
Citation: Lombaers, P.; de Bruin, J.;

van de Schoot, R. Reproducibility

and Data Storage for Active

Learning-Aided Systematic Reviews.

Appl. Sci. 2024, 14, 3842. https://

doi.org/10.3390/app14093842

Academic Editor: Suchao Xie

Received: 29 March 2024

Revised: 26 April 2024

Accepted: 26 April 2024

Published: 30 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Review

Reproducibility and Data Storage for Active Learning-Aided
Systematic Reviews
Peter Lombaers 1,2, Jonathan de Bruin 3 and Rens van de Schoot 1,*

1 Department of Methodology and Statistics, Faculty of Social and Behavioral Sciences, Utrecht University,
3584 CS Utrecht, The Netherlands; p.j.lombaers@uu.nl or peter@idfuse.nl

2 IDfuse, 3526 KS Utrecht, The Netherlands
3 Department of Research and Data Management Services, Information Technology Services,

Utrecht University, 3584 CS Utrecht, The Netherlands; j.debruin1@uu.nl
* Correspondence: a.g.j.vandeschoot@uu.nl; Tel.: +31-302534468

Featured Application: Increasing reproducibility for active learning-aided systematic screening is
essential and our checklist can be used to evaluate reproducibility and data efficiency of software.

Abstract: In the screening phase of a systematic review, screening prioritization via active learning
effectively reduces the workload. However, the PRISMA guidelines are not sufficient for reporting the
screening phase in a reproducible manner. Text screening with active learning is an iterative process,
but the labeling decisions and the training of the active learning model can happen independently of
each other in time. Therefore, it is not trivial to store the data from both events so that one can still
know which iteration of the model was used for each labeling decision. Moreover, many iterations of
the active learning model will be trained throughout the screening process, producing an enormous
amount of data (think of many gigabytes or even terabytes of data), and machine learning models
are continually becoming larger. This article clarifies the steps in an active learning-aided screening
process and what data is produced at every step. We consider what reproducibility means in this
context and we show that there is tension between the desire to be reproducible and the amount
of data that is stored. Finally, we present the RDAL Checklist (Reproducibility and Data storage
for Active Learning-Aided Systematic Reviews Checklist), which helps users and creators of active
learning software make their screening process reproducible.

Keywords: systematic review; meta-analysis; active learning; transparency; open science; data
storage; reproducibility

1. Introduction

The number of scientific papers on any topic is skyrocketing, and the world’s scientific
output doubles every nine years [1]. For this reason, systematically and rapidly screening
many texts for relevance is becoming increasingly important. The number of systematic
literature reviews is growing rapidly [2]. Systematic searches form the basis for synthesizing
the state-of-the-art in a particular field and might be used not only for systematic, scoping,
narrative, mapping, or even umbrella systematic reviews, but also for meta-analyses,
diagnostic test accuracy, or network meta-analysis [3]. The process of systematic searching
entails several explicit and reproducible steps, as outlined in the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) guidelines [4]. Such efforts
help to make the result of a systematic search FAIR: findable, accessible, interoperable,
and reusable [5].

Developing a dataset of potentially relevant papers from a systematic search is an
iterative process aimed at balancing recall and precision [6], including as many poten-
tially relevant studies as possible (recall) while simultaneously limiting the total number
of studies to be screened (precision). Since a single literature search can easily result in

Appl. Sci. 2024, 14, 3842. https://doi.org/10.3390/app14093842 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093842
https://doi.org/10.3390/app14093842
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4297-0502
https://orcid.org/0000-0001-7736-2091
https://doi.org/10.3390/app14093842
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093842?type=check_update&version=2

Appl. Sci. 2024, 14, 3842 2 of 21

thousands of publications that must be read and screened for relevance, literature screening
is extremely time-consuming [7]. Artificial intelligence can help to speed up the process
of searching through large amounts of text data. Machine-supported pipelines have been
developed that assist in finding relevant texts for search tasks; for overviews, see [8–12].
A well-established approach to increase the efficiency of title and abstract screening is
screening prioritization [13,14] via active learning (AL) [15]: a constant interaction between
a human and a machine; for an explanation, see Box 1 and Figure 1. Active learning is
extremely effective in screening large amounts of textual data [9,14,16–19] and is success-
fully implemented in screening software like Abstrackr [17], ASReview [9], Colandr [18],
FASTREAD [16], Rayyan [20], RobotAnalyst [21], Research Screener [22], DistillerSR [23],
and robotreviewer [24]. Note that this is different from the classical notion of active learning
in machine learning; see Box 2 for an explanation of the differences.

Appl. Sci. 2024, 14, 3842 3 of 21

obtaining new labels is an expensive process. However, unlike in the classical set-up, the
main output is the set of labeled records, not the trained model.

An example of classical active learning would be training a model to classify images.
The model selects the images for which a human annotator should provide labels. The
model selects the images from which it can learn the most, so that the annotator needs to
label as few of them as possible. In the end, the trained model can be used to classify new
unseen images. The reproducibility of the process enhances our trust in the process; it
may be more important, however, that others can reuse the results and data to improve
or analyze the model.

A typical application of RITL would be to find all relevant articles for determining a
dosage guideline for a medical drug. First, databases are searched for possible articles,
and these articles are then screened by a human annotator. Instead of annotating all arti-
cles, a model is iteratively trained to suggest the most relevant articles the annotator
should look at first. The list of relevant articles is the main output of the system. It is im-
portant that the human annotator sees all relevant articles because we do not want the
model to make the final decision about whether an article is relevant. The main reason we
want the process to be transparent and reproducible is to increase the trust in the dosage
guideline.

Obviously these differences between classical and RITL active learning have impli-
cations about what it means to be reproducible, and what data is important to store.
Clearly in the classical setting it is more important to store information regarding the
training of the model, while in the RITL setting, the labeling decisions have higher prior-
ity. As we explain in Section 3, the model data are typically larger than the labeling data.
In the classical setting, the larger model data are the primary output. In contrast, in the
RITL setting, the labeling data are the primary output and storing the secondary model
data means a large increase in storage size. Therefore, data storage size is more of a con-
sideration for RITL.

Figure 1. The human-in-the-loop (HITL) active learning cycle with two types of output: on the top
right, the trained model, which is the main output in the classical active learning; and at the bottom
left, all relevant papers, which is the main output of researcher-in-the-loop (RITL) active learning.

While the active learning pipeline can significantly reduce the time spent on sys-
tematically screening, it also presents challenges regarding transparency and repro-
ducibility. At the end of the AL-aided screening process, there is a set of seen and la-beled
papers and a set of unseen papers without labels. To understand why the anno-tator did
not see these precise papers, we need to have insight into the model's deci-sions at any

Machine trains model

Annotator
(Human/Researcher /Clinician)

decides on relevance

Unlabeled

Irrelevant

Labeled records

Relevant

Specific OUTPUT:
Systematically reviewed
relevant records Machine s elects most interesting

record for the annotator to see

Machine p asses new labels
to model for retraining/
update of model

Active Learning Cycle Classical OUTPUT:
A pre-trained model

Pool of unlabeled records

Figure 1. The human-in-the-loop (HITL) active learning cycle with two types of output: on the top
right, the trained model, which is the main output in the classical active learning; and at the bottom
left, all relevant papers, which is the main output of researcher-in-the-loop (RITL) active learning.

Box 1. Active learning explained.

Researcher-in-the-loop active learning (RITL) is a form of active learning (AL) where the follow-
ing three criteria need to be satisfied [9,25]:

- The primary output is a list of labeled records, and the machine learning model is only
secondary.

- The annotator needs to have seen the relevant records at the end of the active learning process.
- The active learning process should be transparent and reproducible.

The process starts with a database search to obtain a dataset of unlabeled records containing meta-
data such as titles, abstracts, and keywords of scientific papers. This is followed by constructing an
initial labeled training set, where the labels are provided by the annotator. This consists of at least
one labeled relevant and labeled irrelevant record. Next, an active learning model needs to be selected,
including a feature extraction technique, a classification algorithm (i.e., a machine learning model), a
query strategy, and a balancing strategy to deal with the extreme imbalance between the number of
relevant and irrelevant records in the data. Then, the active learning cycle starts (see also Figure 1):

1. The chosen model is trained on the labeled records, and the model is used to produce relevance
scores for all unlabeled records.

2. The annotator samples a record from the unlabeled records, for example, the record with the
highest relevance score (certainty-based sampling [26]).

3. The annotator screens this record and provides a label, i.e., relevant or irrelevant, and goes
back to step 2. If there are enough new labeled records, step 1 is also triggered.

This cycle is repeated until the annotator thinks they have seen all relevant records. The list
of relevant records is the output of the system and will be used in the subsequent data extraction
phase. The goal is to save time by screening fewer records than exist in the entire pool because the
active learning model puts all of the most likely relevant records at the front of the list.

Appl. Sci. 2024, 14, 3842 3 of 21

Box 2. Differences between classical active learning and RITL.

Classical active learning refers to a set of techniques where a model is trained on a subset of
the available data, and then actively selects additional data points for which it requests labels. The
goal is to improve the performance of the model while minimizing the amount of data that needs
to be annotated. The main output is a trained model that can be used on unseen records, and the
annotated data is a byproduct. It can be particularly useful in cases where obtaining new labels is
expensive, for example, because a (human) expert needs to look at the unlabeled records. Similarly,
in the RITL set-up, obtaining new labels is an expensive process. However, unlike in the classical
set-up, the main output is the set of labeled records, not the trained model.

