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Abstract: The construction of complex networks from electroencephalography (EEG) proves to
be an effective method for representing emotion patterns in affection computing as it offers rich
spatiotemporal EEG features associated with brain emotions. In this paper, we propose a novel
method for constructing complex networks from EEG signals for emotion recognition, which be-
gins with phase space reconstruction to obtain ordinal patterns and subsequently forms a graph
network representation from the sequence of ordinal patterns based on the visibility graph method,
named ComNet-PSR-VG. For the proposed ComNet-PSR-VG, the initial step involves mapping
EEG signals into a series of ordinal partitions using phase space reconstruction, generating a se-
quence of ordinal patterns. These ordinal patterns are then quantified to form a symbolized new
sequence. Subsequently, the resulting symbolized sequence of ordinal patterns is transformed into a
graph network using the visibility graph method. Two types of network node measures, average
node degree (AND) and node degree entropy (NDE), are extracted from the graph networks as
the inputs of machine learning for EEG emotion recognition. To evaluate the effectiveness of the
proposed construction method of complex networks based on the visibility graph of ordinal patterns,
comparative experiments are conducted using two types of simulated signals (random and Lorenz
signals). Subsequently, EEG emotion recognition is performed on the SEED EEG emotion dataset.
The experimental results show that, with AND as the feature, our proposed method is 4.88% higher
than the existing visibility graph method and 12.23% higher than the phase space reconstruction
method. These findings indicate that our proposed novel method for constructing complex networks
from EEG signals not only achieves effective emotional EEG pattern recognition but also exhibits
the potential for extension to other EEG pattern learning tasks, suggesting broad adaptability and
application potential for our method.

Keywords: emotion recognition; complex network; ordinal patterns

1. Introduction

The emotional dimensions of electroencephalography (EEG) have garnered increas-
ing recognition, owing to its extensive applications in diagnosing mental illnesses and
facilitating human–computer interaction [1,2]. By delving into the study of emotional
patterns within EEG, we can enrich our comprehension of human behavior, refine psy-
chological health treatment methodologies, and cultivate more intelligent and responsive
systems within the realm of human–computer interaction. In recent years, the efficacy of
complex networks in unraveling the spatiotemporal characteristics and dynamic shifts in
emotional EEG has become evident. EEG signals, serving as physiological indicators of
brain activity, contribute significantly to this exploration. Given the intricate structure and
interconnections within the brain network, the adoption of complex networks for analyz-
ing both brain networks and emotional EEG has garnered increasing attention. Research
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grounded in complex networks offers a more holistic insight into the intricate topology and
information transmission among distinct brain regions [3]. In [4], Lu et al. constructed a
new complex network pattern based on the arrangement characteristics of time series and
achieved excellent results in brain state recognition based on EEG signals in physiology
and pathology. In [2], Yao et al. constructed a complex network of EEG signals using a
viewable approach and extracted spatial network features, achieving high resolution in
EEG emotion recognition. The transformation of EEG data into complex networks proves
to be a valuable approach, providing a more effective representation of the complexity and
dynamics inherent in brain activity. This transformation enhances our capacity to accurately
capture the neural mechanisms associated with emotions. Consequently, this avenue of
research holds the promise of advancing our understanding of emotional EEG, paving the
way for innovative developments in neuroscience and human–computer interaction.

Complex network methods have the capability to unveil intricate interactions and
connectivity patterns among various brain regions, a collaboration crucial in emotional
processing. By scrutinizing connection patterns within complex networks, a deeper compre-
hension of the functions and interactions among different brain regions during emotional
processing is attained. Unlike time-domain or frequency-domain methods applied in EEG
signal analysis, complex networks can encapsulate both global and local features within
the brain network, thus surpassing the constraints of localized time- or frequency-domain
features [3]. The dynamic fluctuations within the brain network across different time points
are observable through the construction of complex networks, providing a more profound
insight into the spatiotemporal characteristics of brain activity during emotional processes.

