clean labels before fitting the noisy labels. This property, known as the memorization
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effect, is employed in various methods related to learning with noisy labels (LNL). In
LNL research, there are several approaches, such as robust networks [2,14,15], robust loss
functions [16–19], and sample selection [20–23]. The sample selection technique exploits the
memorization effect by monitoring losses. It then removes noisy samples that are likely to
have noisy labels by dividing the training data before the network fits the noisy labels. This
technique prevents the network from fitting noisy labels and improves the generalization
performance [21,22].

One of the major factors in the progress of LNL research is the development of
combination strategies with semi-supervised learning (SSL). In SSL, to reduce the cost
of collecting labels, the training data consist of a small number of labeled samples and a
large number of unlabeled samples. Advanced early-learning regularization (ELR+) [24]
and DivideMix [25] achieve a significantly better performance than previous methods in
LNL, using several techniques proposed in SSL. ELR+ employs a technique to generate
pseudolabels and sets targets from the network’s outputs before the network fits noisy labels.
This method can prevent the network from memorizing training data by regularizing the
outputs of the network to match the class indicated by targets without explicitly selecting
noisy samples. However, if the dataset contains many noisy labels or there are only a
small amount of training data in each class, the network’s predictions become unreliable.
Unreliable predictions of the network set inaccurate targets, and the network cannot be
regularized correctly.

In contrast with ELR+, DivideMix explicitly divides the training data into a labeled
sample set with clean labels and an unlabeled sample set by monitoring losses. The major
difference from the sample selection [21–23] is that DivideMix performs SSL without using
the labels of the noisy sample set. DivideMix uses high-loss training data, which would
be ignored in the sample selection, as unlabeled data and adds a regularization term
that matches the network’s prediction to the pseudolabel generated from the network’s
prediction for the unlabeled data. This approach avoids overfitting to noisy labels and
improves the generalization performance. However, the accuracy of dividing the training
data into clean and noisy labeled sets in DivideMix is highly sensitive to the performance of
the network. If the dataset contains a large proportion of noisy labels, the divided training
data are biased toward a set of unlabeled samples, and the number of labeled samples is
small. As a result, the network overfits to the labels, and the generalization performance
is poor.

In this paper, we propose the curriculum regularization and adaptive SSL (CRAS)
method, which is designed to address the challenges associated with LNL. CRAS incor-
porates two key components: (1) a warm-up phase using curriculum regularization (CR),
which trains the network with robust regularization before the training data are divided,
and (2) adaptive weighted loss (AWL) within SSL, which controls the strength of regu-
larization by adaptive loss weights assigned to data bias that vary with the split at each
training epoch. The method sets targets similarly to ELR+ and applies thresholds to ensure
regularization using only reliable targets, with the thresholds automatically determined ac-
cording to the learning difficulty of each class. CRAS offers a generally applicable solution
that can be integrated with various methods that combine sample selection with SSL; it has
demonstrated a promising performance on standard benchmarks and real-world datasets.

The contributions of this paper are organized as follows:

• Proposal of CR: A robust warm-up method for handling noisy labels, which uses only
reliable targets for regularization. The proposed CR builds on ELR+ and functions as
a potent warm-up technique specifically tailored to noisy labels. In comparison with
ELR+, this method offers an enhanced confidence during the warm-up phase for the
hard samples, which in turn improves the model’s overall performance. In CRAS, the
model trained by CR is used for sample selection. This differs from existing methods,
which use the model trained by cross-entropy.

• Development of adaptive SSL: AWL replaces the weights of the unsupervised loss
used in existing combined sample selection and semi-supervised learning methods
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with the weights that we designed. This approach achieves SSL, which is highly robust
to noisy labels by monitoring the bias of training data at each epoch, which has not
previously been considered, and by adjusting the weights of unlabeled losses with
an AWL.

• State-of-the-art performance: CRAS has demonstrated exceptional results on im-
age classification using standard benchmark image classification datasets, including
CIFAR-10 and CIFAR-100 [26], and the real-world datasets mini-WebVision [25] and
Clothing1M [2].

The remainder of this paper is organized as follows. Section 2 provides a review of
related work on deep learning with noisy labels. Section 3 introduces our proposed CRAS
method. Experimental results are discussed in Section 4, followed by the conclusions in
Section 5.

2. Related Work

In this section, we review recent studies on LNL, SSL, and SSL with noisy labels.

2.1. Learning with Noisy Labels

LNL has been applied in various deep learning tasks, such as computer vision [1,2],
information retrieval [27,28], image restoration [29–31], and language processing [4]. In
the field of LNL, many methods have been designed to train networks that are robust
to noisy labels. We categorize these LNL methods into two categories: robust learning
algorithms and noise detection algorithms. Robust learning algorithms include robust
networks [2,14,15], robust loss functions [16–19], and robust regularization [8,32]. Noise de-
tection algorithms include sample selection [20–23] and pseudolabeling [33–37]. ELR+ [24],
DivideMix [25], and LongReMix [38] which combine several LNL and SSL techniques, are
state-of-the-art methods in the field of LNL.

2.2. Robust Learning Algorithms

Robust learning algorithms train networks that are robust to noisy labels without
explicitly identifying noisy labels, and they improve network generalization performance
compared with previous methods. Loss-correction approaches are widely adopted in
robust learning algorithms. Patrini et al. [39] used the estimated noise transition matrix
to correct the loss function. However, accurate estimation of the noise transition matrix
is difficult. Arazo et al. [40] weighted samples by modeling the loss per sample with a
Gaussian mixture model (GMM).