An example of classical active learning would be training a model to classify images. The model
selects the images for which a human annotator should provide labels. The model selects the images
from which it can learn the most, so that the annotator needs to label as few of them as possible. In
the end, the trained model can be used to classify new unseen images. The reproducibility of the
process enhances our trust in the process; it may be more important, however, that others can reuse
the results and data to improve or analyze the model.

A typical application of RITL would be to find all relevant articles for determining a dosage
guideline for a medical drug. First, databases are searched for possible articles, and these articles
are then screened by a human annotator. Instead of annotating all articles, a model is iteratively
trained to suggest the most relevant articles the annotator should look at first. The list of relevant
articles is the main output of the system. It is important that the human annotator sees all relevant
articles because we do not want the model to make the final decision about whether an article is
relevant. The main reason we want the process to be transparent and reproducible is to increase the
trust in the dosage guideline.

Obviously these differences between classical and RITL active learning have implications about
what it means to be reproducible, and what data is important to store. Clearly in the classical setting
it is more important to store information regarding the training of the model, while in the RITL
setting, the labeling decisions have higher priority. As we explain in Section 3, the model data are
typically larger than the labeling data. In the classical setting, the larger model data are the primary
output. In contrast, in the RITL setting, the labeling data are the primary output and storing the
secondary model data means a large increase in storage size. Therefore, data storage size is more of
a consideration for RITL.

While the active learning pipeline can significantly reduce the time spent on sys-
tematically screening, it also presents challenges regarding transparency and repro-ducibility.
At the end of the AL-aided screening process, there is a set of seen and la-beled papers
and a set of unseen papers without labels. To understand why the anno-tator did not
see these precise papers, we need to have insight into the model’s deci-sions at any time
in the process. This presents theoretical and practical challenges. Although the field of
explainable Artificial Intelligence is gaining lots of attention [27], it can be difficult or even
impossible to explain how a system comes to its exact deci-sion, especially when neural
nets are used [28].

But before explainable Artificial Intelligence can even be applied to an active learning-
aided screening pipeline, the model and the data the model produces should be stored.
This presents difficulties for two reasons. Firstly, text screening with active learning is
an iterative process, but the labeling decisions and the training of the active learning
model can happen independently of each other in time. So it is not trivial to store the data
from both events in such a way that you can still know which iteration of the model was
used for each labeling decision. It is not necessarily the case that a new model will be
trained after each labeling decision. Secondly, many iterations of the active learning model
will be trained throughout the review, producing an enormous amount of data (think of
many gigabytes or even terabytes of data), and machine learning models are continually
becoming larger using even more model parameters [29]. Together this can add up to an
undesirable amount of data when naively storing all the data produced at every iteration of
the active learning pipeline. Also, many studies fail to report enough detailed information
about the datasets and machine learning algorithms used, limiting the reproducibility of
the studies assessed [30,31].

Appl. Sci. 2024, 14, 3842 4 of 21

Thus, in AL-aided systematic screening, there is a tension between the desire for
reproducibility and transparency on the one hand, and the practical difficulties of storing
and interpreting machine learning models on the other hand. More data must be saved if a
more complete and straightforward reproducible result is wanted. In classical systematic
reviews, there are clear guidelines on what to report regarding the output and the process
of creating the review [4]. However, there is no such consensus for AL-aided systematic
reviews, and PRISMA only offers general recommendations [32]:

Specify the methods used to decide whether a study met the inclusion criteria of the
review, including how many reviewers screened each record and each report retrieved,
whether they worked independently, and if applicable, details of automation tools used in
the process.

In the expanded checklist (source: https://prisma-statement.org//documents/PRIS
MA_2020_expanded_checklist.pdf (accessed on 25 April 2024)), this is elaborated further:

Recommendations for reporting in systematic reviews using automation tools in the
selection process:

• Report how automation tools were integrated within the overall study selection
process. [...]

• If machine learning algorithms were used to prioritize screening (whereby un-
screened records are continually re-ordered based on screening decisions), state the
software used and provide details of any screening rules applied.

However, as we demonstrate in the current paper, the updated PRISMA guidelines are
not enough when using AL-aided pipelines. In AL-aided screening, this is more difficult
because the annotator sees only part of the data. Suppose two people start reading the
same dataset. In that case, the active learning model might suggest different records to
read because they started with a different training set or selected a different model, there
was difference of opinion between the annotators, or because of one of many more possible
reasons. As a result, they might end up with different results (i.e., a different set of seen and
labeled records), even though the dataset and inclusion/exclusion criteria were identical.
In the worst-case scenario, relevant records remain in the unseen set, for example, because
the model did not recognize them or because one of the records was mislabeled by the
annotator. In order to understand what happened in such a situation, resolve any conflicts
between the two decision sets, and have confidence in the process of AL-aided screening,
the process must be reproducible.

The current paper starts with a general discussion of reproducibility in the context
of AI-aided systematic screening. After that, we fully focus on reproducibility for the
phase of systematically screening records. We do not look further at other phases of a
systematic review, such as database searching or data extraction. AI tools can be used in
these phases, and reproducibility is also important there, but it is a topic for another paper.
We also do not look at topics such as the performance of AI-aided screening or biases in
AI-aided screening. These, in fact, are motivations for making screening data reproducible
and accessible.

We give a detailed description of all the steps taken during screening. Then we look
at the data generated by the human screener and by the model during each step, and we
indicate how large the data storage size is relative to the size of the input dataset. For
each piece of data, we try to assess its importance for the overall reproducibility. We
provide a generic data storage framework that uses these insights to minimize storage
size while keeping it as reproducible as possible, specifically aimed at RITL. We describe
the implementation of the framework in the open-source software ASReview [33]. Finally,
we propose a new checklist: the Reproducibility and Data storage Checklist for Active
Learning-Aided Systematic Reviews, the RDAL checklist for short. It is meant to help
users and creators of active learning screening software to answer the question: What do I

https://prisma-statement.org//documents/PRISMA_2020_expanded_checklist.pdf
https://prisma-statement.org//documents/PRISMA_2020_expanded_checklist.pdf

Appl. Sci. 2024, 14, 3842 5 of 21

minimally need to store so that others can have confidence in the results, and are able to
reuse them?

2. Reproducibility in the Context of Systematic Screening

Reproducible research is not an easy concept to define. In very broad terms, the
meaning is to describe the data, methods, and results of the research in such a way that
others can start with the same data and use the same methods to arrive at the same results.
What ‘same’, ‘data’, ‘methods’, and ‘results’ mean depends very much on the context of the
research and the goal of reproducibility. The confusion around the word ‘reproducibility’ is
confounded by the fact that there is also the word ‘replicability’, and the meaning of these
two words can be completely opposite depending on the context. See Peng and Hicks [34]
for a review and Barba [35] for an overview of the usage of the term reproducibility.

A systematic review is a process with many steps, and in all of those steps one can
debate about what is necessary to store for it to be reproducible. In every step, the answer
will depend on the goal of reproducibility. In the case of a systematic screening, the
main goal is to find all texts relevant to a research question. Therefore, the main goal of
reproduction should be to understand and verify each step that led to this list of texts. This
builds trust in the process as a whole. In the case of AI-aided screening, there is the extra
goal of understanding and verifying the AI-method used and the specific implementation
used. Then there are secondary goals: allowing easy reuse of the data for further analyses
of the results, producing a trained AI model, and improving the AI method. In the case
of classical active learning, we would have a different primary goal, namely, to produce
a model that can accurately label texts. Of course, this means that the model training
steps of the process become more important for reproducibility. Thus, we see that the goal
influences what data we want to store.

Another important consideration is the ease of reproducibility. Some things are very
easy to store and reproduce, such as a list of labels ‘included’ or ‘excluded’ for each record
in the screening phase. Other information is more difficult to store, such as the state of
an AI model after training it on certain records. We could store all the information on the
model, but this might become very large, especially with large, modern machine learning
models. On the other hand, we can store only the information needed to train the model
again, but then it will take more time to reproduce the model; or, it will even be impossible
to reproduce the model for someone that does not have access to sufficiently powerful
hardware to run the model. In such a case, it would be reproducible for certain people, but
irreproducible for others.

We take a detailed look at all the steps in the screening phase of a systematic review.
For each of these steps, we look at the data that goes in and comes out. With this information
at hand, and with our main goal of reproducibility in mind, we give recommendations on
what data should be stored, and how it should be stored, in order to strike a good balance
between ease of reproduction and data storage.

Note that we focus on those ingredients relevant to the active learning aspect of the
pipeline, thereby ignoring other important issues like search strategies, deduplication,
abstract versus full-text screening, and inter-rater reliability. Such topics are already clearly
described in textbooks (e.g., [32]) and the PRISMA guidelines. We also do not consider
using artificial intelligence tools in other steps than in the screening phase.

2.1. Defining Three Phases

We can identify three main phases in a systematic review; see Figure 2:

1. the pre-processing phase;
2. the screening phase;
3. the post-processing phase.

Appl. Sci. 2024, 14, 3842 6 of 21

Appl. Sci. 2024, 14, 3842 6 of 21

We take a detailed look at all the steps in the screening phase of a systematic review.
For each of these steps, we look at the data that goes in and comes out. With this infor-
mation at hand, and with our main goal of reproducibility in mind, we give recommen-
dations on what data should be stored, and how it should be stored, in order to strike a
good balance between ease of reproduction and data storage.