To comprehensively analyze the connection density of nodes in complex networks
from both local and global perspectives, effective measures, such as average node degree
(AND) and node degree entropy (NDE), come into play. The AND serves as a valuable
metric to offer overall insights into the connection density of nodes in a network, providing
a descriptive overview of the network’s general properties. Meanwhile, NDE plays a
pivotal role in the analysis of complex networks, aiming to articulate the uncertainty and
diversity inherent in the degree distribution among nodes. The degree of a node denotes
the number of edges connected to it, and NDE takes into consideration the distribution
of these degrees, shedding light on the quantity and relative frequency of nodes with
varying degrees in the network. This metric offers crucial information about the degree
distribution across nodes, allowing for a deeper understanding of how nodes interconnect
and the prevalence of nodes with similar or distinct degrees. By capturing the uncertainty
inherent in degree distribution, NDE becomes a powerful tool for unraveling the intricacies
of network structure. It operates as a metric for gauging the complexity of the network
with highly structured networks exhibiting higher node degree entropy. Additionally,
NDE can be harnessed to scrutinize the correlation between node degrees, uncovering
connections between nodes with specific degrees. This aspect proves instrumental in
capturing features of degree correlation, providing valuable insights into the network’s
organization. In essence, NDE, by encapsulating the diversity and uncertainty present
in degree distribution, contributes supplementary information for a more profound and
nuanced analysis of complex networks.

The phase space reconstruction method involves deriving a set of multidimensional
vectors from the original time series using embedding dimensions and delay time esti-
mation techniques [5]. These vectors serve as nodes in the complex network, and the
edges connecting these nodes are determined based on the similarity between vectors.
However, this method faces instability issues during the embedding dimensions and de-
lay time estimation process. Additionally, establishing the optimal threshold for edge
relationship judgment proves challenging, resulting in diminished robustness in practical
applications [4,6]. On the other hand, the visibility graph construction method regards
data points in the original time series as nodes in the network with the visual relationships
between these data points serving as edges [7,8]. In contrast to the phase space recon-
struction method, the visibility graph construction method boasts fewer parameters and
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enhanced algorithmic robustness [9–11]. However, it is important to note that the size
of the network in this approach is directly proportional to the length of the time series.
Consequently, when analyzing longer time series, the complexity of the network increases
correspondingly, leading to heightened computational complexity in extracting subsequent
features from the complex network [12–15].

In our research, we propose a pioneering method for constructing complex networks,
which diverges from traditional approaches. The novelty of our method lies in the fusion of
phase space reconstruction techniques and visibility graph methods, enabling the simulta-
neous depiction and analysis of complex network structures and dynamic behaviors from
both temporal and spatial viewpoints. Phase space reconstruction delves into the internal
relationships and dynamic behaviors of network nodes, while visibility graph construction
highlights the overarching structure and connectivity patterns of nodes [16,17].

By amalgamating the phase space reconstruction and visibility graph methods, we
harness the advantages of both approaches, thereby enhancing the accuracy and robustness
of complex network construction. The specific implementation can be tailored and fine-
tuned according to practical needs [18]. Through the integration of these two methods,
we attain a more comprehensive comprehension of network properties and patterns. By
concurrently leveraging the benefits of phase space reconstruction and visibility graph
construction, we augment the efficiency and precision of our analyses. In summary, the
main contributions of our work include the following:

(1) A novel method for constructing complex networks from EEG signals, named ComNet-
PSR-VG, is introduced by exploiting both the phase space reconstruction method and
the visibility graph method;

(2) Employing the proposed ComNet-PSR-VG method to effectively identify EEG emo-
tion states, obtaining outstanding classification outcomes of emotion recognition.

The remainder of the paper is as follows: The second part presents the proposed new
method for constructing complex networks and the extracted network structure features;
the third part presents the results of the data analysis and EEG emotion classification
experiments; the fourth part compares our method with existing related research through
experiments and results; and the last part is the conclusion of the article.