2.3. Noise Detection Algorithms

A noise detection algorithm is a robust learning method that detects and explicitly
handles noisy labels. Sample selection is a noise detection algorithm that monitors losses
at each training iteration and explicitly divides a set of samples into those that are likely
to have clean labels (clean samples) and those that are likely to have noisy labels (noisy
samples), according to a threshold. Sample selection uses a property of DNNs called
memorization effects, whereby DNN learns samples with clean labels in the early stages of
training, even if the dataset contains noisy labels. That is, DNN can remove samples that
are likely to be noisy by explicitly selecting samples with small losses.

Co-teaching [22] uses two networks: the small-loss samples selected for one network
are used to train the other network. This strategy avoids the accumulation of errors that
occurs in MentorNet [21], which assigns weights to samples in a single network. Co-
teaching+ is a method that uses two networks, similarly to Co-teaching, but adopts the
decoupling [41] strategy, in which the weights of the networks are updated only when the
predictions disagree. In Co-teaching, the two networks converged, leading to the same
problem as in MentorNet. However, in Co-teaching+, the weights of the two networks do
not converge, and the divergence of the predictions is maintained.
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2.4. Semi-Supervised Learning

SSL is intended to reduce the cost of annotation and improve the network performance
by collecting and using large amounts of unlabeled data, which are easier to obtain than
labeled data. SSL methods enhance the generalization performance by training the network
on a small amount of labeled data and using its predictions as pseudolabels for unlabeled
data. In recent years, consistency regularization has become a widely adopted method
in SSL. The core idea of consistency regularization is to compel the network to output
consistent predictions for the same sample transformed with different augmentations.

MixMatch [42], ReMixMatch [43], and FixMatch [44] are anchoring-based methods for
data augmentation that use consistency regularization. MixMatch suppresses overfitting
by sharpening the mean of the network’s predictions for samples with several different
weak augmentations and employing the MixUp strategy [45]. ReMixMatch improves on
MixMatch by generating pseudolabels from the output for data with weak augmenta-
tions and using a distribution alignment that induces the distribution of pseudolabels
for unlabeled data to closely match the distribution of data with strong augmentations.
FixMatch achieves a state-of-the-art performance as an extended anchoring-based method
by simply applying a threshold to pseudolabels and matching the output of the network
to unlabeled data only when the model generates reliable pseudolabels. FlexMatch [46]
further refines FixMatch by considering the learning difficulty for each class and setting a
threshold. In FlexMatch, a class with a small number of samples for which the confidence
level of prediction at time step k reaches the threshold is considered to have a high learning
difficulty, as formulated in the following equation.

σ
(k)
c =

N

∑
n=1

1

(
max(p(k)

n ) > τ
)
· 1
(

argmax(p(k)
n ) = c

)
, (1)

where τ is a predefined threshold, c is a class, N is the total number of unlabeled data, and
p(k)

n is the model prediction for unlabeled data. For classes with few samples for which
the confidence level of the prediction reaches the threshold, the estimated value of σ

(k)
c is

small. Therefore, the fixed threshold τ can be scaled to the learning difficulty of each class
by applying the following normalization.

β
(k)
c =

σ
(k)
c

max
c

σ(k)
, (2)

τ
(k)
c = M(β

(k)
c ) · τ, (3)

where M(·) denotes the nonlinear mapping function defined as M(x) = x/(2 − x).

2.5. Semi-Supervised Learning with Noisy Labels

SSL techniques are widely adopted in the field of LNL. ELR is a method that adopts
a technique known as temporal ensemble [47] in SSL. ELR exploits the early-learning
phenomenon [24], whereby networks predict true classes during the early stages of learning,
even when trained on datasets that contain noisy labels, to set target probabilities. Here,
we consider a classification problem in which C is the number of classes. Given N samples,
{xi, yi}N

i=1, xi ∈ Rd represents the ith input sample (with dimension d), and yi ∈ {0, 1}C

represents the one-hot label that corresponds to xi. In this case, by passing the output
of DNN for input xi through a softmax layer and obtaining the network’s predicted
probability pi, the loss function commonly used for training classification networks is
expressed as follows.

LCE =
1
N

N

∑
i=1

H(yi, pi), (4)

where H(·) denotes cross-entropy. When the network is trained on a dataset that contains
noisy labels, (4) inverts the gradient because element yi,c of the label for the true class c is
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zero. As a result, the network remembers noisy labels, leading to a poor generalization
performance. ELR takes advantage of the early-learning phenomenon and adds a regular-
ization term that maximizes the inner product of the network output and the target, under
the assumption that the target remains unaffected by overfitting to noisy labels.

LELR = LCE +
λ

N

N

∑
i=1

log (1 − ⟨pi, ti⟩), (5)

where ti denotes the target probability set for xi. The gradient on the regularization term of
the ELR cancels out the gradient of the cross-entropy on the noisy sample. This mitigates
its effect and implicitly suppresses overfitting to the noisy labels. The number of samples
in the temporal ensemble determines the target probability. The following equation sets
the target probability, using the moving average as the temporal ensemble method.

t(k)i = βt(k−1)
i + (1 − β)p(k)

i , (6)

where 0 ≤ β ≤ 1 denotes the momentum. Combining the following two methods yields
more refined targets than ELR alone. One approach is to use two different networks and
estimate the target for one network from the output of the other network, as seen in the
Co-teaching and related methods [22,23,25]. Another approach estimates the target using
the average weights of the network used in SSL, to reduce confirmation bias [48]. The
technique known as ELR+ incorporates weight averaging, employs two networks, and uses
the MixUp method.