Note that we focus on those ingredients relevant to the active learning aspect of the
pipeline, thereby ignoring other important issues like search strategies, deduplication, ab-
stract versus full-text screening, and inter-rater reliability. Such topics are already clearly
described in textbooks (e.g., [32]) and the PRISMA guidelines. We also do not consider
using artificial intelligence tools in other steps than in the screening phase.

2.1. Defining Three Phases
We can identify three main phases in a systematic review; see Figure 2:

1. the pre-processing phase;
2. the screening phase;
3. the post-processing phase.

Figure 2. Main steps in a systematic review using active learning.

The pre-processing phase results in an input dataset containing the information for
the screening phase. To create such a dataset, the researcher formulates a research ques-
tion and determines the inclusion and exclusion criteria for selecting relevant records.
Then, they create a dataset that contains all records that might be relevant to the question.
Typically this is conducted using database searches in multiple databases, after which the
results are combined and deduplicated. The input dataset is a set of records containing
meta-data of, for example, scientific papers (i.e., titles, abstracts, and persistent identifiers
like the DOI).

In the screening phase, it is determined which of the records in the input dataset are
relevant based on a predefined set of inclusion and exclusion criteria. The screening phase
is an iterative and synchronous process, except for the training of the active learning
model, which can happen asynchronously; see Figure 3. In each iteration, a model is
trained on the labeled records, starting with the initially selected prior knowledge. The
trained model then predicts relevance scores for the unseen records. It ranks these records
from high to low. At the same time, the annotator reads the records in the current ranking

Input Dataset

Annotator

Labeled Record

Trained Model

Choice of Model

Ini�al training set
Research Ques�on

Search String
Extracted Data

Data Analyst

Search Expert

Data Analysis

Conclusion

Model ranking on
dataset

Inclusion/Exclusion
Criteria

Set of included records

Preprocessing
Screening

Post Processing

….
….

Setup

Labeling

Figure 2. Main steps in a systematic review using active learning.

The pre-processing phase results in an input dataset containing the information for the
screening phase. To create such a dataset, the researcher formulates a research question and
determines the inclusion and exclusion criteria for selecting relevant records. Then, they
create a dataset that contains all records that might be relevant to the question. Typically
this is conducted using database searches in multiple databases, after which the results are
combined and deduplicated. The input dataset is a set of records containing meta-data of,
for example, scientific papers (i.e., titles, abstracts, and persistent identifiers like the DOI).

In the screening phase, it is determined which of the records in the input dataset are
relevant based on a predefined set of inclusion and exclusion criteria. The screening phase
is an iterative and synchronous process, except for the training of the active learning model,
which can happen asynchronously; see Figure 3. In each iteration, a model is trained on
the labeled records, starting with the initially selected prior knowledge. The trained model
then predicts relevance scores for the unseen records. It ranks these records from high to
low. At the same time, the annotator reads the records in the current ranking order and
assigns each record a label. The new label(s) are then used to train a new model. After each
labeling decision, the size of the training data increases.

Appl. Sci. 2024, 14, 3842 7 of 21

order and assigns each record a label. The new label(s) are then used to train a new model.
After each labeling decision, the size of the training data increases.

Figure 3. The two cycles of labeling and training.

Note that both these processes (training a model and labeling records) are continuous
and can be parallel to each other; at any moment, a new model can be trained using the
currently labeled records, and at any moment, the annotator can take a new record from
the pool of ranked, unlabeled records and assign it a label. The annotator and the model
do not need to wait for each other. Of course, it is an option to implement the labeling and
model training in a serial fashion, one after the other, but this is a priori not necessary and
is inefficient. The user always wants to be able to request a new record instead of having
to wait for the model to finish with training. Which record is selected depends on the
chosen query strategy. It can be the record with the highest relevance score, called cer-
tainty-based sampling [26], which is most often used for HITL active learning.

This asynchronicity is a departure from the classical active learning setting. In that
setting, the model can request which records the annotator should label. Labeling extra
records from an old iteration of the model could mean wasted time by the annotator since
the new iteration of the model might request different records from which it can learn
more. Therefore, making the model training and the labeling phases asynchronous can
mean that resources are wasted. In the RITL setting, this is not a problem since the set of
labeled records is the main output anyway, and thus an asynchronous set-up means there
is less downtime for the annotator.

Once the screener decides to stop labeling, the relevant records can be exported for
post-processing (e.g., data extraction). We define the output of this phase as the set of rel-
evant records. The included records from the output dataset are used in the post-pro-
cessing phase. In the post-processing phase, the data of the selected relevant records are
extracted and analyzed in order to answer the research question. Thus, the output of this
phase is the conclusion of the study.

2.2. Reproducibility in the Three Phases
In Goodman, Fanelli [36], the authors try to clarify the reproducibility terminology

by distinguishing between three different kinds of reproducibility depending on the goal:
‘method reproducibility’, ‘results reproducibility’, and ‘inferential reproducibility’. We
can relate this to the different steps of the screening phase outlined in Figure 2. The strict-
est form of reproduction would be that given an identical input dataset, annotator, choice
of model, and initial training set, from which we obtain identical trained models, model
rankings, and labeled records, seen in identical order. This form of reproduction checks
that repeating the same steps leads to the same results at every point in between. It tells

Dataset

Get highest ranked
Unlabeled record

Read
Record

Add label to record Get labeled records

Train
Model

Rank Unlabeled Records

Labeling
Cycle

Training
Cycle

Figure 3. The two cycles of labeling and training.

Appl. Sci. 2024, 14, 3842 7 of 21

Note that both these processes (training a model and labeling records) are continuous
and can be parallel to each other; at any moment, a new model can be trained using the
currently labeled records, and at any moment, the annotator can take a new record from
the pool of ranked, unlabeled records and assign it a label. The annotator and the model do
not need to wait for each other. Of course, it is an option to implement the labeling and
model training in a serial fashion, one after the other, but this is a priori not necessary and
is inefficient. The user always wants to be able to request a new record instead of having to
wait for the model to finish with training. Which record is selected depends on the chosen
query strategy. It can be the record with the highest relevance score, called certainty-based
sampling [26], which is most often used for HITL active learning.

This asynchronicity is a departure from the classical active learning setting. In that
setting, the model can request which records the annotator should label. Labeling extra
records from an old iteration of the model could mean wasted time by the annotator since
the new iteration of the model might request different records from which it can learn more.
Therefore, making the model training and the labeling phases asynchronous can mean
that resources are wasted. In the RITL setting, this is not a problem since the set of labeled
records is the main output anyway, and thus an asynchronous set-up means there is less
downtime for the annotator.

Once the screener decides to stop labeling, the relevant records can be exported for
post-processing (e.g., data extraction). We define the output of this phase as the set of
relevant records. The included records from the output dataset are used in the post-
processing phase. In the post-processing phase, the data of the selected relevant records are
extracted and analyzed in order to answer the research question. Thus, the output of this
phase is the conclusion of the study.

2.2. Reproducibility in the Three Phases

In Goodman, Fanelli [36], the authors try to clarify the reproducibility terminology
by distinguishing between three different kinds of reproducibility depending on the goal:
‘method reproducibility’, ‘results reproducibility’, and ‘inferential reproducibility’. We can
relate this to the different steps of the screening phase outlined in Figure 2. The strictest
form of reproduction would be that given an identical input dataset, annotator, choice
of model, and initial training set, from which we obtain identical trained models, model
rankings, and labeled records, seen in identical order. This form of reproduction checks
that repeating the same steps leads to the same results at every point in between. It tells us
that the system is behaving predictably. This is what is meant by ‘method reproducibility’.

We could also keep everything fixed but allow for a different annotator. In that case,
we can check that another person can obtain the same results using this system. If the
annotator makes the same decision for each record, the end result should be the same.
However, this will not always happen since annotators might disagree about whether
certain records should be included or they make mistakes. This form of reproducibility is
the simplest form of ‘results reproducibility’ from Goodman, Fanelli [36].

A more functionally oriented definition of reproduction would be to demand that the
input dataset is identical but allow for variation in the other steps as long as the final set of
included records is the same. This procedure checks that the final results are not dependent
on the choices made for the active learning system. Of course, this is specific for RITL active
learning (see Box 1), where the set of labeled records is the primary output. In the case of
classical active learning, we would need to demand that the trained models are identical or
at least very similar.

Lastly, we could take an even broader view and argue that the set of included records is
also allowed to vary as long as the conclusion coming out of the post-processing stage is still
the same. This perspective encourages a broader view of reproducibility, where the focus is
not only on individual records but also on the robustness of the overall conclusions when
subjected to different analytical conditions. This is called ‘inferential reproducibility’ [36],
suggesting that a robust conclusion should ideally be stable across different subsets of data,

Appl. Sci. 2024, 14, 3842 8 of 21

provided the subsets are representative and substantial. This does not imply that missing
records are inconsequential, but rather that the conclusions of a well-conducted review
should be resilient to the variations that might arise from different systematic screening
approaches. Reproducing a systematic screening phase in this way shows whether missing
a specific record is essential for the final conclusions; for an example, see [37].

3. Data in AL-Aided Screening

In this section, we describe what data is generated during each step in the screening
phase; see also Table 1 and Figure 2. In the screening phase, we can differentiate between
the set-up and the labeling phase.