2. Materials and Methods

Our proposed method includes several key steps, as shown in Figure 1:

• Recording the corresponding emotional EEG signals generated by different emotional
stimuli;

• Constructing complex networks for each channel of EEG signals using the proposed
method and proposing network structure entropy features;

• Extracting entropy features of network structure;
• Inputting these features as feature sequences into the machine-learning model to

obtain the corresponding classification results.
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2.1. Experimental Dataset

In our study, we utilized the SEED (SJTU Emotion EEG Dataset), an openly available
dataset for thorough analysis. This dataset encompasses data from 15 Chinese subjects with
a gender distribution of 7 males and 8 females and an average age of 23.27 years (standard
deviation: 2.37). The emotional stimuli for the participants were derived from 15 Chinese
film clips, each designed to elicit positive, neutral, or negative emotions, and each film
lasted approximately 4 min. To execute our experiments, each participant engaged in
15 trials, resulting in a total of 45 trials (15 trials for each of the three emotional categories:
positive, neutral, and negative). The experimental design comprised three distinct groups
of experiments [19]. In each trial, the subjects were exposed to emotional stimuli through
designated film clips, inducing the specified emotion (positive, neutral, or negative). This
rigorous experimental setup aimed to comprehensively capture the varied responses to
emotional stimuli across the different emotional categories.

2.2. Construction of Complex Networks from EEG Signals Based on Visibility Graph of
Ordinal Patterns

The signal from each channel in EEG can be treated as a time series {xi},
where i = 1, 2, . . . N. Initially, the phase space reconstruction method is used to re-
construct this time series into a sequence [4] using embedding dimensions d and time delay
τ. The resulting sequence can be written as follows:

vj =
(
xj, xj+τ , xj+2τ

)
j = 1, 2, 3, . . . , L (1)

where L = N − (d − 1) ∗ τ and denotes the number of partitions vj in the resulting sequence.
Subsequently, each partition vj is mapped into an ordinal pattern O(i) = (π0, π1,

π2, . . ., πd−1) where πi ∈ {0, 1, 2, . . ., d−1} (πi ̸= πj if i ̸= j). Specifically, the indices
of each element in the partition vi = (xi, xi+τ , xi+2τ , . . ., xi+(d−1)τ) are rewritten to
vi = (xi+π0 , xi+π1 , xi+π2 , . . . , xi+πd−1

), according to the ascending order of the values of
elements in the partition vi:

xi+π0 ≤ xi+π1 ≤ xi+π2 · · · ≤ xi+πd−1
, ∀xi+πk ∈ vi and πk = {0, 1, 2, · · · , d − 1} (2)

For example, taking the {18, 9, 5, 11} as a partition, it can be mapped to an ordinal
pattern {2, 1, 3, 0}.

Finally, we introduce a metric for quantifying the ordinal patterns, denoted as the
ordinal pattern number (OPN) [4]. Its formulation is articulated as follows:

OPN
(

O(i)
)
= Inv (π0)× (d − 1) ! + Inv (π1)× (d − 2) ! + · · ·+ Inv (πd−2)× (1) ! + 1 (3)

where (·)! denotes the factorial function, and Inv (πi) represents the inverse number of
each element πi in the ordinal pattern O(i) = (π0, π1, π2, . . ., πd−1). In accordance with
Equation (3), the minimum value of the OPN is 1, which corresponds to the permutation
π = (0, 1, 2, . . ., d − 1) in ascending order, the maximum value of the OPN is d!, and
descending order is π = (d − 1, . . ., 2, 1, 0).

Following the aforementioned time series transformation and employing the phase
space reconstruction method and ordinal pattern quantization, the time series with a
data length of N is transformed into a symbol sequence with a length of L. Subsequently,
utilizing the visibility graph method [4], the resulting symbol sequence is mapped into
a graph network. To clearly illustrate the proposed method, which constructs a net-
work, the basic process of constructing a complex network from a time series is shown in
Figure 2a. Figure 2b presents the proposed method for time-series mapping to the OPN of
network nodes.
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2.3. Extracting Network Entropy Measures from Complex Networks

Network measures are commonly expressed through diverse network structural
parameters, such as nodes and links, which typically represent network-related features
and characterize the patterns of the network. As one of the classical network measures, the
average node degree (AND) serves as a valuable tool for offering comprehensive insights
into the connection density of nodes within the network. This network node measure
serves as an effective descriptor of the overall properties of the network. It captures the
average connection strength among neighboring nodes, facilitating an understanding of
the distribution of node degrees and the characteristics of connections in the network. The
calculation expression for AND is as follows:

knn =
1
N

N

∑
i=1

ki
nn (4)

where ki
nn indicates the degree of neighboring nodes for a node.