The most promising approach in LNL that has been proposed in recent years is the
combination of sample selection with SSL. In this approach, the training of the network is
regularized by the SSL strategy, which discards only the labels of the sample sets that are
likely to have noisy labels and are ignored by sample selection, and uses them as unlabeled
data. Ding et al. [49] and Kong et al. [50] demonstrated the effectiveness of the SSL strategy
in LNL scenarios. Nevertheless, these methods struggle to perform well under conditions
with high noise rates (i.e., on data that have a large proportion of noisy labels).

The most successful approach that combines sample selection with SSL is DivideMix,
which first performs a warm-up using all training data with noisy labels, as shown in (4). In
contrast with the approach of Arazo et al. [40], a GMM is then fitted to the loss distribution.
The training data are used as a set of labeled samples with a high probability of being clean
(having a clean label for each sample), X = {xb : b ∈ (1, ..., B)}, and a set of unlabeled
samples with a low probability of being clean, U = {ub : b ∈ (1, ..., B)}. Here, B denotes the
batch sizes of the labeled and unlabeled sample sets. Finally, DivideMix uses the MixMatch
strategy to perform SSL using the unlabeled sample set. The labeled and unlabeled datasets
transformed by MixMatch are denoted by X ′ and U ′, respectively. The training loss is
the cross-entropy loss for the labeled dataset, as defined in (4). The unsupervised loss for
unlabeled datasets is the mean squared error (MSE), defined as follows.

Lu =
1
B ∑

p,ŷ∈U ′
∥ŷ − p∥2

2, (7)

where ŷ denotes the pseudolabels. In data with a large proportion of noisy samples, the
network may predict the same class for all of the samples. To avoid this, the total loss
is expressed as formalized in (8) using the regularization term of (9), following Tanaka
et al. [33] and Arazo et al. [40].

L = LCE + λuLu + Lreg, (8)

Lreg = ∑
c

πc log

(
πc

/
1

|X ′|+ |U ′| ∑
p∈X ′+U ′

p

)
, (9)
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where λu denotes the hyperparameter that controls the strength of the regularization of
the unsupervised loss. Moreover, the improvements to DivideMix have attracted attention
in the field of SSL-based LNL. Ortego et al. [51] identifies noisy labels by performing a
k-nearest-neighbors search to quantify the agreement between feature representations and
labels. Cordeiro et al. [38] designed a two-stage training framework called LongReMix.
This framework comprises a high-confidence training stage for identifying a set of clean
samples with high confidence, followed by a guided training stage. The guided stage
uses a small-loss mechanism to combine the identified samples with clean samples for
retraining purposes.

3. Proposed Method

In this section, we introduce CR to enhance warm-up performance in the presence
of noisy labels, and AWL, which adjusts to the bias of the learning data for adaptive SSL.
The CRAS method incorporates both CR and AWL. By implementing CR in the warm-up
phase of sample selection and incorporating AWL into the loss function in the SSL phase,
we emphasize that the CRAS framework can be easily integrated with existing methods
such as DivideMix. Algorithm 1 presents the pseudocode for CR, and Figure 1 provides an
overview of the CRAS method.

Algorithm 1 Curriculum Regularization

Require: batch size B, training data N = {(xi, yi) : i ∈ (1, ..., B)}, temporal ensembling
momentum β(0 ≤ β ≤ 1),
weight averaging momentum γ(0 ≤ γ ≤ 1), regularization parameter λ, mixup
hyperparameter α, confidence threshold τ, network parameters Θ1, Θ2

1: t1, t2 = 0[B×C], 0[B×C] ▷ set initial average predictions
2: Θ̄1, Θ̄2 = 0, 0 ▷ set initial average weights
3: while e ≤ WarmupEpoch do
4: ûi = −1 : i ∈ (1, ..., B) ▷ set initial predictions for all data
5: for m in [1,2] do
6: B̃ = mixup(B, α) ▷ apply mixup augmentation to the mini-batch
7: Θ̄m = γΘ̄m + (1 − γ)Θm ▷ apply weight averaging
8: for b in B do
9: t(e)b = βt(e)b + (1 − β)p(e)

b ▷ apply temporal ensembling
10: for c = 1 to C do
11: Calculate σc using (1) and (10) ▷ compute estimated learning effect
12: if max σ

(e)
c = ∑B

b=1 1(argmax ûb = −1) then

13: βc = σ
(e)
c / max{max

c
σ(e), B − ∑C

c σ
(e)
c } ▷ set warm-up threshold

14: else
15: Calculate βc using (2) ▷ compute normalized estimated learning effect
16: end if
17: Calculate τc using (3) ▷ set the flexible threshold for class c
18: end for
19: if max pb(yb|Θm(xb)) > τavg then
20: ûb = argmax pb ▷ update the prediction
21: end if
22: Calculate loss using (4), (11), and (12)
23: Update Θm using SGD ▷ update network parameters
24: end for
25: end for
26: end while
27: return Θ1, Θ2
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Warm-up phase Division phase SSL phase

Predictions

Backward

Backward

Predictions

Predictions

Loss distribution

Loss distribution

Clean 
probabilities

Clean 
probabilities

Data bias

Data bias

All 
inputs

GMM

GMMNetwork B

All 
inputs

Network A

Network B

Network A

Network B

Network A MixMatch

MixMatch

Including the proposed CR method Including the proposed AWL method

Figure 1. Overview of the proposed CRAS method. The CR loss function LCR defined in (11) serves
as a warm-up technique, training two networks. During the division phase, GMMs are employed at
each epoch to divide the per-sample loss distribution into labeled and unlabeled sets, following the
DivideMix strategy. In the figure, the labeled and unlabeled datasets used for model A are denoted
by X (A) and U (A), respectively. Similarly, the labeled and unlabeled datasets used for model B
are denoted by X (B) and U (B), respectively. In the SSL phase, the AWL function defined in (15) is
incorporated into the MixMatch algorithm and controlled by adaptive weights λa in (14), which
account for data bias.