Table 1. Data types and sizes in active learning aided systematic screening.

Type of Data Stored Every
Iteration?

Size Depends
on Dataset?

Total Size S/M/L
(Small/Medium/Large) Essential to Store?

Input data

Meta-data like titles
and abstracts N Y S N

Persistent object identifiers,
like DOI N Y S Y

Set-up phase

Meta-data of the project
(annotator, title, description, etc.) N N S Y

Software plus version N N S Y

Model Settings (feature
extraction, classifier, query
strategy, balance strategy)

N N S Y

Feature Matrix N Y M/L (M if the number of
features is small) Y

Records used for training the
model plus their labels N N S Y

Random seed values N N S Y

Intended stopping rule
for labeling N N S Y

Intended stopping rule for
model training N N S N

Screening Phase—data produced by the annotator

Order of labeling Y N M Y

Labels Y N M Y

Time of labeling Y N M Y

Notes Y N M Y

Changed Decisions N N S Y

Screening Phase—data produced by the model

Model settings per iteration Y N M
Y (in case of model
switching or training
multiple models)

Appl. Sci. 2024, 14, 3842 9 of 21

Table 1. Cont.

Type of Data Stored Every
Iteration?

Size Depends
on Dataset?

Total Size S/M/L
(Small/Medium/Large) Essential to Store?

Model parameters per iteration Y Y M/L (depends on the size
of the feature space) N

Training set Y Y M/L (M if only size of the
training set) Y

Relevance scores Y Y L N

Ranking Y Y L N (only the ranking of
the last iteration)

Model training time Y N M N

3.1. Data in the Set-Up Phase

The set-up phase prepares the data that is necessary to train the first iteration of the
machine learning model on the input data (i.e., the result of the pre-processing phase). The
user chooses the software (with a specific version). Also, a stopping rule for when to stop
labeling records should be decided upon. This can be far from trivial, though, as discussed
elsewhere in great detail, e.g., [38].

Moreover, the four components of the active learning model need to be selected:
(1) The type of machine learning model with its hyperparameters. Random seeds should be
used and stored to make any probabilistic process in the model reproducible. (2) The dataset
containing text is transformed into a format the model can understand using a feature
extraction method, and this feature matrix should be stored. Suppose a user switches to a
different active learning model during the screening phase consisting of a different feature
extraction technique. In that case, multiple matrices need to be stored. (3) Also, a balancing
strategy needs to be selected to deal with the sparseness of the relevant records. For an
example of a balancing strategy, see Appendix 3 of Ferdinands, Schram [39]. (4) Finally,
a query strategy needs to be selected, determining which record will be selected by the
model to be shown to the annotator.

Similarly to the stopping rule for labeling, a stopping rule for model training can be
selected. While it might seem logical to continue training new models until the end of the
screening process, this probably is not necessary. After enough labels have been provided,
a new label will not dramatically change the model. Therefore, to continue training new
models might be a waste of energy. However, this model training stopping rule is less
important than the labeling stopping rule, because the labeled data are the primary output.

Furthermore, a training set for the model needs to be created by labeling a set of
records as relevant and irrelevant based on prior knowledge (e.g., for the relevant set), or
screened randomly (e.g., for the irrelevant set). The minimal required prior knowledge
for the training data is at least one label ‘0’ and one label ‘1’, but any amount of prior
knowledge for the training data can theoretically be used. It depends on the software
implementation and what the options are.

The data produced in the set-up phase will only have to be stored once at the start of
the review. Moreover, except for the feature matrix, the data size does not depend on the
size of the input dataset. Therefore, the data generated during the set-up phase will not
become too large relative to the input dataset.

3.2. Data in the Labeling Phase

The data produced during the labeling phase can be divided into data generated
by the annotator and data generated by the model, where the data generated by the
annotator includes the labeled records, with the corresponding label, the time of labeling,
any notes made by the user, any changed decisions, and skipped records. This needs to
be saved once for each labeled record; therefore, the data size will be in the same order

Appl. Sci. 2024, 14, 3842 10 of 21

of magnitude as the dataset itself. The data generated by the model includes the type of
model (users might switch to a different model during screening, or multiple models are
trained simultaneously), any settings used specifically for the current iteration of the model,
including training times, the parameters of the model, relevance scores assigned by the
model to each record, and the ranking of the records in order of relevance. Assuming one
model is trained each time, the number of trained models will be closely related to the
number of labeled records, and thus, it will be linearly related to the size of the dataset.
Although the data size of the model typically does not depend on the size of the dataset, it
can still be very large. The size of modern neural networks for natural language processing
can easily be several hundreds of megabytes or even gigabytes. However, for each model,
the data size also depends on the size of the dataset; there will be one relevance score for
each record in the dataset for each iteration in the model. Together, this means that the
data size of all the generated relevance scores will depend quadratically on the size of
the dataset.

4. A Trade-Off between Reproducibility and Data Storage

In practice, there is a trade-off between data size on the one hand and ease of repro-
ducibility on the other hand. By using extra data storage, we can make it easier to reproduce
the state of the screening at a certain iteration or moment in time. However, when these
data (model parameters, relevance scores, etc.) become much larger than the primary
output (a list of labeled records), this becomes a problem. Therefore, we propose only to
store some essential components to make the output of the AL-aided pipeline transparent
and reproducible; for an overview, see Table 1.

At one extreme of the spectrum between data size and time, the least amount of
storage capacity involves only storing the starting point (input dataset, initial training data,
model settings, seed values, and inclusion/exclusion criteria). Someone reproducing the
results can import the data and select the same model, and by screening the records in the
order they are suggested and applying the inclusion criteria, they should obtain the same
set of labeled records and the same trained active learning models. This will cost a large
amount of time, though; the annotator needs to read all the records, and the active learning
system needs to train all the iterations of the model again.

Moreover, some accuracy will be lost. Humans make mistakes when reading and
labeling records [7], and making one different labeling decision will result in a different
set of records shown to the annotator. Also, many machine learning algorithms use
(pseudo)random number generators to simulate probabilistic behavior. To make these
algorithms deterministic, the random seed needs to be stored at the start. However, many
algorithms designed for a graphics processing unit (GPU) are not deterministic due to the
many parallelized computations that occur simultaneously. In recent years, support for
deterministic training of machine learning models on GPUs has increased [40,41]. In the
end, the results (i.e., the set of seen and included records) might be replicated, but the entire
process is not reproduced precisely because of both human errors and probabilistic models.

At the other extreme of the reproducibility spectrum, one can try to store absolutely
everything. This means storing every iteration of the model, with all its model parameters
and the relevance scores that it produced for every record. In most cases, this becomes
infeasible and, in fact, undesirable; if the data size becomes too big, it will be more difficult
for other people to use the data and investigate its contents. For example, storing the
relevance scores of a thousand trained models on a dataset of a thousand records takes
approximately 8 MB, and the scores of ten thousand models on ten thousand records take
approximately 800 MB. With every increase in the size of the dataset by a factor of 10, the
data storage size increases by a factor of 100. When the dataset has in the order of a million
records, the data size becomes in the order of terabytes, and this is just for storing the
relevance scores; imagine how much storage capacity is needed to store the entire output
of the model for each iteration.

Appl. Sci. 2024, 14, 3842 11 of 21

5. Data Storage Recommendations for Systematic Screening

Now that we have a description of the different steps in the screening process and the
data generated during each step, we can give recommendations on what to store in each
step. We describe the essential components needed to be stored for an optimal trade-off
between transparency, reproducibility, and data storage capacity; also see the last column
in Table 1.

5.1. Input Data

Sharing the search query, as requested by PRISMA, has become the standard in the
field. For example, out of 117 systematic reviews published at Utrecht University in 2020,
91 published the entire search query [42]. Haddaway, Rethlefsen [43] suggested a data
structure for transparent and repeatable reporting of bibliographic searching. We advise
users to follow such recommendations. A standardized way to report a bibliographic search
might sound desirable, but reproducing such a search years later is problematic; journals
are added to or omitted from databases, search functionalities change, and the meta-data
are continuously updated. A solution would be to store the entire dataset resulting from
the search; in the study, only 5 out of the 117 reviews did so.

However, not all meta-data can openly be shared because abstracts might fall under
the strict copyright of the publisher, which limits the application of global text and data
mining research [44]. Until publishers adhere to the plea for releasing such restrictions,
we propose storing a list of persistent digital object identifiers, like the DOIs. Then, via
automated tooling, using Lens [45] or OpenAlex [46], it is possible to compose the full meta-
data via DOI-matching. Note that storing the DOI is also not perfect since the meta-data
associated with a DOI can change, for example, via an updated mesh term or keyword, but
the object it refers to is persistent.

5.2. Set-Up Phase

Everything in the set-up phase should be stored entirely: the meta-data on the project
(e.g., the people involved and their roles), the software used with version number, the
settings of the active learning model, the feature matrix used, records used for the first
training dataset, the random seed values, and the intended stopping rule. It defines the
starting point of the screening; thus, without it, the review will never be reproducible.
These data will only have to be stored once, so they will not become huge. Also, these
data can be pre-registered on generic platforms, such as the Open Science Framework, or
specific platforms, such as Prospero.