Network entropy, derived from information theory, is a measure of disorder used to
quantify the information content encoded within a graph network. It provides a quantita-
tive metric to assess network complexity. As one of the crucial network structure entropies,
the strength of node degree entropy (NDE) lies in its comprehensive and unified depiction
of the degree distribution within the network structure, determined through the consid-
eration of neighbor degrees of nodes. The NDE proves highly effective in assessing node
heterogeneity concerning neighbor degrees with its calculation expressed as follows:

H = −∑
i

pi log pi (5)

pi is the probability description of the node degree, which can be expressed in the
following form:

pi =
di

N
∑

j=1
dj

(6)

di is the number of neighbors in a node network.
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2.4. Machine-Learning Model

The support vector machine (SVM) stands as a pivotal classification model in the
realm of machine learning with the primary goal of delineating samples by identifying
an optimal hyperplane. Its fundamental objective centers around maximizing intervals
for effective segmentation. In our research, we leveraged individual channels of EEG
signals as distinctive structural attributes within a network. The SVM served as our
classifier, adept at distinguishing between positive and negative emotions. Harnessing
kernel-based capabilities, the SVM exhibited prowess in achieving both linear and nonlinear
classifications, thanks to diverse kernel functions with varying performance characteristics.
Our study meticulously scrutinized multiple prevalent SVM kernels, ultimately identifying
the radial basis function (RBF) as the most efficient performer. For our SVM classifier, we
utilized the LIBSVM software package (https://www.csie.ntu.edu.tw/~cjlin/libsvm/),
specifically implementing the RBF kernel. The configuration of SVM parameters involved
values such as S, T, and C alongside default settings. S is the model setting type for
SVM, T is the kernel function type, and C is the cost. Notably, T was set at 2, while S
stood at 0. Determining the optimal C value entailed a meticulous one-step search within
the parameter space (10−3:2). Our methodological framework, which integrates complex
network feature measures for emotive recognition via the SVM classifier, is comprehensively
illustrated in Figure 3.
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2.5. Performance Evaluation

In our study, accuracy, sensitivity, and specificity serve as the performance metrics for
evaluating the EEG emotion recognition task. Positive emotion is designated as positive
instances, while negative emotion is designated as negative instances. The mathematical
definitions of these evaluation metrics are expressed as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

Sensitivity =
TP

TP + FN
(8)

Speci f icity =
TN

TN + FP
(9)

where TP represents the number of the true positive test samples correctly classified as
positive, FN represents the number of the true positive test samples incorrectly classified
as negative, TN represents the number of the true negative test samples correctly classified
as negative, and FP represents the number of the true negative test samples incorrectly
classified as positive.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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3. Results

In our experiment, we first evaluate the performance of the proposed complex network
construction method using simulated signals. We employ numerically generated time series
with well-defined properties to initiate our empirical exploration. Within our investigation,
we delve into the analysis of numerically simulated chaotic signals, widely acknowledged
as robust approximations of numerous real-world datasets. Furthermore, we evaluate the
performance of the proposed method, which constructs a complex network using EEG
emotion signals. We broaden the scope of our proposed approach for network construction
to analyze EEG signals, thus shedding light on its prospective applications.

3.1. Performance Evaluation of the Proposed Complex Network Method Using the
Simulated Signals

The purpose of the experiment is to use Lorenz signals and random signals as examples
to verify the ability of our method to convert time series into network representations.
Random time series are comprised of sequences of sequentially uncorrelated random
variables. In our study, the random signals utilized consist of uniformly distributed
pseudo-random numbers within the interval (0, 1). Figure 4a illustrates an example of the
random time series used in our study, comprising 2000 samples (data points). To further
underscore the robust applicability of the proposed method, which constructs a complex
network for time series analysis, we extend our investigation to constructing networks for
chaotic signals. In our experimentation, simulated chaotic signals are generated using a
Lorenz system with the system function defined by Equation (10). This equation yields
components x, y, and z, corresponding to the convection velocity, temperature difference,
and temperature gradient components, respectively. Figure 4b portrays an example of the
x component of the Lorenz system employed in our experiment, comprising 2000 samples.

dx
dt = −10 × (x − y)
dy
dt = 30 × x − y − x × z
dz
dt = x × y − 8

3 × z
(10)
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construction method. (a) An example of random time series; (b) An example of x component of
Lorenz system by the proposed network construction method.