3.1. Curriculum Regularization

Methods such as DivideMix, which combine sample selection with SSL, necessitate
a network warm-up period for dividing the training data. DivideMix exploits the mem-
orization effect to warm up the network with all the training data before dividing them
into clean and noisy sets, while preventing the network from fitting noisy labels. The
pre-noisy-label-fitting network is then used to divide the training data. However, when the
number of samples per class is small, or the noise rate is high, the model may fit the noisy
labels before completing adequate training.

Our proposed CR is based on ELR+, which functions as a robust warm-up technique
for noisy labels. ELR+ uses a regularization term that uses targets generated from the
predictions made during the early-learning stage of the network that represent the true
class; these targets cancel the loss gradient for samples for which the network’s prediction
and the label do not match. DNNs have the property that they learn easy samples first
and then hard samples later, even when trained on a dataset that contains only correct
labels [13]. Thus, the network outputs low-confidence predictions for hard samples. In
ELR+, low-confidence targets are set for hard samples, canceling the loss gradient for these
samples and hindering learning.

CR takes a different approach from that of FixMatch: it sets a threshold for targets
instead of pseudolabels. By performing regularization using only reliable targets (those
that exceed the threshold), it solves the problem of the suppressed learning of hard samples.
However, setting a high threshold during the warm-up stage results in no targets exceeding
the threshold, leading to regularization not being applied and the network adapting to
noisy labels. To solve this problem, it is necessary for the threshold to be tailored to the
learning situation of the samples. Moreover, it has been reported that the learning difficulty
of samples varies between classes [46]. The learning status of the network is affected by this
classwise learning difficulty. FlexMatch performs curriculum pseudolabeling (CPL), which
uses classwise thresholds that are set according to the learning difficulty, as formalized
in (3), to select pseudolabels. Inspired by CPL, CR performs target selection in a manner
that considers classwise learning difficulty. In the warm-up phase, if learning difficulty
were measured using a threshold τ, similar to that of (1), a low threshold would be set for all
classes because of the small number of targets that exceed the threshold, and regularization
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would apply to all samples. In CR, the above problem is solved without using additional
parameters by setting a threshold as formalized in the following equation; this threshold
measures the learning difficulty from the average predictions within the mini-batch.

τavg =
1
B

B

∑
b=1

max
c

t(k)b . (10)

The τ in (1) is replaced by τavg, and the loss function for CR is expressed as follows.

LCR = LCE +
1
B

B

∑
b=1

F (t(k)b ) log
(

1 −
〈

pb, t(k)b

〉)
, (11)

F (t(k)b ) = 1

(
max

c
t(k)b > τ

argmax t(k)b

)
. (12)

3.2. Adaptive Weighted Loss for Data Bias

In the SSL phase, a small number of learning samples per class or a high noise rate
may cause an imbalanced division of learning data, with a larger set of unlabeled samples
and a smaller set of labeled samples. This imbalance can contribute to overfitting and
consequently hinder the generalization capability of the model. DivideMix solves this
problem by increasing the regularization strength, using a large value of λu in (8), when the
noise rate is high. However, the sizes of both the labeled and unlabeled data sets fluctuate
according to the sample selection per epoch. This challenge, unique to the sample selection
methods employing noisy labels, has not been addressed in prior SSL methods [42,44] or
the methods introducing them [25].

We propose an AWL that adjusts to learning data imbalances. When the learning
data become heavily skewed towards the unlabeled sample set, and the labeled sample
set becomes small, a larger weight is assigned to improve the generalization performance.
Moreover, by adjusting the weights according to the balance of the learning data as it varies
during the learning process, it becomes possible to set appropriate weights even when
the noise rate is unknown, without the need to change the hyperparameters. A simple
function that assigns a large weight when the proportion of labeled samples r is small, such
as r−2, can be considered. However, when r is small, the weight becomes too large, and the
supervised loss in the cross-entropy term is ignored. Therefore, we designed and applied a
scaling function to control the divergence of weights, as follows.

W(r(k)) = s(r(k)) · (r(k))−2, (13)

where s represents a scaling function s(x) = mxn/2−m2 log10 x, m is a hyperparameter,
n = log10 C, and C is the number of classes. It should be noted that the designed weights
are suitable for the loss function used in DivideMix; to apply s to other loss functions, it
may be necessary to redesign the weights accordingly. The weights can easily be designed
by allowing the weights to take on larger values as the number of labeled samples de-
creases. As the number of classes increases, the classification becomes more difficult, and
the model tends to output lower prediction probabilities. As a result, the MSE values of the
unsupervised loss in DivideMix become smaller. To solve this problem, the weight λa is
expressed as follows.

λa = C · W(r(k)). (14)

Finally, using λa and replacing it with λu in (8), our final loss function is defined as follows.

L = LCE + λaLu + Lreg. (15)
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4. Experiments
4.1. Datasets and Implementation Details

We used two simulated datasets and two real-world datasets in our experiments, in
line with recent studies [24,25,38]. Table 1 summarizes the statistics of the datasets used,
which are described in detail below. It should be noted that our use of training, validation,
and test data also followed previous studies.