5.3. Labeling Phase
5.3.1. Data Produced by the Annotator

In the labeling phase, the data produced by the annotator should be stored as com-
pletely as possible: the records that were labeled in the order they were labeled, the
corresponding label, the screener (in case multiple screeners are labeling the same model),
labeling time (so that the order of records can be retrieved), and any other actions by the
annotator during the screening (e.g., changed decisions, notes added to a record). The data
produced by the annotator will not get much bigger than the size of the input dataset and
can be easily linked to the input data.

5.3.2. Data Produced by the Model

Most notably, the data produced by the model are where we need to strike a bal-
ance between reproducibility and storage size. Storing all the model data will result in
enormous file sizes, whilst storing no model data means that we cannot reproduce the
model’s behavior.

For each iteration of the active learning cycle, we believe it is essential to store two
components: the type of model that was used (instead of the model itself) and information
to reconstruct the training set of labeled records on which the model was trained. With

Appl. Sci. 2024, 14, 3842 12 of 21

this information, it is transparent what information has been used in each iteration of the
active learning cycle and it is possible to recompute the relevance scores at any point in
the active learning cycle. For deterministic models, or for probabilistic models where the
random seed is stored, it is possible to recompute these scores exactly. The amount of time
this takes is the same as the amount of time it took to train the original model and compute
the scores.

Similarly, we do not need to store all the records used in the training set for each
iteration. The model will be trained again on each iteration’s current set of currently labeled
records. Since we can already find which records were labeled in the annotator data and
in which order, we do not need to store this information again during the model training.
Instead of storing all the records in the training set, it is enough to store the number of
records. For example, if we know that there are 50 records in the training set, then the
training set consists of the first 50 labeled records. We can find exactly which 50 records
these are in the annotator data. If the model data are stored in this way, the size will depend
linearly on the size of the input dataset. This is much better than the quadratic scaling one
would obtain by naively storing all the model data. Moreover, using the same hardware,
reconstructing the model of a specific iteration takes approximately the same time as it
took to train the original model. If we also stored the random seeds used in any of the
probabilistic training algorithms, then we can almost exactly reproduce the original model.
Most certainly, we will be able to reproduce the ranking produced by the original model. It
turns out that this amounts to surprisingly little extra information since we already stored
the data from the set-up phase and all data produced by the annotator.

Users may opt to store all the models learned during the AL process. While these
models can often be reconstructed from other stored data, direct storage of the models
can facilitate ease of reproducibility, especially in cases where computational resources
are limited or when strict reproducibility is required for scrutiny or detailed analysis. We
suggest software creators offer this as an optional feature, allowing users to make an
informed choice based on their specific needs and constraints.

5.4. Output Data

The final output data should consist of two parts. Firstly, there is the list of labeled
records with the corresponding label: seen and relevant, seen and irrelevant, and unseen.
This is the file that will be used in the post-processing stages of a systematic review.
Secondly, there is a technical file containing everything necessary for the reproducibility of
the process. It contains everything we described above.

6. Reproducibility and Data Storage for Active Learning-Aided Systematic
Screening—The Checklist
6.1. RDAL Checklist

The recommendations result in the RDAL Checklist (Reproducibility and Data storage
for Active Learning-Aided Systematic Screening Checklist), which helps users and creators
of active learning software make their screening process reproducible. Table 2 provides
an easy-to-use checklist for screeners, collaborators, reviewers, or editors. The RDAL
checklist can be used as an add-on to the PRISMA checklist specifically for systematic
reviews implementing active learning in the screening phase. We advise publishing items
1–7 before data collection in a pre-registration, and storing items 1–14 on a general-purpose
and domain-specific data repository under an open data license, like CC-BY 4.0. For an
application of the checklist to the ASReview software, see Appendix A.

Appl. Sci. 2024, 14, 3842 13 of 21

Table 2. The RDAL Checklist.

Item Type of Data Available? Stored Where?

Pre-registration

1. Meta-data of the project (title, description, contact person, etc.)

2.
Proces: (a) The team involved in screening with roles assigned, (b) how
they will collaborate in the project, and (c) how they will use the
AL-aided pipeline

3. Inclusion and exclusion criteria

4. Software plus version

5. Intended model(s): (a) feature extraction, (b) classifier, (c) query strategy,
(d) balance strategy

6. The intended stopping rule

7. Training data: (a) The selection process of the records used for prior
knowledge, (b) their labels

Input data

8. Data: (a)_ Persistent object identifiers and (b) the texts used for screening

Output data

9. All records, including the labels ‘seen and relevant’, ‘seen and irrelevant’,
and ‘unseen’.

Technical data

10. Feature Matrix (or matrices if multiple feature extraction techniques
are used)

11. Random seed values

12. Order of labeling and any changes in labeling decissions

13.
Actual used model per iteration (if different across iterations. Otherwise,
storing it once is enough): (a) feature extraction, (b) classifier, (c) query
strategy, (d) balance strategy

14. Information about which record(s) were used to train which model

15. Model output (This item is optional 1)
1 While we suggest storing other items on the list, this one is not recommended for storage because it consumes
excessive space relative to its utility. As the primary purpose of the screening is not to gather model-related
information, this item is not critical for reproducibility in the case of applying active learning for systematic
screening of literature. You may choose to store it if space is not a concern or if you plan to use the information
later. However, the other items are far more important for reproducibility.

Non-reproducibility in systematic reviews, particularly those employing active learn-
ing, often stems from the lack of detailed recording of decisions made during the annotation
and model training processes. The RDAL Checklist addresses this challenge by providing
a structured approach to capture essential information that might otherwise be overlooked
or inconsistently recorded. By ensuring that all pertinent details, such as model settings,
annotation criteria, and decision points, are consistently documented, the checklist plays a
pivotal role in enabling other researchers to replicate the study with fidelity. This systematic
approach to documentation not only enhances the reproducibility of the research but also
contributes to its transparency and reliability.

Moreover, this checklist provides the developers of active learning software with a
reference for what their software should be storing and including in the result. If the
software has the option to easily export all the necessary data for a reproducible screening
phase, it will facilitate users to report on their active learning process. This, in turn, gives
more confidence in the software as a whole.

Appl. Sci. 2024, 14, 3842 14 of 21

6.2. Example of the Technical Data

To provide an example of how the data produced by the human and by the model
can be stored (item 9 in combination with items 12–14 of the checklist), we provide an
illustration based on the output of the open-source software ASReview v1.0. For each
iteration, ASReview stores the number of records in the training set and the type of
model used.

We assume one screener is active, only one model is trained at a time starting with
the default settings of ASReview (TF-IDF + Naïve Bayes), and the user wants to switch
to a different model (sBert + Neural Network) after screening ten records. The screener
starts with two records as prior knowledge; see the value ‘−1’ for the training set size
in the first two rows in Table 3. Note that any size of prior knowledge can be used. If
you used a model that does not use prior knowledge, this would be indicated by a ‘0’ in
the table. After importing the data and selecting the prior knowledge, you have to wait
for the text to be transformed into a format the model can understand using a feature
extraction method. Using the feature matrix, a first classifier is trained (denoted by M1),
which produces relevance scores. The most likely relevant record is shown to the annotator
(first in the queue of M1), who assigns the label ‘1’. This label is based on a model with a
training set size of 2.

Table 3. Slice of the model data.

Labeling Data Training Data

Row
Number

Record
Identifier Label Labeling Time Training

Set Size
Record from
Queue Model

Sc
re

en
in

g
M

od
el

I

1 145 0 2022-12-23 09:32:08.46 −1 - -

2 56 1 2022-12-23 09:32:40.13 −1 - -

Composing feature matrix (using TF-IDF) + training of 1st iteration of 1st model (NB) with two priors

3 120 1 2022-12-23 09:13:26.48 2 1st of M1 TF-IDF + NB

4 442 0 2022-12-23 09:14:26.55 2 2nd of M1 TF-IDF + NB

5 247 1 2022-12-23 09:15:27.11 3 1st of M2 TF-IDF + NB

6 491 1 2022-12-23 09:16:28.43 4 1st of M3 TF-IDF + NB

7 102 0 2022-12-23 09:16:28.59 5 1st of M4 TF-IDF + NB

8 243 0 2022-12-23 09:17:30.12 5 2nd of M4 TF-IDF + NB

9 401 0 2022-12-23 09:18:40.22 6 1st of M5 TF-IDF + NB

10 279 0 2022-12-23 09:19:59.36 8 1st of M6 TF-IDF + NB

Model Switch

Sc
re

en
in

g
M

od
el

II

Training of 1st iteration 1st model with sBert + NN (M7) with ten priors

11 4273 1 2022-12-27 09:00:47.83 10 1st of M7 sBert + NN

12 366 0 2022-12-27 09:01:13.26 10 2nd of M7 sBert + NN

.

In the implementation of ASReview, at most one model is being trained at any time.
After the annotator makes a labeling decision, the program checks if there is no model
training in which case a new model is triggered. In our example, this is done after the
label is provided by the screener in row number 3 and the training of the model M2 is
started using the labels of the first 3 rows. Instead of having to wait for M2 to finish
training, the annotator already sees the fourth record, which was ranked second highest in
M1. Assuming the annotator needs some time to read the fourth record, M3 has finished
training. Thus, the fifth record presented is based on M2, etcetera.