In the context of our proposed complex network methodology for constructing net-
works from random signals, the scalar time series undergo an initial reconstruction process
into a sequence of ordinal partitions. This reconstruction is based on the phase space
reconstruction method, utilizing different embedded dimensions (d = 6) with a fixed time
lag (τ = 2). In accordance with the definition of the proposed method, which constructs a
complex network, each ordinal partition is considered a network node, characterized by a
specific set of ordinal patterns.

As shown in Figure 5a,b, the experimental results of the adjacency matrix of the
unweighted network structure for the random signal and Lorenz signal x components of
two thousand samples are presented, based on the proposed new method with embedded
dimension d = 6 with time lag τ = 2.
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Figure 5. Experimental results for the adjacency matrix of the network construction from random
signals and Lorenz signals by the proposed network construction method using embedded dimension
d = 6 with time lag τ = 2. (a) The result of the adjacency matrix for the random signal; (b) The result
of the adjacency matrix for the Lorenz signal x components.

We established 10 sets of Lorenz signals and 10 sets of random signals, employing the
proposed method to extract the NDE and AND network features from these respective
signal sets. A comparative analysis of the feature results was conducted. Figure 6a shows
the AND results for the 10 sets of Lorenz signals; the range of the AND values is from 330
to 390. Figure 6b shows the AND results for the 10 sets of random signals; the range of the
AND values is from 5.35 to 5.55. From Figure 6a,b, it can be concluded that the AND value
of the Lorenz signal is significantly higher than that of the random signal. In Figure 6c, a
box plot is presented for the NDE results, illustrating a comparison between the Lorenz
signals and random signals. The median NDE value of the Lorenz signal is 4.34, while the
median NDE value of the random signal is 3.42. The NDE value of the Lorenz signal is
larger than that of the random signal. The time series with different characteristics exhibit
significant differences in their network parameters, which is the significance demonstrated
by Figure 6.
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3.2. Performance Evaluation of EEG Emotion Recognition Based on the Proposed Complex
Network Construction Method

In Figure 7, the EEG data utilized in this study span a duration of 2 min, carefully
selected from the midpoint of the 62-channel EEG signals (specifically, from 60 s to 180 s).
The SEED dataset encompasses EEG signals from 15 subjects, each with 62 channels.
For each channel, we embarked on constructing a complex network using three distinct
methods. Subsequently, we extracted the network node degree entropy, employed it
as the input for the machine-learning models, and garnered the ensuing classification
results. Figure 7 and Table 1 elucidate the comparative outcomes of the three methods for
classifying positive and negative emotions within the SEED dataset. Figure 7a contrasts the
outcomes for positive and negative emotions based on the AND features, while Figure 7b
compares the results based on the NDE features. Upon scrutinizing the classification results
in Figure 7, it becomes evident that the proposed method’s performance in classifying
positive and negative emotions outshines significantly when compared to the outcomes of
the other two conventional complex network construction methods.
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negative emotions based on the AND features; (b) Comparison of outcomes for positive and negative
emotions based on the NDE features.

Table 1. The performance of the ComNet-PSR-VG method in constructing both AND and NDE
features to identify positive and negative emotions from EEG signals in the SEED dataset is detailed.
The values are presented as means ± standard deviations with positive emotions specified as positive
instances and negative emotions as negative instances.