Table 1. Statistics of the datasets used in our experiments.

Dataset Train Val Test Image Size Classes

Simulated datasets with clean annotations

CIFAR-10 50 k - 10 k 32 × 32 10
CIFAR-100 50 k - 10 k 32 × 32 100

Datasets with real world annotations

Clothing1M 1M 14 k 10 k 224 × 224 14
WebVision1.0 66 k 2.5 k - 256 × 256 50

ILSVRC12 - 2.5 k - 256 × 256 50

Noise patterns in the real world can be classified into three types: symmetric (Sym.)
noise [52], asymmetric (Asym.) noise [53], and instance-dependent noise [54]. Symmetric
noise occurs when labels for a certain fraction of samples are randomly altered to labels
representing different classes. In contrast, asymmetric noise involves the alteration of
labels to labels of closely related classes, mirroring the type of label noise typically seen
in real-world scenarios. Instance-dependent noise is a more complex form of label noise,
where the noise is influenced by both the class and the unique features of each instance [55].
Our experiments encompassed datasets influenced by all of these types of noise.

4.1.1. Simulated Noisy Datasets

In the experiments, the CRAS method was evaluated on two standard benchmarks,
CIFAR-10 and CIFAR-100 [26], with noisy labels generated using simulated noisy datasets.
The experiments were conducted with two types of simulated noisy labels: those generated
from symmetric noise and asymmetric noise, as described in refs. [25,33,56]. The network
used for both the CIFAR-10 and CIFAR-100 experiments was an 18-layer PreAct ResNet [57],
trained for 300 epochs with a batch size of 128. The initial learning rate was set to 0.02 and
this was reduced by a factor of 10 at 150 epochs for CIFAR-10 and 200 epochs for CIFAR-100.
The warm-up period for the proposed CR was set to 25 epochs for CIFAR-10 and 60 epochs
for CIFAR-100.

Most of the parameters of CRAS were kept similar to those of DivideMix and ELR+
and were found to be robust to changes in the noise rate. For instance, the parameter m
was set to 0.4 for CIFAR-10 and 0.6 for CIFAR-100, for all noise rates, and the threshold τ
was set to 0.95 for both of these datasets. The threshold for the GMM was set to 0.5 for all
of the experiments, in contrast with DivideMix, which has a threshold of 0.6 only for the
case of 90% symmetric noise.

4.1.2. Real-World Datasets

The CRAS method was evaluated on two real-world datasets, Clothing1M and WebVi-
sion 1.0 (specifically, the mini-WebVision dataset described in refs. [20,21]). Clothing1M is
a dataset containing one million training images collected from online shopping websites,
with an estimated noise rate of 38.5% [58]. By theoretical hypothesis testing, Chen et al. [59]
showed that the noisy labels contained in Clothing1M were affected by complex noise,
called instance-dependent label noise, which depends on individual features. WebVision
contains 2.4 million images crawled from the web using the 1000 concepts in ImageNet
ILSVRC12. The mini-WebVision dataset includes the first 50 classes of the subset of Web-
Vision that comprises Google images, and has an estimated noise rate of 20% [11]. In our
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experiments, the real-world datasets chosen were ranked as the top two with respect to
noise rate, according to the latest survey findings [60]. Thus, it is important to emphasize
that the chosen datasets serve as carefully selected benchmarks, with respect to complexity
and size, for assessing the performance of our CRAS.

For the Clothing1M dataset, a ResNet-50 network pretrained on ImageNet was used,
following the approach of previous work [56]. For the mini-WebVision dataset, an Inception-
ResNet V2 model was employed [61]. The CR period was 3 epochs. The hyperparameters
for these experiments were set to m = 0.01 and τ = 0.7.

By evaluating CRAS on these real-world datasets, the effectiveness of the method for
handling noisy labels and improving network performance in practical scenarios could be
demonstrated. The results of these evaluations provide further evidence for the potential
of CRAS as a robust method for LNL in real-world applications.

4.1.3. Comparative Methods

CRAS was compared with multiple baseline methods, including state-of-the-art meth-
ods for handling noisy labels in supervised learning tasks. Following [25], the baseline
methods for the comparison, in addition to those discussed in Section 2, include the meth-
ods listed below:

• PENCIL [34]: A method that iteratively updates class probabilities and refines noisy
labels by minimizing the difference between the estimated class distribution and the
class distribution predicted by the network.

• Joint-Optim [33]: A method that estimates true labels from network predictions and
relabels samples for explicit loss correction.

• Iterative-CV [20]: A method that iteratively applies cross-validation to noisy labeled
datasets to improve label quality and model performance.

• CORES [62]: A method that uses a data reweighting mechanism and an iterative
learning process to identify and reweight clean and noisy samples, thereby enhancing
the learning process.

By comparing CRAS with these methods, the relative performance and effectiveness
of CRAS in handling noisy labels could be assessed. A successful comparison would
demonstrate the advantages of CRAS with respect to its ability to handle noisy labels,
robustness to different noise rates, and improved generalization performance.