Appl. Sci. 2024, 14, 3842 15 of 21

In ASReview, the highest-ranked record is always selected to be shown to the annotator
(if the query strategy is set to certainty-based sampling), even if the model is not finished
with training. For the first set of records in our example, the training of the model was
completed while the annotator was reading the abstracts. Therefore, the rank order could
be updated before the human was finished reading, and they could always read the highest-
ranked record. Now, assume the label of row number 7 is provided in a split-second
(maybe because the title directly indicates the record is irrelevant) and the new model is
not yet finished training. In this case, the next record shown to the annotator is the second
in the queue of the previous model (i.e., M4) instead of the highest-ranked record of the
new model (i.e., M5). After the labeling decision of row 9 has been made, the 10th row is
estimated with 8 records as training data.

As shown by Teijema et al. [37], many light classifiers only take seconds to produce
new results, but neural networks might take (much) longer. For slower models, it might
take longer before the model can update the rank order, and the screener will see the second
highest-ranked record of an older model until a new model is finished training and the
rank order is updated again. Therefore, after labeling ten records, the annotator decides to
switch to a different model based on a neural network architecture; see rows 10 and further.

Storing the information in the columns ‘record identifier’, ‘label’, ‘labeling time’, and
‘training set size’, plus the information about which model was used in which iteration, is
enough to retrain the model at any point in time without having to store too much data.

7. Discussion

With this paper we aim to provide foundational insights into reproducibility and data
storage within the context of screening prioritization using AI during the screening phase.
However, there are also some clear boundaries to what we investigated. We recognize that
other crucial phases of systematic reviews, such as database searching and data extraction,
as well as the performance and biases of AI-aided screening, are beyond the scope of this
study. These limitations highlight important avenues for future research.

One significant area that merits deeper investigation is the potential for biases intro-
duced by AI tools used in the screening process. While we have outlined procedures to
enhance transparency and mitigate some risk of bias, the complete evaluation of bias, par-
ticularly how AI influences the selection and exclusion of studies, remains to be addressed.
Future work should focus on developing methodologies to effectively detect and correct for
these biases. For instance, the NLF procedure (Noisy Label Framework) can be applied to
address noisy labels, the inaccuracies in labels provided by experts, enhancing the overall
reliability of the screening process [47]. Similarly, the SAFE procedure, a heuristic for
deciding when to stop screening, includes a quality check to correct for potential false
exclusions [48]. Nonetheless, biases will be inherent in any screening process, be it fully
human or AI-aided. This is one more reason it is important to store data related to a review
in an accessible and reusable manner, so that biases of finished reviews can be investigated.

Moreover, in future studies, it will be crucial to explore more robust methods for
assessing inter-rater reliability (IRR) in the context of AI-aided systematic reviews [49].
Traditional metrics like Cohen’s Kappa are often challenged by the data’s nature in these
reviews, specifically when data are missing not at random (MNAR) due to selective paper
exclusion by AI mechanisms. Alternative metrics are proposed and designed to accommo-
date the complexities introduced by MNAR conditions, e.g., [50], which may provide more
accurate assessments of IRR in AI-enhanced research settings.

In our study, we referred to the use of inclusion and exclusion criteria; however, it
is important to note the distinct roles these criteria might play at various stages of the
systematic review process. Inclusion criteria are typically applied during the preliminary
screening phase to select studies based on predefined attributes. Conversely, exclusion
criteria might be used during the same phase to exclude studies based on attributes such as
publication year, language, and article type. However, exclusion criteria can also be applied
to further refine and finalize the selection of relevant studies after the screening phase.

Appl. Sci. 2024, 14, 3842 16 of 21

8. Conclusions

Text reading, processing, and screening require enormous amounts of time in almost
any professional organization. With the emergence of online publishing, the number of
scientific papers on any topic is skyrocketing. The COVID-19 crisis has illustrated how
crucial and critical it can be to develop fast but rigorous systematic overviews of the
literature. At the same time, accurate information retrieval is essential to provide access to
facts. Orchestrated campaigns are spreading untruths, disinformation, mal-information,
and misinformation, which are often unwittingly shared on social media. This raises
questions about the quality, impact, and credibility of researchers, the judiciary, physicians,
journalists, media networks, governments, and all other professionals, institutions, and
networks acting as agents of knowledge. Therefore, reproducible and verifiable methods
are needed to identify, select, and critically appraise all relevant decisions in the process of
selecting textual data. Transparency will help increase quality and accountability to gain
public trust.

Addressing the issue of reproducibility is a complex task, especially in the context
of AI-aided systematic screening. The primary aim of our checklist is to address the gaps
present in the PRISMA checklist when using AI-aided screening tools. It specifies the
essential information that should be provided to ensure reproducible results. The checklist
guarantees that all data inputs and outputs within the AI-aided screening process are
systematically recorded and made accessible. This allows the same data to be used by
others to replicate the study outcomes. We provide clear documentation of the algorithms,
model parameters, and computational processes used, ensuring that the methods can be
precisely replicated by other researchers. The checklist advocates for the transparency of
both interim and final screening results, including the classification of data by AI tools.
This ensures that results can be consistently replicated across studies using the same
methodologies and data. By ensuring the reproducibility of data, methods, and results, our
checklist indirectly supports the reproducibility of conclusions, provided that the analysis
is consistently applied.

However, we need to strike a balance between data storage and reproducibility. On
the one hand, storing the starting point is not enough to call the review reproducible. On
the other hand, storing everything is overkill because not all of the enormous amount
of information produced by the model is relevant. Where on this spectrum an AL-aided
review pipeline should be, depends on the specific application.

There is a scale on which we can measure the software used for AL-aided screening
and the needs of the users of this software. On the one side of this scale is the software that
only provides the main output. The steps in between remain a black box because nothing
gets reported on them. Users of this software should only be interested in the final results
and not in reporting on the process of how these results were obtained. Software on the
other side of the scale stores absolutely everything about the whole screening process. As
we discussed, this can lead to considerable data storage sizes. For users on this side of the
scale, it should be imperative to account for all the steps in the screening process, or the
storage size is just not an essential factor for these users.

For classical reviews, the PRISMA guidelines go far toward storing everything. How-
ever, during pre-processing, the guidelines require saving the search string but not the
actual screening input dataset. For AL-aided reviews, they shift away from storing every-
thing since they only ask to report on which software was used and how it was used. They
do not ask to store any information on the models that were used. As we noted, this means
that we cannot reconstruct how the decisions of the model were made.

Users should think about where on the scale they want to be. How important is it to
be able to report on the artificial intelligence models? Does this influence the trust in the
conclusions? Does the storage size of the output matter? Similarly, software manufacturers
should consider where on the scale they want to be. What is the intended group of
users? How flexible is the software in reporting more or less of the detail of the process
and saving more or less storage? We provided one storage model that goes further than

Appl. Sci. 2024, 14, 3842 17 of 21

PRISMA does right now and can be flexibly extended, but everyone should assess their
own considerations.

Author Contributions: Conceptualization, J.d.B., P.L. and R.v.d.S.; methodology, J.d.B., P.L. and
R.v.d.S.; software, P.L. and J.d.B.; validation, P.L., J.d.B. and R.v.d.S.; formal analysis, P.L.; investiga-
tion, P.L., J.d.B. and R.v.d.S.; resources, J.d.B.; data curation, n/a; writing—original draft preparation,
P.L.; writing—review and editing, R.v.d.S. and J.d.B.; visualization, P.L.; supervision, n/a; project ad-
ministration, R.v.d.S.; funding acquisition, R.v.d.S. All authors have read and agreed to the published
version of the manuscript.

Funding: The first author was funded by a grant from the European Commission, call H2020-
INNOSUP-2020-02, under Grant Agreement ID 957029. The last author was funded by a grant from
the Dutch Research Council under grant no. 406.22.GO.048.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This manuscript was compiled utilizing an array of large language models
to optimize the writing process and ensure grammatical quality. For enhanced writing speed, we
used Grammarly for language error correction, while OpenAI’s GPT-4 was instrumental in refining
sentences. The intellectual property (IP) contained in this document belongs exclusively to the
authors. The AI-based tools mentioned were utilized solely as accelerators to enhance the writing
process, assisting with speed and accuracy. They in no way contributed to the original ideas, insights,
or intellectual content contained herein.

Conflicts of Interest: We would like to inform you that the authors of this manuscript are part of the
ASReview project, which is an open-source and research-oriented software project for active learning-
aided systematic literature reviews. However, we want to stress that there is no conflict of interest
with the content of this paper. The ASReview software is freely available for use by researchers and
we do not receive any financial or other benefits from the use of the software. This paper is a purely
academic contribution that aims to improve the reproducibility of active learning-aided systematic
reviews. We would also like to inform you that the first author of this manuscript, Peter Lombaers, is
affiliated with IDfuse, a commercial company. IDfuse did not have any involvement in the funding
or execution of the project. Furthermore, the content of this paper does not promote any commercial
interests or products of IDfuse.

Appl. Sci. 2024, 14, 3842 18 of 21

Appendix A

Table 1. The RDAL checklist as applied by a person who performs a systematic review following the PRISMA guidelines. The person publishes a pre-registration
and uses the open-source software ASReview v1.6.2 for the screening phase. After finishing the screening they export two files from the software: an excel file
‘review.xlsx’ containing the main output of the review, and a technical file ‘review.asreview’.

Item Type of Data Available as Output of the Software? Stored Where?

Pre-registration

1. Meta-data of the project (title, description,
contact person, etc.) Yes In the file project.json inside the technical file ‘review.asreview’.

2.