Feature Method Sensitivity (%) Specificity (%) Accuracy (%)

AND
OPVG 90.96 ± 4.06 91.24 ± 6.46 91.39 ± 4.69

VG 84.69 ± 8.63 86.54 ± 9.04 86.51 ± 3.19
PSR 79.3 ± 8.49 80.08 ± 8.40 79.16 ± 3.69

NDE
OPVG 84.84 ± 6.97 85.99 ± 7.29 85.39 ± 7.09

VG 82.40 ± 7.98 83.36 ± 8.79 82.84 ± 8.35
PSR 81.01 ± 7.23 82.40 ± 8.01 81.66 ± 7.57

In this study, we conducted a comparative analysis of the impact of various data
lengths on classification outcomes. Figure 8 presents our exploration using data spans
of 30 s (from 60 to 90 s), 45 s (from 60 to 105 s), 60 s (from 60 to 120 s), 75 s (from 60 to
135 s), 90 s (from 60 to 150 s), 105 s (from 60 to 175 s), and 120 s (from 60 to 180 s) extracted
from the SEED dataset. We employed our proposed methodology to construct complex
networks for each of these seven data lengths. Subsequently, we derived the NDE feature
from the constructed complex networks and inputted them into machine-learning models
for classification. The outcomes depicted in Figure 8 reveal that, concerning the NDE
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feature, the classification performance for the 2 min data surpasses that of other durations.
Our experimental findings indicate that selecting longer-duration data yields improved
classification outcomes compared to shorter durations. Notably, with a data duration of
45 s, the proportion of redundant information increases, resulting in a slight decline in
classification accuracy. Nevertheless, the overarching trend illustrates that, as the duration
of the data increases, classification accuracy tends to enhance, reaching its pinnacle and
experiencing minimal variance with a 120 s data duration.
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4. Discussion

In our research, we propose an innovative approach to constructing complex networks
for EEG analysis, specifically targeting emotion recognition. This method synergizes the
features of phase space and visibility, demonstrating remarkable performance in emotion
recognition based on EEG signals across two categories. Our proposed method differs from
the existing approaches in several key aspects.

First, the selection of nodes for constructing complex networks diverges from the
conventional methods. While existing approaches typically select ordinal numbers of time
series as nodes, our method employs two parameters—dimension and delay—to map time
series to phase space. Nodes in this phase space then serve as the foundation for construct-
ing complex networks. Subsequently, these nodes are mapped into complex networks using
visibility methods. The rationale behind the success of our method lies in the belief that the
amalgamation of temporal and spatial features captures more physiological information
than relying solely on temporal features. To elucidate the distinctions in representations
of EEG signals in separate time-domain features and in combination with spatiotemporal
features, we conducted a comprehensive analysis. Specifically, we performed time-domain
feature analysis and spatiotemporal feature analysis on EEG emotional signals and EEG
epilepsy signals separately. Subsequently, we compared the results obtained from these
analyses. This meticulous approach provides insights into the efficacy of our proposed
method, shedding light on its potential advantages in understanding and categorizing EEG
signals related to emotions.

To demonstrate the superior performance of our proposed method in EEG emotion
classification, we conducted a comprehensive comparison with recent studies that utilized
the same SEED dataset. Our evaluation involved benchmarking against studies conducted
by Zheng, Li, and Song.

In Zheng’s research, the group sparse canonical correlation analysis (GSCCA) method
was introduced to perform simultaneous electroencephalogram (EEG) channel selection and
emotion recognition. Li’s study utilized the graph regularized sparse linear regression (GRSLR)
approach to address EEG emotion recognition problems, while Song’s study employed
dynamical graph convolutional neural networks (DGCNN) for EEG emotion recognition.
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Upon analyzing the results, as depicted in Table 2, the individual EEG emotion classi-
fication accuracies for Zheng’s study, Li’s study, and Song’s study were 82.96%, 87.39%,
and 90.40%, respectively. Notably, our proposed ComNet-PSR-VG method achieved an
outstanding individual EEG emotion classification accuracy of 91.39%, signifying a signifi-
cant enhancement in classification performance. These outcomes suggest that our method
outperforms the benchmark studies in EEG emotion classification. The proposed ComNet-
PSR-VG method effectively preserves crucial spatial structural information within the EEG,
enabling more accurate and efficient classification of emotions. The experimental results
underscore the method’s robustness and its ability to achieve superior performance in the
realm of EEG emotion recognition.

Table 2. The results of classification accuracy from Zheng’s study, Li’s study, and Song’s study.