4.2. Results on Simulated Noisy Datasets

Table 2 shows the results of the comparison between CRAS and the state-of-the-
art methods on CIFAR-10 and CIFAR-100, with different proportions of symmetric and
asymmetric noise. Best and Last are standard metrics that are commonly used to evaluate
model performance and stability in deep learning, respectively [23,25,33]. Best is the highest
accuracy that the model achieved during training; this indicates the peak performance of the
model. Last is the average accuracy over the final 10 epochs; this indicates the robustness
of the model to noisy labels toward the end of training. For CRAS and LongReMix, the
standard deviation is also shown. On CIFAR-100, CRAS outperformed DivideMix across
all noise rates and noise patterns. It also outperformed the state-of-the-art LongReMix
method in noise experiments with the exception of 90% of symmetric noise. In particular,
on CIFAR-100 with 20%, 50%, and 80% symmetric noise, CRAS outperformed the Best
of the state-of-the-art LongReMix by 1.6%, 1.5%, and 2.7%, respectively. On CIFAR-10,
CRAS outperformed the Best of DivideMix by 0.8%, 0.6%, and 4.0% for symmetric noise
rates between 50% and 90%. CRAS also outperformed LongReMix by 0.3% and 0.1% for
symmetric noise rates 50% and 90%, but achieved a lower accuracy than DivideMix and
LongReMix for 20% symmetric and 40% asymmetric noise rates. In addition, the standard
deviation of CRAS was found to be smaller than that of LongReMix. Furthermore, the
overfitting in CRAS was evaluated according to the difference between Best and Last. A
smaller difference indicated that overfitting had a more limited effect. For example, for
LongReMix (CIFAR-100, Asym. 40%), the difference between Best and Last was 4.9%,
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whereas for CRAS, it was only 0.4%. This was true even when the accuracy of CRAS
was inferior to that of LongReMix (e.g., for CIFAR-10 Sym. 20% or Asym. 40%). This
demonstrates that, even if training continued after CRAS reached its Best accuracy, its
performance did not deteriorate significantly, indicating that it was resistant to overfitting.
We believe that, on CIFAR-10 with symmetric noise of 20% or asymmetric noise of 40%, the
network was able to complete sufficient training without fitting noisy labels. Therefore,
the use of CR resulted in a slightly lower accuracy than DivideMix and LongReMix; the
limitation of CIFAR-10 is discussed in Section 4.6.

Table 2. Test accuracy (%) on CIFAR-10 and CIFAR-100 datasets with symmetric and asymmetric
noise. Results of baseline methods are copied from the original papers and Junnan et al. [25]. The
maximum accuracy is expressed as Best, and the average accuracy of the last ten epochs is expressed
as Last. The standard deviations are also reported for three different randomly generated types
of noise.

Dataset CIFAR-10 CIFAR-100
Noise Type Sym. Asym. Sym. Asym.
Method/Noise Ratio 20% 50% 80% 90% 40% 20% 50% 80% 90% 40%

Cross-Entropy Best 86.8 79.4 62.9 42.7 85.0 62.0 46.7 19.9 10.1 -
Last 82.7 57.9 26.1 16.8 72.3 61.8 37.3 8.8 3.5 -

Mixup (17′) [45] Best 95.6 87.1 71.6 52.2 - 67.8 57.3 30.8 14.6 -
Last 92.3 77.6 46.7 43.9 - 66.0 46.6 17.6 8.1 -

Co-teaching+(18′) [23] Best 89.5 85.7 67.4 47.9 - 65.6 51.8 27.9 13.7 -
Last 88.2 77.6 45.5 30.1 - 64.1 45.3 15.5 8.8 -

PENCIL (19′) [34] Best 92.4 89.1 77.5 58.9 88.5 69.4 57.5 31.1 15.3 -
Last 92.0 88.7 76.5 58.2 88.1 68.1 56.4 20.7 8.8 -

DivideMix (20′) [25] Best 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 31.5 60.8
Last 95.7 94.4 92.9 75.4 92.1 76.9 74.2 59.6 31.0 55.5

MOIT (21′) [51] Best - - - - - - - - - -
Last 93.1 90.0 79.0 69.6 92.0 73.0 64.6 46.6 36.0 55.0

LongReMix (23′) [38]
Best 96.3 ±

0.1
95.1 ±
0.1

93.8 ±
0.2

79.9 ±
2.7

94.7 ±
0.1

77.9 ±
0.2

75.5 ±
0.2

62.3 ±
0.5

34.7 ±
0.3

59.8 ±
0.1

Last 96.0 ±
0.1

94.8 ±
0.1

93.3 ±
0.2

79.1 ±
3.1

94.3 ±
0.1

77.5 ±
0.2

74.9 ±
0.2

61.7 ±
0.5

30.7 ±
5.9

54.9 ±
0.4

CRAS
Best 95.7 ±

0.1
95.4 ±
0.0

93.8 ±
0.0

80.0 ±
0.7

93.1 ±
0.0

79.5 ±
0.0

77.0 ±
0.1

65.0 ±
0.0

34.5 ±
0.5

78.0 ±
0.1

Last 95.5 ±
0.1

95.1 ±
0.1

93.5 ±
0.0

78.9 ±
0.8

91.9 ±
0.1

79.0 ±
0.0

76.5 ±
0.1

64.7 ±
0.0

34.1 ±
0.6

77.6 ±
0.2

4.3. Results on Real-World Datasets

Tables 3 and 4 show the results on the Clothing1M and WebVision datasets, respec-
tively. For Clothing1M, we maintained the same random seed and used the official code
of DivideMix [25] and ELR+ [24]. This allowed an equitable comparison between these
methods and our proposed method. It is important to note that the DivideMix and ELR+
results for Clothing1M reported in recent studies [63,64] were worse than those published
in their respective papers. Therefore, we present the results obtained from our experiments
using the authors’ public code. On Clothing1M, CRAS outperformed DivideMix by 0.4%
and outperformed the best-performing ELR+ by approximately 0.1%. On ILSVRC12 and
mini-WebVision, CRAS outperformed the state-of-the-art methods on both datasets. In
particular, it outperformed the best state-of-the-art method on the ImageNet ILSVRC12
validation set by approximately 1.5%. We attributed this result to the fact that the proposed
AWL solved the problem of setting λu = 0 in (8), in contrast with DivideMix, which did
not take advantage of unlabeled samples. Moreover, as shown in Table 1, Clothing1M is
the largest of the evaluation datasets and includes noise arising from complex real-world
environments. Therefore, it is evident that CRAS has a broader application scope than
state-of-the-art methods.
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Table 3. Comparison of CRAS with state-of-the-art methods with respect to test accuracy (%) on the
Clothing1M dataset. The results of the baseline methods were copied from the original papers, but
the results annotated with * were obtained from the experiments using the authors’ public code.