Proces: (a) The team involved in screening
with roles assigned, (b) how they will
collaborate in the project, and (c) how they
will use the AL-aided pipeline

No This information is not stored by the software but is part of
the pre-registration.

3. Inclusion and exclusion criteria No This information is not stored by the software but is part of the
pre-registration.

4. Software plus version Yes In the file project.json inside the technical file ‘review.asreview’.

5.
Intended model(s): (a) feature extraction,
(b) classifier, (c) query strategy,
(d) balance strategy

Yes In the file settings_metadata.json inside the technical file
‘review.asreview’.

6. The intended stopping rule No This information is not stored by the software but is part of the
pre-registration.

7.
Training data: (a) The selection process of the
records used for prior knowledge,
(b) their labels

Partly

The identifiers and labels of the records used for prior
knowledge is available as part of the output file (a separate
column for tabular data and a flag in the note field for RIS files).
The information of the selection process is not stored by the
software but is part of the pre-registration.

Input data

8. Data: (a) Persistent object identifiers and
(b) the texts used for screening Yes Available in the export file ‘review.xlsx’.

Appl. Sci. 2024, 14, 3842 19 of 21

Table 1. Cont.

Item Type of Data Available as Output of the Software? Stored Where?

Output data

9. All records, including the labels ‘seen and
relevant’, ‘seen and irrelevant’, and ‘unseen’. Yes Available in the export file ‘review.xlsx’.

Technical data

10. Feature Matrix (or matrices if multiple feature
extraction techniques are used) Yes Stored as part of the technical ‘review.asreview’ file.

11. Random seed values No
The seed values are not stored by the software. One can start the
software with pre-determined seed values, but this value is not
stored using this version of the software.

12. Order of labeling and any changes in
labeling decisions Yes Stored as part of the technical ‘review.asreview’ file.

13.

Actual used model per iteration (if different
across iterations otherwise, storing it once is
enough): (a) feature extraction, (b) classifier,
(c) query strategy, (d) balance strategy

Yes Stored as part of the technical ‘review.asreview’ file.

14. Information about which record(s) were used
to train which model Yes Stored as part of the technical ‘review.asreview’ file.

15. Model output (This item is optional) n/a

In the interest of saving storage space, the user is not interested
in storing the output of the model. In practice, the ranking for
the last iteration of the model is stored as part of the technical
‘review.asreview’ file.

Appl. Sci. 2024, 14, 3842 20 of 21

References
1. Van Noorden, R. Global Scientific Output Doubles Every Nine Years. Nature Newsblog. 2014. Available online: http://blogs.na

ture.com/news/2014/05/global-scientific-output-doubles-every-nine-years.html (accessed on 25 April 2024).
2. Orošnjak, M.; Štrbac, B.; Vulanović, S.; Runje, B.; Novak, A.H.; Razumić, A. RCE (rationale–cogency–extent) criterion unravels fea-

tures affecting citation impact of top-ranked systematic literature reviews: Leaving the impression. . .is all you need. Scientometrics
2024, 129, 1891–1947. [CrossRef]

3. Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J.
2009, 26, 91–108. [CrossRef]

4. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and
meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [CrossRef] [PubMed]

5. Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos,
L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 16001.
[CrossRef] [PubMed]

6. Lefebvre, C.; Manheimer, E.; Glanville, J. Searching for Studies. In Cochrane Handbook for Systematic Reviews of Interventions;
Higgins, J.P.T., Green, S., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2008; pp. 95–150.

7. Wang, Z.; Nayfeh, T.; Tetzlaff, J.; O’blenis, P.; Murad, M.H. Error rates of human reviewers during abstract screening in systematic
reviews. PLoS ONE 2020, 15, e0227742. [CrossRef] [PubMed]

8. van Dinter, R.; Tekinerdogan, B.; Catal, C. Automation of systematic literature reviews: A systematic literature review. Inf. Softw.
Technol. 2021, 136, 106589. [CrossRef]

9. van de Schoot, R.; de Bruin, J.; Schram, R.; Zahedi, P.; de Boer, J.; Weijdema, F.; Kramer, B.; Huijts, M.; Hoogerwerf, M.; Ferdinands,
G.; et al. An open source machine learning framework for efficient and transparent systematic reviews. Nat. Mach. Intell. 2021, 3,
125–133. [CrossRef]

10. O’mara-Eves, A.; Thomas, J.; McNaught, J.; Miwa, M.; Ananiadou, S. Using Text Mining for Study Identification in Systematic
Reviews: A Systematic Review of Current Approaches. Syst. Rev. 2015, 4, 5. [CrossRef] [PubMed]

11. Beller, E.; On behalf of the founding members of the ICASR group; Clark, J.; Tsafnat, G.; Adams, C.; Diehl, H.; Lund, H.; Ouzzani,
M.; Thayer, K.; Thomas, J.; et al. Making progress with the automation of systematic reviews: Principles of the International
Collaboration for the Automation of Systematic Reviews (ICASR). Syst. Rev. 2018, 7, 77. [CrossRef] [PubMed]

12. Marshall, I.J.; Wallace, B.C. Toward systematic review automation: A practical guide to using machine learning tools in research
synthesis. Syst. Rev. 2019, 8, 163. [CrossRef]

13. Cohen, A.M.; Ambert, K.; McDonagh, M. Cross-topic learning for work prioritization in systematic review creation and update. J.
Am. Med. Informatics Assoc. 2009, 16, 690–704. [CrossRef] [PubMed]

14. Thomas, J.; Noel-Storr, A.; Marshall, I.; Wallace, B.; McDonald, S.; Mavergames, C.; Glasziou, P.; Shemilt, I.; Synnot, A.; Turner, T.;
et al. Living systematic reviews: 2. Combining human and machine effort. J. Clin. Epidemiology 2017, 91, 31–37. [CrossRef]

15. Settles, B. Active Learning; Synthesis Lectures on Artificial Intelligence and Machine Learning; Springer: New York, NY, USA,
2012; Volume 6, pp. 1–114.

16. Yu, Z.; Kraft, N.A.; Menzies, T. Finding Better Active Learners for Faster Literature Reviews. Empir. Softw. Eng. 2018, 23,
3161–3186. [CrossRef]

17. Wallace, B.C.; Small, K.; Brodley, C.E.; Lau, J.; Trikalinos, T.A. Deploying an interactive machine learning system in an evidence-
based practice center: Abstrackr. In Proceedings of the ACM International Health Informatics Symposium (IHI), New York, NY,
USA, 28 January 2012; pp. 819–824.

18. Cheng, S.; Augustin, C.; Bethel, A.; Gill, D.; Anzaroot, S.; Brun, J.; DeWilde, B.; Minnich, R.; Garside, R.; Masuda, Y.; et al. Using
machine learning to advance synthesis and use of conservation and environmental evidence. Conserv. Biol. 2018, 32, 762–764.
[CrossRef] [PubMed]

19. Ferdinands, G. AI-Assisted Systematic Reviewing: Selecting Studies to Compare Bayesian Versus Frequentist SEM for Small
Sample Sizes. Multivar. Behav. Res. 2021, 56, 153–154. [CrossRef] [PubMed]

20. Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev.
2016, 5, 210. [CrossRef] [PubMed]

21. Przybyła, P.; Brockmeier, A.J.; Kontonatsios, G.; Le Pogam, M.A.; McNaught, J.; von Elm, E.; Nolan, K.; Ananiadou, S. Prioritising
References for Systematic Reviews with Robot Analyst: A User Study. Res. Synth. Methods 2018, 9, 470–488. [CrossRef] [PubMed]

22. Chai, K.E.K.; Lines, R.L.J.; Gucciardi, D.F.; Ng, L. Research Screener: A machine learning tool to semi-automate abstract screening
for systematic reviews. Syst. Rev. 2021, 10, 93. [CrossRef] [PubMed]

23. Hamel, C.; Kelly, S.E.; Thavorn, K.; Rice, D.B.; Wells, G.A.; Hutton, B. An evaluation of DistillerSR’s machine learning-based
prioritization tool for title/abstract screening—Impact on reviewer-relevant outcomes. BMC Med. Res. Methodol. 2020, 20, 256.
[CrossRef]

24. Marshall, I.; Kuiper, J.; Banner, E.; Wallace, B.C. Automating Biomedical Evidence Synthesis: Robot Reviewer. In Proceedings of
the ACL 2017, System Demonstrations, Vancouver, BC, Canada, 30 July–4 August 2017; pp. 7–12.