Title 1 Dataset Methodology Mean Accuracy StdACC

Zheng’s study [20] SEED GSCCA 82.96% 9.95%
Li’s study [21] SEED GRSLR 87.39% 8.64%

Song’s study [22] SEED DBN-CRF 90.40% 8.49
Our work SEED NEM 91.39% 4.69%

In the realm of EEG emotion recognition, the temporal and spatial characteristics of
features harbor abundant information, enabling a more comprehensive depiction of brain
activity patterns and subsequently enhancing the precision of emotion recognition [23,24].
Tao’s investigation [25] employs attention-based convolutional recurrent neural networks
(ACRNN) to dynamically assign weights to different channels, integrating extended self-
attention into the RNN. This methodology yields features that retain rich information
across channels and time, demonstrating significant superiority over traditional emotion
recognition methods. In Wang’s study [26], a hybrid spatial–temporal feature fusion neural
network (STFFNN) is introduced, amalgamating extracted features through convolutional
neural networks (CNN) for spatial learning and utilizing Bi LSTM for network storage by
merging temporal and spatial features. In our study, we also extract features preserving
rich spatial and temporal information. However, our approach involves constructing a new
spatial network for EEG signals within the framework of complex networks to enhance the
extraction of EEG information.

Emotion recognition based on EEG signals holds promising applications, including
auditory attention research and clinical psychiatric investigations. Despite these prospects,
there are inherent limitations in the current research. This article presents a novel complex
network achieved through the fusion of phase space reconstruction and visibility graph,
thereby retaining the intricate temporal and spatial features of EEG signals. The absence
of a standardized criterion for selecting spatial dimensions and time-delay parameters in
phase space construction necessitates a discussion tailored to different signals and research
contexts. Moreover, emotional stimulation introduces a certain impact on the selection
of EEG patterns and features. In Chen’s study [27], a discernible relationship between
emotion and cognition was identified in specific regions during emotional interference,
encompassing the bilateral dorsal anterior cingulate cortex, anterior insula, left inferior
frontal gyrus, and superior parietal lobule, which exhibit sustained effects in these areas.
Research affirms the nervous system’s involvement in various interference processing types
with the regulation of emotional and cognitive interference relying on interactions within
extensive distributed brain networks. In Di Plinio’s investigation [28], the pivotal role of
the default mode network (DMN) region and executive region in emotional interference
processes was demonstrated. Negative emotional interference prompts activity regulation
in diverse regions, such as the frontal and parietal lobes, correlating with the regulation
of functional connections between these task-activation regions and DMN regions. Both
studies highlight that emotional interference triggers engagement in emotional processing
activities in specific brain regions, influencing characteristic responses within the brain
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network. Consequently, subsequent EEG emotion classification research should factor in
the impact of emotional interference and opt for suitable classification modes and features.

5. Conclusions

In this paper, we present a novel approach to construct complex networks for EEG
emotion recognition by synergizing the phase space reconstruction and visibility graph
methods. The main innovation in our proposed method lies in the seamless integration
of the phase space reconstruction and visibility graph methods. From the perspective
of the visibility graph of ordinal patterns, we proposed a new construction method of
complex networks from EEG signals, ComNet-PSR-VG. With the help of the phase space
reconstruction method, EEG signals are mapped to a series of ordered partitions and
symbolized to obtain a sequence of ordinal patterns. Subsequently, the generated symbolic
sequence of ordinal patterns is transformed into a graph network using the visibility graph
method. To validate the effectiveness and versatility, we constructed the experiment on
random signals, Lorenz signals, and the SEED emotion dataset by the proposed method.
Two types of network node measures, AND and NDE, are extracted from the resulting
graph networks. These extracted network features are then utilized as the input features
for emotion classification, employing SVM as the pattern classifier to discern positive
and negative emotions. The experimental results demonstrated outstanding classification
performance, reinforcing the effectiveness and universality of our method. Furthermore,
we compared our experimental results with existing research methods, showcasing the
superior performance of our proposed entropy measure in EEG emotion recognition.
The outstanding generalization observed in our proposed method suggests its significant
practical potential in the field of EEG emotion recognition. Overall, our method stands out
as a promising and effective approach for EEG emotion recognition, paving the way for
advancements in the broader domain of EEG pattern-learning research.
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