Method Test Accuracy (%)

Cross-Entropy 69.21
Joint-Optim (18′) [33] 72.16
M_correction (19′) [40] 71.00
DivideMix * (20′) [25] 74.11
ELR+ * (20′)[24] 74.45
CORES (21′) [62] 73.24
LongReMix (23′) [38] 74.38

CRAS 74.54

Table 4. Comparison of CRAS with state-of-the-art methods with respect to test accuracy on the
mini-WebVision dataset. These results represent the top1 (top5) accuracy (%) on the WebVision
validation set and the ImageNet ILSVRC12 validation set. The results of the baseline methods were
copied from the original papers.

WebVision ILSVRC12
Top1 Top5 Top1 Top5

Decoupling (17′ ) [41] 62.54 84.74 58.26 82.26
MentorNet (18′) [21] 63.00 81.40 57.80 79.92
Co-teaching (18′) [22] 63.58 85.20 61.48 84.70
F-correction (19′) [34] 61.12 82.68 57.36 82.36
Interactive-CV (19′) [20] 65.24 85.34 61.60 84.98
DivideMix (20′) [25] 77.32 91.64 75.20 90.84
ELR+ (20′) [24] 77.78 91.68 70.29 89.76
MOIT (21′) [51] 77.90 91.90 73.80 91.70
LongReMix (23′) [38] 78.92 92.32 - -

CRAS 78.60 93.00 76.72 92.88

4.4. Ablation Study
4.4.1. Influence of Each Component

We conducted an ablation study of the CRAS method on CIFAR-100 to investigate the
influence of each of its components. We analyzed the results presented in Table 5 as follows:

• To study the influence of CR, we trained two networks (with and without CR) using
a standard warm-up. CRAS without CR demonstrated a degraded performance for
all of the noise rates. As the noise rate increased, CRAS without CR outperformed
DivideMix, suggesting that AWL helps prevent overfitting to a small number of
labels. In contrast with DivideMix, CRAS without CR consistently performed better
than, or as well as, DivideMix, despite using the same hyperparameters for all of
the noise patterns. In real environments, it is difficult to identify the proportion of
noise in datasets. Therefore, these results demonstrate that AWL is robust to unknown
noise rates.

• To study the influence of AWL, we trained a network (without AWL) using CR as a
warm-up for DivideMix. Although the performance degradation was relatively small,
it was more pronounced for higher noise rates. These results suggest that CR has a
more significant impact on performance than AWL and that the warm-up performance
is crucial for the combined sample selection and SSL strategy. However, CR results in
a significant decrease in accuracy without AWL for 90% label noise. These results are
discussed in Section 4.4.2.

• The effectiveness of CR compared with ELR+ was evaluated by comparing the results
of CRAS without AWL to those of DivideMix and ELR+ combined. For noise rates
other than 50%, CR performed notably better than ELR+, thereby demonstrating its
superior effectiveness.
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Table 5. Comparison of ablation studies with respect to test accuracy (%) on CIFAR-100 datasets with
symmmetric noise.

Method/Noise Ratio 20% 50% 80% 90%

CRAS Best 79.5 76.9 65.0 33.8
Last 79.0 76.4 64.7 33.3

CRAS w/o CR Best 77.0 74.8 60.6 32.8
Last 76.5 74.3 60.3 32.1

CRAS w/o AWL Best 79.5 75.8 64.5 29.2
Last 78.9 75.3 64.2 28.6

DivideMix and ELR+ Best 78.1 75.8 60.2 28.0
Last 77.8 75.3 59.9 27.7

4.4.2. Analysis of the Numbers of Clean Labels and Labeled Samples

We now assess the effectiveness of each component, such as CR and AWL, with respect
to label precision, area under the curve (AUC), and the rate of labeled samples. Label
precision is defined as the proportion of labels classified as clean that are actually clean
labels. When the precision is 1, all labels contained in the labeled sample set are clean
labels, in which case the setup is similar to that of the standard SSL. AUC takes into account
both the clean label proportion and how well the model fits to labels that are incorrectly
classified as clean. In SSL-based LNL, the rate of labeled samples is defined as the ratio of
the number of labeled samples to the total number of labeled and unlabeled samples. A
higher rate corresponds to a smaller number of unlabeled samples. By comparing this rate
with the label precision, we can determine how effectively our proposed method can select
accurately labeled samples.

Figure 2 visualizes the label precision, AUC, and rate of labeled samples for each
component throughout the training process. For 20% and 50% label noise, the precision
remained very close to 1, even with DivideMix. However, the use of CR helped prevent
correct labels from being incorrectly identified as noise, thereby increasing the number of
labeled samples. CR significantly enhanced precision and AUC under conditions with high
label noise (over 80%) and proved to be more robust than the standard warm-up methods.
In particular, although precision improved substantially, a severely reduced number of la-
bels destabilized the training in scenarios with 90% label noise. Under conditions with high
label noise and a limited number of correct labels, AWL effectively prevented overfitting to
labels and maintained the precision of noise detection.
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Figure 2. Precision of noisy label detection, AUC, and rate of labeled samples (%) on CIFAR-100
dataset with symmetric noise.