25. Van de Schoot, R.; De Bruin, J. Researcher-in-the-loop for systematic reviewing of text databases. 2020.
26. Fu, J.; Lee, S. Certainty-based active learning for sampling imbalanced datasets. Neurocomputing 2013, 119, 350–358. [CrossRef]

http://blogs.nature.com/news/2014/05/global-scientific-output-doubles-every-nine-years.html
http://blogs.nature.com/news/2014/05/global-scientific-output-doubles-every-nine-years.html
https://doi.org/10.1007/s11192-024-04935-2
https://doi.org/10.1111/j.1471-1842.2009.00848.x
https://doi.org/10.7326/0003-4819-151-4-200908180-00135
https://www.ncbi.nlm.nih.gov/pubmed/19622511
https://doi.org/10.1038/sdata.2016.18
https://www.ncbi.nlm.nih.gov/pubmed/26978244
https://doi.org/10.1371/journal.pone.0227742
https://www.ncbi.nlm.nih.gov/pubmed/31935267
https://doi.org/10.1016/j.infsof.2021.106589
https://doi.org/10.1038/s42256-020-00287-7
https://doi.org/10.1186/2046-4053-4-5
https://www.ncbi.nlm.nih.gov/pubmed/25588314
https://doi.org/10.1186/s13643-018-0740-7
https://www.ncbi.nlm.nih.gov/pubmed/29778096
https://doi.org/10.1186/s13643-019-1074-9
https://doi.org/10.1197/jamia.m3162
https://www.ncbi.nlm.nih.gov/pubmed/19567792
https://doi.org/10.1016/j.jclinepi.2017.08.011
https://doi.org/10.1007/s10664-017-9587-0
https://doi.org/10.1111/cobi.13117
https://www.ncbi.nlm.nih.gov/pubmed/29644722
https://doi.org/10.1080/00273171.2020.1853501
https://www.ncbi.nlm.nih.gov/pubmed/33263417
https://doi.org/10.1186/s13643-016-0384-4
https://www.ncbi.nlm.nih.gov/pubmed/27919275
https://doi.org/10.1002/jrsm.1311
https://www.ncbi.nlm.nih.gov/pubmed/29956486
https://doi.org/10.1186/s13643-021-01635-3
https://www.ncbi.nlm.nih.gov/pubmed/33795003
https://doi.org/10.1186/s12874-020-01129-1
https://doi.org/10.1016/j.neucom.2013.03.023

Appl. Sci. 2024, 14, 3842 21 of 21

27. Tjoa, E.; Guan, C. A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Trans. Neural Netw. Learn.
Syst. 2020, 32, 4793–4813. [CrossRef]

28. Groen, A.M.; Kraan, R.; Amirkhan, S.F.; Daams, J.G.; Maas, M. A systematic review on the use of explainability in deep learning
systems for computer aided diagnosis in radiology: Limited use of explainable AI? Eur. J. Radiol. 2022, 157, 110592. [CrossRef]

29. Villalobos, P.; Sevilla, J.; Besiroglu, T.; Heim, L.; Ho, A.; Hobbhahn, M. Machine Learning Model Sizes and the Parameter Gap.
arXiv 2022, arXiv:2207.02852.

30. Olorisade, B.K.; de Quincey, E.; Brereton, P.; Andras, P. A critical analysis of studies that address the use of text mining for citation
screening in systematic reviews. In Proceedings of the EASE 1‘6: 20th International Conference on Evaluation and Assessment in
Software Engineering, New York, NY, USA, 1 June 2016.

31. Olorisade, B.K.; Brereton, P.; Andras, P. Reproducibility of studies on text mining for citation screening in systematic reviews:
Evaluation and checklist. J. Biomed. Informatics 2017, 73, 1–13. [CrossRef]

32. Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan,
S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ
2021, 372, n160. [CrossRef]

33. ASReview LAB Developers. AS Review LAB—A Tool for AI-Assisted Systematic Reviews [Software v1.6.2]; Zenodo: Genève,
Switzerland, 2024.

34. Peng, R.D.; Hicks, S.C. Reproducible Research: A Retrospective. Annu. Rev. Public Health 2021, 42, 79–93. [CrossRef]
35. Barba, L.A. Terminologies for reproducible research. arXiv 2018, arXiv:1802.03311.
36. Goodman, S.N.; Fanelli, D.; Ioannidis, J.P. What does research reproducibility mean? Sci. Transl. Med. 2016, 8, 341ps12. [CrossRef]
37. Teijema, J.J.; Hofstee, L.; Brouwer, M.; de Bruin, J.; Ferdinands, G.; de Boer, J.; Vizan, P.; Brand, S.v.D.; Bockting, C.; van de Schoot,

R.; et al. Active learning-based systematic reviewing using switching classification models: The case of the onset, maintenance,
and relapse of depressive disorders. Front. Res. Metr. Anal. 2022, 8, 1178181. [CrossRef] [PubMed]

38. van Haastrecht, M.; Sarhan, I.; Yigit Ozkan, B.; Brinkhuis, M.; Spruit, M. SYMBALS: A Systematic Review Methodology Blending
Active Learning and Snowballing. Front. Res. Metr. Anal. 2021, 6, 685591. [CrossRef] [PubMed]

39. Ferdinands, G.; Schram, R.; de Bruin, J.; Bagheri, A.; Oberski, D.L.; Tummers, L.; Teijema, J.J.; van de Schoot, R. Performance of
active learning models for screening prioritization in systematic reviews: A simulation study into the Average Time to Discover
relevant records. Syst. Rev. 2023, 12, 100. [CrossRef]

40. PyTorch Contributors, Reproducibility. 2022. Available online: https://pytorch.org/docs/1.13/notes/randomness.html (accessed
on 25 April 2024).

41. TensorFlow Core, What’s new in TensorFlow 2.9? 2022. Available online: https://blog.tensorflow.org/2022/05/whats-new-in-t
ensorflow-29.html (accessed on 25 April 2024).

42. De Boer, J.; Hofstee, L.; Hindriks, S.; van de Schoot, R. Systematic Reviews at Utrecht University and UMC Utrecht 2020. Zenodo,
2021. Available online: https://zenodo.org/records/4725568 (accessed on 25 April 2024).

43. Haddaway, N.R.; Rethlefsen, M.L.; Davies, M.; Glanville, J.; McGowan, B.; Nyhan, K.; Young, S. A suggested data structure for
transparent and repeatable reporting of bibliographic searching. Campbell Syst. Rev. 2022, 18, e1288. [CrossRef]

44. Fiil-Flynn, S.M.; Butler, B.; Carroll, M.; Cohen-Sasson, O.; Craig, C.; Guibault, L.; Jaszi, P.; Jütte, B.J.; Katz, A.; Quintais, J.P.; et al.
Legal reform to enhance global text and data mining research. Science 2022, 378, 951–953. [CrossRef]

45. Jefferson, O.A.; Koellhofer, D.; Warren, B.; Jefferson, R. The Lens MetaRecord and LensID: An Open Identifier System for Aggregated
Metadata and Versioning of Knowledge Artefacts, LIS Scholarship Archive. 2019. Available online: https://doi.org/10.31229/osf.io/
t56yh(accessed on 25 April 2024).

46. Priem, J.; Piwowar, H.; Orr, R. Open Alex: A fully-open index of scholarly works, authors, venues, institutions, and concepts.
arXiv 2022, arXiv:2205.01833.

47. Neeleman, R.; Leenaars, C.H.C.; Oud, M.; Weijdema, F.; van de Schoot, R. Addressing the challenges of reconstructing systematic
reviews datasets: A case study and a noisy label filter procedure. Syst. Rev. 2024, 13, 69. [CrossRef]

48. Boetje, J.; van de Schoot, R. The SAFE procedure: A practical stopping heuristic for active learning-based screening in systematic
reviews and meta-analyses. Syst. Rev. 2024, 13, 81. [CrossRef]

49. De Raadt, A.; Warrens, M.J.; Bosker, R.J.; Kiers, H.A.L. Kappa coefficients for missing data. Educ. Psychol. Meas. 2019, 79, 558–576.
[CrossRef] [PubMed]

50. Van Oest, R. and J.M. Girard, Weighting schemes and incomplete data: A generalized Bayesian framework for chance-corrected
interrater agreement. Psychol. Methods 2022, 27, 1069. [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/tnnls.2020.3027314
https://doi.org/10.1016/j.ejrad.2022.110592
https://doi.org/10.1016/j.jbi.2017.07.010
https://doi.org/10.1136/bmj.n160
https://doi.org/10.1146/annurev-publhealth-012420-105110
https://doi.org/10.1126/scitranslmed.aaf5027
https://doi.org/10.3389/frma.2023.1178181
https://www.ncbi.nlm.nih.gov/pubmed/37260784
https://doi.org/10.3389/frma.2021.685591
https://www.ncbi.nlm.nih.gov/pubmed/34124534
https://doi.org/10.1186/s13643-023-02257-7
https://pytorch.org/docs/1.13/notes/randomness.html
https://blog.tensorflow.org/2022/05/whats-new-in-tensorflow-29.html
https://blog.tensorflow.org/2022/05/whats-new-in-tensorflow-29.html
https://zenodo.org/records/4725568
https://doi.org/10.1002/cl2.1288
https://doi.org/10.1126/science.add6124
https://doi.org/10.31229/osf.io/t56yh
https://doi.org/10.31229/osf.io/t56yh
https://doi.org/10.1186/s13643-024-02472-w
https://doi.org/10.1186/s13643-024-02502-7
https://doi.org/10.1177/0013164418823249
https://www.ncbi.nlm.nih.gov/pubmed/31105323
https://www.ncbi.nlm.nih.gov/pubmed/34766799

	Introduction
	Reproducibility in the Context of Systematic Screening
	Defining Three Phases
	Reproducibility in the Three Phases

	Data in AL-Aided Screening
	Data in the Set-Up Phase
	Data in the Labeling Phase

	A Trade-Off between Reproducibility and Data Storage
	Data Storage Recommendations for Systematic Screening
	Input Data
	Set-Up Phase
	Labeling Phase
	Data Produced by the Annotator
	Data Produced by the Model

	Output Data

	Reproducibility and Data Storage for Active Learning-Aided Systematic Screening—The Checklist
	RDAL Checklist
	Example of the Technical Data

	Discussion
	Conclusions
	Appendix A
	References