4.4.3. Comparison of Training Time

Table 6 presents a comparison of the overall training times of DivideMix and CRAS.
In this experiment, we used a single NVIDIA A6000 GPU. CRAS took 30 min less than
DivideMix. The most time-consuming phase in DivideMix is the phase of dividing the
training data. CRAS allows for a longer warm-up period by introducing CR, and the
reduction in the division phases decreases the total training time. Specifically, the warm-up
phase in CRAS extends to 60 epochs, whereas DivideMix has a warm-up of only 30 epochs.
Therefore, the inclusion of the process outlined in Algorithm 1 has a relatively small effect
on the computation time of CRAS.

Table 6. Comparison of the total training times of DivideMix and CRAS on CIFAR-100 dataset with
90% symmetric noise.

Method DivideMix [25] CRAS

Time (hours) 3.5 3.0

4.5. Sensitivity to Hyperparameters

We evaluated the effect of the settings of two hyperparameters: m for AWL and the
threshold τ for CR. Figure 3 shows the adaptive weights for different values of m. The
hyperparameter m is highly sensitive in situations where the labeled sample ratio r is
extremely low, for example, when the noise rate is high. However, its sensitivity can be
captured at the stage of designing the scaling function, so that the range of hyperparameters
to be explored can be limited. Therefore, m is not determined experimentally by preparing
several patterns; instead, it is determined to some extent at the design stage of the scaling
function. In the case of Figure 3, m = 0.6, for which the weight value increases smoothly as
r decreases, is the optimal parameter.
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Figure 3. Adaptive weight distributions of (13) for various values of hyperparameter m when the
number of classes is 100.
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Figure 4 illustrates the sensitivity of CRAS to different target thresholds τ. CRAS is
robust to the hyperparameter τ because its accuracy varies by no more than 2% for various
values of τ. Therefore, if we set τ to a small value, there are no targets below the threshold
for most classes, and CR learns in a similar manner to ELR+.
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Figure 4. Sensitivity to target threshold τ on CIFAR-100 with 50% symmetric noise.

4.6. Limitations

Our proposed CRAS method has limitations, including the following:

• CR is designed for cases in which memorization occurs during the warm-up phase,
causing the network to fit noisy labels. However, on a dataset such as CIFAR-10,
where the number of classes is small and the noise rate is as low as 20%, the network
may be well-trained before memorization takes place.

• AWL is intended for cases in which the number of labels per class is small, leading
to overfitting to a limited number of labels. On CIFAR-10 with 20% symmetric noise
and 40% asymmetric noise, the number of labels per class may be sufficient, and
the network’s training may be hindered by increased regularization. Under these
situations, it is desired that regularization by unsupervised loss in (15) does not
contribute to learning, i.e., it is set at m = 0, but in this case, AWL has no effect.

An effective method of overcoming these limitations is to combine CRAS with con-
trastive learning [65], which learns latent feature representations of images. One possible
use of contrastive learning is to use the model parameters trained by unsupervised con-
trastive learning as the initial values of the model parameters used for CR, or to add a
loss term for learning feature representations to the loss function of CR. In this manner,
we may be able to warm up effectively using additional feature representations, even in
situations where the effect of CR is limited. In addition, by adopting a method using feature
representations, such as SimMatch [66], as semi-supervised learning and using AWL as
weights in the unsupervised loss, we believe that unlabeled data can be used effectively
even in situations where MixMatch cannot achieve good results, despite its use of AWL.

5. Conclusions

In this paper, we present the CRAS method for addressing the challenges faced by
DNNs in LNL. CRAS performs robust regularization during the warm-up phase and
controls the strength of regularization by adaptively adjusting loss weights according to
data bias. Its uniqueness is encapsulated in two principal components: CR and AWL.
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• CR:

– CRAS implements a specialized warm-up phase using CR, diverging from con-
ventional methods. This phase is carefully designed to progressively adjust to the
complexity of the training data, focusing on datasets affected by noisy labels.

– The critical aspect of this approach is the application of regularization at the onset
of training. Regularization effectively counters the tendency of the network to fit
to noisy labels prematurely; such overfitting is a prevalent challenge in standard
training approaches.

• AWL:

– In the SSL framework of CRAS, the AWL component improves on traditional
static loss-weighting methods. It dynamically modifies the loss weights according
to the detected bias in the data.

– This dynamic property is vital for aligning the network’s training with the most
dependable data. AWL’s adaptability to different noise levels and data distribu-
tions significantly improves the effectiveness of the learning process in a variety
of scenarios.

Our experiments on CIFAR-10, CIFAR-100, Clothing1M, and mini-WebVision demon-
strates that CRAS consistently outperformed state-of-the-art methods in handling noisy
labels, thereby achieving superior generalization and robustness across a range of noise
rates. CRAS is particularly effective for classification when the number of classes is large
and the number of labels per class is small, as in CIFAR-100, or when the noise rate is
high and the number of clean labels is small, or both. Although there is room for further
improvement in specific scenarios, such as CIFAR-10 with lower noise rates, the results
indicate that CRAS has great potential as an effective and robust method for learning from
noisy labels in real-world applications. Future work will focus on refining the method to
address its limitations and exploring its applicability to other domains and tasks.
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